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1. Introduction

In this paper the following classification problem is solved.

PROBLEM 1.1. Determine all the polynomials f(X) € C[X] such that there exist
two distinct rational functions g(?), i(f) € C(1)\C with

S(g@®) =1 (h(@)).
This is equivalent to asking for which f(X) the polynomial
byt v e O =)
X-Y
has an absolutely irreducible factor whose associate curve has genus zero: such a
factor will be in this paper always called a genus zero factor.

A more general question is that of determining the polynomials f over a number
field K such that f(X) — /4 has at least two K-rational roots for infinitely many 1 € K.
If these conditions are satisfied, then F;(X, Y') has a factor of genus at most one by
Faltings’ establishment of the Mordell Conjecture [Fa]. In this light, the present
paper may be regarded as a contribution to this problem.

Some problems akin to ours have already been solved. They deal with particular
cases of the question of determining all the pairs f, g of polynomials over a number
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field K, such that their image sets over K have infinite intersection. Again, a factor of
f(X) — g(Y) must have genus zero or one. Necessary conditions for this to happen
under the assumption (deg( /), deg(g)) = 1 are given in [R] for the genus zero case
(see also [Z1]), and in [AZ] for the genus one case. The question regarding the inter-
section of the value sets of f and g over the ring of integers of K has been fully
answered by Bilu and Tichy [BT].

Helge Tverberg determined in [Tv, Ch. 2] the polynomials F(X, Y) over C with a
linear or quadratic factor under the assumption that fis indecomposable (that is, f
cannot be written as a composition of two polynomials of degree larger than 1).
His result is that fis essentially a cyclic (i.e. of the form ") or a Chebyshev polynomial
(see Section 2.2 below for a review of known facts about such polynomials). Similarly,
Yuri Bilu [B] determined all the polynomials f(X) — g(Y) with a quadratic factor.

Our Theorems 1 and 2 below represent a twofold extension of Tverberg’s result:
First, we impose a much weaker condition on the factor and, second, we remove
the assumption that f is indecomposable. Theorem 1 deals with the polynomials
Fr(X,Y). We solve first the case where f is indecomposable (Proposition 4.1),
then we turn to the general case. Now if /= S(X)" then F;(X, Y) has factors of the
form S(X)—c¢S(Y), where ¢# 1 is a root of unity. We must solve the two
problems of their reducibility (the case of indecomposable S suffices, and is done in
Theorem 3) and of their classification under the assumption they have a genus zero
factor. We need only the case where ¢ is a root of unity, but it does no harm to work
under the more general assumption ¢ € C\{0, 1}. This is done in Theorem 2.

Moreover, we determine also the solutions X = g(¢) and Y = A(¢) to the equation
f(X) =cf(Y) (in both cases where ¢ = 1 and ¢ # 1): It will be clear upon reading the
statements of Theorems 1 and 2 that it will both suffice and save space to write the
solutions with g # h and for the case of f indecomposable only. (They are given in
Propositions 4.7 and 5.6.)

A noteworthy application of the polynomials Fy(X, Y) is found in Fried’s work
[Fr1] on the Conjecture of Schur. We use many tools developed by him, in particular
Proposition 2.4 below.

Before stating our results, let us spend a word on the notation used. The poly-
nomials Py, ..., Pg are given later in Definition 2.1: There are polynomials of type
Py of degree n for any integer n > 3, whereas the degrees of Py, ..., P¢ are fixed.
The cyclic polynomial of degree n is denoted by Z,(¢), and T,, denotes the Chebyshev
polynomial of degree n.

THEOREM 1. Let f(t) € C[{]. The polynomial Fr(X,Y) has a genus zero factor if
and only if there exist a polynomial A € C[t] and a linear polynomial M € C[t] such
that one of the following cases occur:

(1) f=AoZy, 0S8 where m > 2, and S € C[t] is such that S(X') — {S(Y) has a genus
zero factor for some mth root of unity { # 1.
2) f=A0T,oM withn > 2.
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(3) f= Ao Py o M with deg(P,) = 4.
4) f=AoProM.
(5) f=AoP30M.

In the case (1) if P(X, Y) is a genus zero factor of Fy(X, Y) there is a unique mth root
of unity { # 1 such that P(X, Y') divides S(X') — {S(Y). Theorem 2 below characterises
such { and S.

Theorem 1 is completely explicit in the case where f'is indecomposable. In this case
A and S are linear. In other words, f'is linearly related to one of Z,, T,,, P, P> or P;3
according to the following definition.

DEFINITION 1.2. Two polynomials f, g € C[f] are said to be linearly related
(abbreviated: L.r.) if there exist two nonconstant linear polynomials ¢; and ¢, such
that g =€y 0f0¢;.

THEOREM 2. Let f(¢) € C[t] and ¢ € C\ {0, 1}. The polynomial f(X) — cf(Y) has a
genus zero factor if and only if either f is linear or we can find a decomposition
= foofi, where fy is an indecomposable polynomial of degree n > 1, such that at least
one of the following statements holds.

(1) fo = aZ, (n a prime) and f1 is such that f{\(X) — {f1(Y') has a genus zero factor for
some nth root of unity { € C.

2) fo =aT, (n aprime). If ¢ = —1, then n =2 and f is linear. If ¢ = —1, then either
J=aTace 1y 0 M for a linear polynomial M or n > 2 and f1(X) + fi(Y') has a genus
zero factor.

(3) fo = t'g(t?) which is not linearly related to a cyclic or a Chebyshev polynomial
where g is a nonconstant polynomial with g(0) # 0 and r, d are coprime integers
withr > 0 and d > 2; Also, ¢ is a dth root of unity and f,(X) — ¢" fi(Y) has a genus
zero factor where r' is an integer satisfying r’ = 1 (mod d).

4) fo=aPy with ¢ # 1 and f; is linear.

(%) fo =a(T5 + d) where d € C\{0, £2}, with

_d+2

. _d-2
T d=2

‘Tdt+2

and fi is linear.
(6) fo = aPy with ¢ = —1 and f; is linear.
(7) fo = aPs with ¢ = w or o and f, is linear.
(8) fo = aPg with ¢ = —1 and f; is linear.

Suppose P(X, Y) is a genus zero factor of f(X) — cf(Y). In the case (1), P(X,Y)
divides f1(X)— (f1(Y) for a unique nth root of unity { € C. In the case (2) with
c=—1 and f# aTaee ryo M, n> 2 the polynomial P(X,Y) divides fi(X)+fi(Y)
but not f(X) 4+ f(Y)/fi(X) +£1(Y). In the case (3), P(X, Y) divides {y(X) — ¢"fi(Y).
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Let us consider case (1) of Theorem 1 and suppose S is not linear. We may apply
Theorem 2 below with S in place of f: the result is that there is a decomposition
S = fo of1 where f; is an explicitly given indecomposable polynomial and fi also
satisfies the assumptions of Theorem 2. Repeated application of Theorem 2 thus
gives a functional decomposition of S, which, by Ritt’s theory, is essentially unique
(see for example [To]).

Consider now the polynomials of Theorem 2(3). It is an easy fact that /(1) = ¢"g(t)
if and only if £(7) satisfies an equation f((7) = ¢f(¢) where clearly ¢ = {98/) = (" and
{ is a dth root of unity. Such a polynomial is not necessarily indecomposable, but all
its composition factors are of the same type: this is easily seen by the argument of
[Z22, Lemma 6].

THEOREM 3. Let fe C[t] be indecomposable and such that f(X)—cf(Y) -,
where ¢ € C* and ¢ € C, is reducible. If ¢ =1, then ¢ =0. If ¢# 1, we may
replace f(t) by f(t)+ /(1 —¢) to assume ¢ =0. Then we fall into one of the
following cases.

(1) f(2) = a(t + b)". For some a € C*, b € C. Now ¢ can be any complex number.

(2) f(t) = aT,(t + b) (with n an odd prime) for some a € C*, b € C. Now ¢ = —1.

(3) f(6) = (1 + b)'g((t + b)?) for some b € C, for some coprime integers r > 0, d =2
and some nonconstant g € C[t]. Also, ¢ must be a dth root of 1.

It is worth observing that in all three cases of the above theorem the poly-
nomial f(X)—c¢f(Y) is indeed reducible. To show this, observe that
deg( f) > 1. Case (1) is trivial, and the factorisation in case (2) is well known
(see Proposition 2.2 below). In case (3) assume b =0 for simplicity: Since
f(X) = cf(X) where ¢ = (" # 1 for a suitable dth root of unity {, we see at once
that X — (Y divides f(X) — ¢f(Y).

We shall deduce Theorem 3 from a property of certain automorphisms of
permutation groups for which we have found no reference: as far as we know this
is a new result. We state it separately.

THEOREM 4. Let G be a doubly transitive subgroup of X, (the symmetric group on
n letters) containing an n-cycle y and let ¢ be an automorphism of G fixing y. Denote
by G; the stabiliser of i in G. Then either ¢(G,) is transitive or ¢ is induced by a
conjugation in X,,.

It is possible to derive this result as a consequence of the Classification of the
Finite Simple Groups (CFSG). However, we think it is worthwhile to provide
CFSG-free proofs whenever possible. The combination of techniques used in our
proof also seems to be new.

In Section 2 we shall set up some definitions, and summarize the relevant material
on Chebyshev polynomials and a genus formula. Section 3 is devoted to the study of
the reducibility of polynomials of the form f(X) — ¢f(Y) — ¢’ (Theorems 3 and 4),
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necessary in the proofs of our first two theorems, which are presented in the last two
sections.

2. Auxiliary Definitions and Results
2.1. THE SPORADIC POLYNOMIALS

We now define the polynomials Py, ..., Ps. As usual, o denotes a fixed primitive
cubic root of unity.

DEFINITION 2.1.

Pi(1) = Py(t; [, m) := /(1 + 1)" with [ and m coprime and /+ m > 3.

Py(1) = Py(t; a, b) == 1(t + a)*(t + b)*, where a, b € C*satisfy the equation
94> — 2ab + 9b* = 0.

P3(1)= P3(t; a,b) == t(t + a)*(t + b)’, wherea, b e C*satisfya® — 5ab + 8> = 0.

Py() = Py(t; a,b) := 1" —%(a+b)* +2abt?>, wherea, b € C*satisfy
@ —&ab+b* =0 with & =26 4+2=0.
Ps(t) = Ps(t; a, b) := t* —%(a+ b)* + 2abi*> + 1, where
(a+@)°+2=0 and b+1=(—a)o.
Ps(1) = Po(t; a, b) == 1(1 + a)*(t + b)*, wherea, b € C*satisfy
2 22 +5¢
9
These polynomials define covers of the Riemann Sphere ramified over at most four
points, as it will be clear from the proofs. Some of them have been already been
found independently while investigating three points ramified covers: For example,
Birch gives in [Schn, Page 41] the polynomial (12 4 5¢ + 40) = (¢ — 3)(¢* + 4t + 24)?
+1728, which is Lr. to P»(7). His (1 + 3)*(t — 2)* = A(£* + 5¢* — 5t — 45)+ 108 is L.r.
to Pi(t; 3,2).

ab+b =0 and E+E+4=0.

2.2. CHEBYSHEV POLYNOMIALS

Following [Sch1] we define the normalised Chebyshev polynomials T4 X) by
To(X)=2, TWX)=X, Tu(X)=XTuX)— Ty 1(X).
They are precisely the polynomials such that

Tiz+zH=z14277

They also satisfy the relation Ty0 T, = Ty, = T, 0 Tj.
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PROPOSITION 2.2. The polynomials T,(X) = T,(Y) split into factors of degree at
most two. More precisely, if we define

Y,x(X, Y) = X* — 2XYcos(nk/n) + Y* — 4sin’(nk/n),

VL) =(—Y) [ YuxY) ()
1<k<5t

and

o, V)= [] Yu(x. 1), (2)
1<k<n
k=1 (mod 2)
then
X+ Y)Y(X,Y) ifnis even,

TX) = Tu(Y) = { ¥, (X, Y) i n is odd: )

and

o,(X,Y) if nis even,

TW(X)+ Tw(Y) = {(X+ Y)®,(X,Y) ifnisodd @

The factors in the right-hand side of (1) and of (2) are absolutely irreducible.

We do not know the first instances of these formulae. A proof of (3) can be found
in [Sch2]. Formula (4), which is an easy corollary of (3), is in [DLS].

PROPOSITION 2.3 ([Sch I, Lemma 9 on page 26]). Let K be a field. The equation
(Q(1) — Q1) — q2) = (1 = &)t — E) R (1)

with qi, q2, &, &HeK, q#q, & #E and Q,R e K[tf] implies Q(t) = Lo
Tdeg(Q) oM™! , where
(1 —q2) . | (g1 +¢2)

L) == t+ and M(t) =

& —-&) & +&)
4 ) t+ .

4 2

PROPOSITION 2.4 ([Frl, Theorem 1]). Let f(X) € C[X] be an indecomposable
polynomial. If f(X) is not linearly related to a cyclic or a Chebyshev polynomial, then
(f(X)—f(Y)/(X = Y) is absolutely irreducible.

2.3. THE GENUS FORMULA

A rational function f(7) € C(7) is viewed as a map from P! := P!(C) to itself, and
expressions like f(00) and f(zy) = oo are allowed.

Write /= f1/f> where f] and f> are coprime polynomials. The degree of fis defined
as max{deg( f1), deg( f>)}. The degree so defined is multiplicative with respect to
composition.

For any f(f) € C(¢) let Qr denote the splitting field of f(f) — Z in a fixed algebraic
closure of C(Z) (if we write f = f1 /f> as above, Q is the splitting field of f1(¢) — f2(1)2).
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For any extension Q/C(Z), an infinite place of Q is a place lying above the place of
C(Z) corresponding to Z = oo (which is the infinite place of C(Z)).

DEFINITION 2.5. For f(X) e C(X) and A€ P! let h(1) be the number of the
distinct roots of f(X) — /4, and ri(4), ..., ry(2), with & = h(1), be their multiplicities.
Let u(4) = us(4) be the number of simple roots of f(7) — x.

For g(Y) € C(Y), consider g(Y) — 4 and define k(1) and s;(2), ..., sg(4), k = k(1)
in an analogous way.

PROPOSITION 2.6 ([Fr3, Proposition 2]). Let f(t), g(t) € C(t) and define the
numbers h(2), k(2) ri(%) and s;(2) as in 2.5 for all ) € P' := P'(C).
If f(X) —g(Y) is irreducible, then it defines a curve of genus g, where

h(2) k(%)

2(deg( )+ =333 (h) — (D), 5,(2)). )

Jep! i=1 j=1
If (f(X)—f(Y))/(X =) is irreducible then it defines a curve of genus g, where

W) h(2)

2(deg( /) +6-2)= 33 (1h) — (2, 1,(2). ©)

Jepl i=1 j=1

DEFINITION 2.7. Let f(¢) be a polynomial. We call A a special point for f if and
only if u,(4) < n (i.e. if f(z) — 4 has a multiple root). We denote by A( /) the set of
the special points of f.

The special points of f are precisely the finite branch points of the cover P! — P!
given by X i— f(X). Then formula (5) gives the genus of the fibred product of the
covers fand g.

3. Reducibility of f(X) —c¢f(Y) — ¢

In this Section we shall give proofs of Theorems 3 and 4.

Davenport, Lewis and Schinzel [DLS] posed the general problem of the reducibil-
ity of arbitrary polynomials f(X) — g(Y). Fried [Fr2] solved the case where at least
one of f, g is indecomposable, assuming a conjecture in group theory which has been
later proved a consequence of the CFSG: Cassou-Nogues and Couveignes [CC]
make Fried’s results in some sense more explicit and review the required tools.
The general case when f and g are not indecomposable is still open.

As already mentioned, the case that interests us can be solved without resorting to
CFSQG, the crucial step being provided by Theorem 4.

*We include notationally the case A = co, where we formally replace /(1) — 4 by £(£)”", i.e. consider
the poles of f(X).
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Proof of Theorem 4. We may assume n > 3. Suppose that ¢(G) is intransitive.
We have to prove that ¢ is induced by a conjugation in X,,.

The proof is divided in two parts. In the first part, we shall consider the natural
representation p of G in GL,(C): We shall show that p and p o ¢ are isomorphic,
i.e. there exists a matrix M such that Mp(g)M~" = p(¢(g)) for all gin G. We also find
a matrix N closely related to M and of finite order. In the second part we shall use the
eigenvalues of N to construct relations involving roots of unity, to which we shall
apply certain arithmetical considerations to deduce that M can be replaced by a
permutation matrix (i.e. the conclusion of the theorem).

Part 1: permutation representations and matrix action. We may assume that G acts
on Q:={l,2,...,n}, which we identify with Z/n7, and that y is the cycle
(1,2,...,n). We shall use simple facts from the theory of linear representation of
finite groups, for which we refer to [Se].

We consider the representation p of G in GL,(C) associated to the action of G on
Q:If ey, ..., e, is the canonical basis of C", we define p(g), for g € G, to be the linear
map sending e; to eg;). It is well known (see, e.g. [Se, Section 2.4, Exercise 2.6]) that p
is the sum of two irreducible representations. One is the unit representation and the
corresponding space U is one dimensional generated by vy := ) ¢;. The other one is
a degree n — 1 representation p,;: The corresponding space consists of the vectors
whose coordinates in the basis {e¢;} sum up to zero and a basis for it is given by
the vectors v; :=¢; —¢; for 2 <j < n.

Denote by H the orbit of 1 € Q under ¢(G;) and define H+¢:={x+1¢: x € H}.

We can assume without loss of generality that 1 belongs to a smallest orbit of
¢(Gy) on Q, so h:=#H < n/2.

Let p* := p o ¢. We proceed to show that p and p* are isomorphic representations.

Define ef =3 .y (_pyex for 1 <t<n. If g€ G and gs =1, then we can write
g=7""g;77¢"D with g; € G|, which shows that ¢(g)(H + (s —1))=H+(t—1).
Therefore the sets H + ¢ form one G-orbit. Equivalently, the vectors {e}} are conju-
gate under the action of p(G). They span a p(G)-invariant subspace of C" of dimen-
sion larger than 1 (since we assumed ¢(G) intransitive, we may find ¢ such that
1 ¢ H+ (¢t — 1): thus e} and ¢} are linearly independent) and containing U, therefore
they span the whole space and are linearly independent.

Moreover if p(g)e; = e, then p*(g)et = e}, implying that the representation p* is
obtained from p by a change of representation module. In particular

Mp(@M™" = p*(g) = p(d(g)) forall ge G, (7

where M is the basis change matrix from the basis {¢]} to the basis {e;}, whose
column vectors are the coordinates of the e} with respect to the basis {e;}. It is a
so-called circulant matrix. (A matrix is called circulant if, for each column vector
(¥0» V1, - -, ¥u_1)' the next column at its right is given by (¥,_1, Yo, . .., ¥u_2)".) Each
of its entries are either 0 or 1.

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018136.23898.65

THE EQUATION f(X) = f(Y) IN RATIONAL FUNCTIONS X = X(1), Y = Y(?) 271

We note at once that if 7 =1, then M is a permutation matrix and thus ¢ is
induced by a conjugation by a suitable power of y: it suffices to look at the position
of the unique entry 1 in each of the columns.

Therefore we shall suppose from now on that /z > 2 and derive a contradiction.

Let ¢ have order r. Then, by (7), M"p(g)M~" = p(¢'(g)) = p(g) for g € G, so M"
lies in the centraliser C of p(G) in GL,(C).

In view of the above decomposition of p, C is conjugate to the group D of diagonal
n x n nonsingular matrices of the form diag(c,d,...,d). (This follows from the
irreducibility of p,, taking into account e.g. Schur’s Lemma [Se, Section 2.2, Prop.
4].) In fact D = X~!CX where X is the basis change matrix whose column vectors
are the coordinates of vy, v2, ..., v, with respect to the canonical basis {e;}. It follows
that the elements of C have the form a/ + bJ where J is the matrix whose entries are
all equal to 1 (it suffices to verify that Xdiag(c,d,...,d) = (dl + (c — d)/(n)J)X).

In particular M" = al + bJ for some a € C*, b € C.

Consider the equation (yM + zJ )" = I for unknowns y € C* and z € C. Using the
fact that JM = MJ = hJ and J?> = nJ we see that

(WM +20f = af T+ (’W" ¥ ZC)(yh)"’”l_lZ[) '
t=1

Fix any y, such that yj = 1/a and observe that the coefficient of J in the above
expansion, upon setting y = )y, is a nonconstant polynomial in z, so it has a root
zo. Hence (yoM + zoJ) = I. Put N := yoM + zJ.

Now N is a circulant matrix such that N” = I whose entries take only two values,
namely zy and yg + zo, the latter taken exactly & times in each column. It can be
proved that N acts on p(G) like M, i.e. that Mp(g)M~' = Np(g)N~! for all g € G.
As we shall not make use of this fact, its proof is omitted.

Part 2 : constructing relations among roots of unity. It is well known how to com-
pute the eigenvalues of a n x n circulant matrix, e.g. by noting that, for a primitive
nth root of unity 6, the nonsingular matrix = := (67 )77:10 diagonalises it. The result is
that the eigenvalues of a circulant matrix whose first column is the vector
(Y0s V1, -+ -+ yu1)', say, are the numbers yo + 0%y + - + 0" Dky, | for 0 < k < n.
In particular those of N, which are rth roots of unity, are given by &, =

(30 +20) Y epy 0™ + y0 32,1y 0™ for 0 < k < n. Put

a@:ZWaM&:L

teH 0
Then
o(k) = &4 for k#£0(modn) and a(0) = 4. ®)

Multiplying N, and thus also yy, zg, by a suitable rth root of unity, we can assume
without loss of generality that £, =1, so 1 = a(1) € Z[0].
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We have, by Parseval’s formula,

n—1

n—1
P = 1) =Y "le(0))* =Y o(k)o(k) — h* = nh — I* = h(n — h).
k=1

k=0
Put

h(n — h)

m:= A7 = pa—)

The number 4 = g(1) being an algebraic integer, m € IN. As h# 1,n— 1 we have
m> 1.
If n is even, then a(n/2) is a rational integer, so the equation m = |1]> = |a(n/2)]?
implies that m is a square. This however holds also for odd n, as we shall now see.
If k= 0(modn) we have m = |1|* = |o(k)|> = a(k)a(—k) = 2*Eé_,. Also, 12 =
é,:za(k)z, whence

m= & alk) e Z[0%).

This implies in particular that 6,:16_,( is a root of unity in Q(Hk), whence it is £ a
power of 0.

Let now p be a prime dividing n (so p is odd). We consider the last displayed rela-
tion, with k = n/p. In this case, one of the two numbers j:f,j,lf_k is a pth root of
unity, so 4m is a square in Q(0%), for a suitable choice of the sign. Since the unique
quadratic subfield of Q(6%) is (for k = n/p) one of the fields Q(/Ep), we deduce that
either m = u?> or m = pu* for some positive integer u.

If m is of the form p u?, then n must be a power of p (otherwise we apply the above
argument with two distinct prime factors of n to get a contradiction). But then the
equality m = % implies that p divides m with even exponent: in fact, if p divides
m, then it must divide 4 (because (n — 1)m = h(n — h) = —h*> (mod p)). And now, if

Pk then p®||n — h, so p**||m. This is a contradiction, thus in any case m = u? is a
square and
h(in—h
( ) _ m=u’. )
n—1

Also, 2 = uf? for some integer ¢. In fact, equations (8) imply that
P2l = oll)a(—k) = o(k)* = m = o,

so A/u is a root of unity which lies in (Q(0) (since 4 does), and the conclusion follows.

Since 4= 0(modu), we have by (8) that a(k) =0 (modu) for k # 0(modn).
Pick now s € Q\ H. Applying Fourier inversion to the defining expression for a(k)
yields

nf: a(k)0™* = Z(i 0“—5)") =0.

k=0 teH \k=0

This implies that the congruence a(k) = 0 (mod) u holds in fact for all integers k.
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Let now p be a prime factor of u (if u = 1, then s =1or h = n — 1 by (9), two cases
which we exclude) and write n = PQ where P is a power of p, say P = p* (possibly
P = 1), and Q is a positive integer coprime to p. Also, write 8 = my, where 7 (resp. )
is a primitive Pth (resp. Qth) root of unity. Let x and y be arbitrary integers. By the
Chinese Remainder Theorem we may find an integer k = k(x, y) such that k =
x(mod P) and k = y(mod Q). Then 7% = 7* and ¥* = »*, so 0 = n'¥y”. Therefore,
for all pairs of integers x, y we have

o(k) =Y n"z" = 0(mod u).

teH

By Fourier inversion with respect to y, we obtain that

o-1
o n’x:Z(Zn’«fz“)%"(’yEO(modu),

teH y=0 \teH
t=tp (mod Q)

for all pairs of integers ¢y, x. Since p divides u# and does not divide Q, we find

> 2" =0(modp). (10)

teH
t=ty (mod Q)

Put now x = 1. We may pick #; such that the L.h.s. of (10) does not vanish, for other-
wise a(k) would vanish for some k (actually for all k = 1 (mod P)). Also, no two
terms in this sum can be equal, for they would correspond to distinct values
t, ¢ € Q such that t = ¢ both modulo Q and modulo P. Hence, on putting ¢, = 1
if 7 i1s congruent modulo P to some element of H and ¢ = fy(mod Q), and ¢, =0
otherwise, equation (10) becomes

P-1
0#£T:= Ze,n’ = 0 (mod p).
=0

Now 7n has degree f:= @(P)=(p— 1)p*~' over O, with minimal polynomial
OX) =X —1)/X"" —1)=1+X""+...4+ X/ We may use the equation
®(n) = 0 to express a power 72, for P > b > £, as the sum —n?~ — ... — 702" In

this way we obtain a (possibly) new expression for 7, namely

-1
T= Z(Er - 61*)7Tt,
=0

where ¢, is the unique integer = ¢ (mod p®!) and such that < ¢, < P.

Further, every algebraic integer in Q(0) lies in Z[0], whence it may be written
uniquely as a linear combination of 1,7, ..., 7! with coefficients in 7. Upon
writing T = ué, where £ is an algebraic integer, we see that p divides ¢, — ¢, (in 7))
fort=0,...,f— 1. Bute¢ —¢, €{0,£1} (and p > 2), so all these differences vanish
and T = 0. This contradiction finally proves the Theorem. O
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LEMMA 3.1. (i) Let f, g € C(X) with f indecomposable. If f(X) — g(Y) is reducible,
then Qg 2 Q. Therefore if also g is indecomposable then Q = .

(i1) If, further, f and g are both indecomposable polynomials then they have the same
degree and the same special points.

Proof. (1) Let x| and y; be algebraic over C(Z) and satisfying f(x;) = g(y1) = Z.
By assumption p := [C(x1, y1) : C(x1)] < n := deg(g). As fis indecomposable, there
are no fields properly intermediate between C(Z) and C(x;) by Liiroth’s Theorem.
Thus Q, N C(x1) can only be one of these fields. If Q, N C(x;) = C(Z) then, by
simple Galois theory g(Y) — Z remains irreducible over C(x)), i.e. p = n. Hence we
must have Q, 2 C(x) and Q, 2 Q follows.

(ii) An infinite place of € (resp. €;) has ramification index over C(Z) equal to
deg( f) (resp. deg(g)): the equality of degrees follows. Let x;, y; algebraic be such
that f(x;) = g(y1) = Z. Now, 4 is a special point for f (resp. g) if and only if it
corresponds to a place of C(Z) which ramifies in C(x;) (resp. C(y;)). Every point
of C(Z) ramified in C(x;) must be ramified also in @y, hence must be ramified in
C(y1). Then A(f) € A(g). By symmetry we conclude. O

Proof of Theorem 3. Write n := deg f. Let Z be an indeterminate over C. Denote
by Q (resp. Q) the splitting field of f(X)— Z (resp. ¢f(Y)+ ¢ — Z) in a fixed
algebraic closure of C(Z). By Lemma 3.1 we know that Q* = Q and that /(X)) and
¢f(Y)+ ¢ have the same special points. Hence ¢’ =0 if ¢ =1, proving the first
assertion. In the following assume then ¢ #0,1, ¢/ =0. Now ¢A = A and either
A = {0} or ¢ must be a root of unity.

If A = {0} we have f(¢) = a(z + b)" and we fall in the first case.

Henceforth suppose that there is some nonzero special point. This already implies
that ¢ is a root of unity. Since ¢ # 1, we see that #A > 2. In particular f cannot be
Lr. to a cyclic polynomial.

Assume that f'is L.r. to T}, so we may assume in fact f(¢) = T,,(¢) + d (here n must
be prime since fis indecomposable). Now, A = {d + 2, d — 2}. Therefore ¢ has order
2, whence ¢ = —1. Hence d+ 2 = —(d — 2), i.e. d =0 and we fall in case (2). Note
that 7}, is odd for odd #n, so in fact T,,(X) + T,(Y) is reducible in those cases.

Therefore it remains to prove that: If f is an indecomposable polynomial not 1.r.
to a cyclic or to a Chebyshev one and f(X)— cf(Y) is reducible, then f(X) =
cf (I(Y)) for a suitable linear polynomial L.

Let X ={x,...,x,} (resp. Y = {y1, ..., yu}) be the set of the roots of f(X)—Z
(resp. ¢f (Y)— Z), and T (resp. I'*) the Galois group Gal(Q/C(Z)) (resp. Gal(Q*/
C(Z))). (For the moment we forget that Q = Q*))

We now embed Q/C(Z) into a Laurent series field. We use [V, Ch. 2] as a reference
throughout. Choose an extension p of the place of C(Z) corresponding to Z = oo to
Q, and denote by Gy, its inertial group, which is cyclic of order n. Let Q, be the p-adic
completion of Q. As the base field C is algebraically closed and of zero characteristic,
an element ¢ € Q, can be found such that Q, = C((#)) and #* = Z~'. The Galois group
of Q,/C((1/Z))is Gy. The elements of Gy, are represented by r +— £t where £ = 1 (more

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018136.23898.65

THE EQUATION f(X) = f(Y) IN RATIONAL FUNCTIONS X = X(1), Y = Y(?) 275

precisely, > ;o bit' — Doy bi(éf)'. Now let g, be a generator of G,. It is (by
restriction) an element of I and we can index the roots X’ so that

goo(xj) = Xjt1-

The place of (\7((1))/@((%)) over Z = oo is ramified with index n. Let v be the
associated valuation: The corresponding maximal ideal of C[[7]] is generated by
the uniformising parameter ¢. Then v(%) =n and v(xj‘l) =1 for all j. We can write

x7!' = art (mod AC[[)),

with a; # 0. Similar expressions hold for the other roots. Therefore there exists a
nonzero { € C such that x5! = @,{t(mod *C[[/]]). Now v({x7' — x31)> 1, whence
v(Cx = xh) = v(e (@t = x31)) > 1. By simple induction this implies

X' = a1 (mod AC[[A)).

This also proves that { is a primitive nth root of unity.

We know that Q = Q* and that the roots of /(Y) — Z/c are obtained from those of
f(X) — Z by extending an automorphism Z — Z/c of LC((%)) (which contains C(Z))
to one of C((¢)). For a fixed nth root u of ¢ such an automorphism (continuous with
respect to the #-adic topology) is given by ¢ +— ut. We can index the elements of ) so
that their expansions around Z = oo are

vt = aul 1 (mod AC[[A) (1 <j<n).
Define group monomorphisms I', I'* — X, as follows
. = X, g1— 1(g) where t(g)(a) = b if g(x,) = xp,
LA S Y gi— 1°(g) where t(g)(a) = b if g(y.) = ys.

As we get the roots ) from the roots X’ by the variable change ¢ i— ut, it is clear now
that the images of I and I'* in £, are the same, in the sense that for every element g € I'
there exists an element g* € I'* which induces on the indices of ) the same permutation as
g on the indices of X, that is: 7(g) = t*(g*). Therefore there exists an isomorphism
: T — I'* such that Y(g) = g* = (t*)"'(1(2)). For each g € T, the image y(g) sends y,
to yp if g(x,) = x,. The image of g, operates thus: Y(gc)(¥;) = yjy1. As Q = QF, we
also have that I' = I'* as automorphism groups, i.e.: Each element of I" permute the ).

We are going to prove that g, sends y; to y;r;. By the equality of the splitting
fields, there is a relation

1= R(x1,x2, ..., Xp) (1)

where R(X|, X2, ..., X,) is a rational function over C. Now g/ acts formally on the
r.h.s. of (11) mapping x; to x;;,, and thus replacing 7 with {"z. As (11) is an identity
of power series, g acts also on the L.h.s. sending  to {'z, i.e. it maps y; to yi4,. This
proves that g..( y;) = y;41 foralli. In other words, \ is an automorphism of T fixing geo.
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Fried [Frl, Lemma 9] proved that if the indecomposable polynomial f'is not L.r.
to a cyclic or to a Chebyshev polynomial, then I' = Gal(QQ/C(Z)) acts doubly
transitively on the roots of f(X) — Z. (This is the key argument in his proof of the
absolute irreducibility of (f(X) — f(Y))/(X — Y).

As yy is transcendental over C, the absolutely irreducible factors of f(X) — ¢f(Y)
are in one-to-one correspondence with those of f(X) — ¢f(y1), and thus correspond
to the orbits of I',, = Gal(Q/C(y1)) on X. Now, as f(X) — ¢f(Y) is reducible by
assumption, I'),, = y/(I'y,) is not transitive on X.

We now apply Theorem 4, which shows that  is induced by a conjugation in the
full symmetric group on X. In turn this means that y/(I'y,) is the stabiliser of some
root x;. But if the stabilisers of y; and of x; in the Galois group of Q/C(Z) coincide,
then C(y;) = C(x;), so x; = £(y1) for some fractional linear function £.

Then f(¢(Y)) = ¢f(Y), hence ¢ is a linear polynomial and we fall in case (3). []

4. Proof of Theorem 1

We consider first the case of indecomposable f(¢).

PROPOSITION 4.1. Let fe C[X] be indecomposable and let g, h € C(t) be non-
constant distinct rational functions satisfying f(g(t)) = f(h(t)). Then f(X) is L.r. to one
of the following polynomials:

(1) X" (n a prime);

2) T,(X) (n an odd prime);

(3) Py(t; 1, m) for some coprime I, m such that [+ m > 3;
(4) Py(t; a, b) for suitable a, b,

(5) Ps(t; a, b) for suitable a, b.

We give first some definitions, which will be often used in the following. Let
n = deg( ). Adopt the notation of Section 2.3. Since in the proof of Theorem 2
we shall need to treat polynomials of the form f(X)— g(Y), we consider this
situation first, and then specialise the definitions and results to the relevant cases.

Put
h
a(2) = (r(A) — 1) = deg( /) — h(2) (12)
i=1
and
h) ' k()
@)= "), P =) (1A — (ri(A), s{(A))). (13)
i=1 j=1
Clearly
deg(f)— 1= a(k). (14)

reC
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We begin to derive some inequalitiecs. We plainly have for every special A

n— )~ 1> a(y > ", (15)

(Note that the inequality on the right-hand side holds actually for all A.)

LEMMA 4.2. If r(A) =1 then ¢?(J) = 0. If ri((A) =2 and g(Y) — A is not a perfect
power of a polynomial of smaller degree then

D)y =r(d) -1, c(2) = a(l) (16)
and

c(4) = a(Z)pg(2). (17)

Proof. The first assertion is obvious. If ri(l) > 2 does not divide s;j(4), then
ri(4) — (ri(2), si(4)) = ri(4)/2. If this happens for two distinct indices j, then
V(%) = ri(4). Otherwise ri(4) divides s;(4) for all j except at most one and in this case
it cannot divide them all, for otherwise g(Y) — A would be a r;(1)-th power. So there
is exactly one index j with s;(1) not divisible by r;(1). For the same reason as above we
must have (r(4), 5i(4)) = 1. In conclusion ¢?(2) > ri(%) — 1 and (16) follows summing
over i. Also, observe that plainly ¢)(1) > u,(2)(ri(Z) — 1), so we obtain (17). O

DEFINITION 4.3. For any polynomial f(¢) we define its root type at 1, denoted by
M(f=2) (or simply M( f) if 1 =0) as the unordered list [r(, r2, ...] of the multi-
plicities of the distinct roots of f(f) — 4 in C. A short notation for n roots of
multiplicity m is m™".

Proof of Proposition 4.1. Put Fp(X,Y)=(f(X)—-f(Y))/(X=Y). If fislr. to a
cyclic or to a Chebyshev polynomial then Fy(X, Y') splits into genus zero factors and
we fall in cases (1) or (2).

In the remainder of this proof we then assume that f'is not l.r. to a cyclic or to a
Chebyshev polynomial. Hence, f has degree larger than 3 and has at least two special
points. By Proposition 2.4, Fr(X, Y') is absolutely irreducible.

Put A=A(f)={,.... 2}, and define a; := a(X), ¢; = (X)), p; == u(%;) and
so on. From (6) we get a formula for the genus g of the curve associated to Fr(X, Y):

#A
2deg(f)+a-2)=) ¢ (18)
=1

where in the definition for ¢; = c(4;) one puts s;(4;) = r;(4;).

Also, f— Ais not a power of a smaller degree polynomial for all A € C and Lemma
4.2 holds with g = f'and p,(2) = u(4). By (14), (18) (with g = 0) and (17), there exists
a special point, say L1, with u; < 1.

We may also assume that p; < u(4) for every A.

We first show that there cannot exist more than two special points.

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018136.23898.65

278 ROBERTO M. AVANZI AND UMBERTO M. ZANNIER

Suppose on the contrary #A = 3. By (18), (16) and (17) itis 2(n — 2) > Z?:l ¢ =
a) + (4, + uz) minf{ay, az}. By (14) and (15) we have n — 1 22?21 (n — p;)/2. Then, as
a; = (n—1)/2 we obtain u, + p3 = n+ 1. Hence min{a,, a3} = 1. Say the minimum
is a; = 1. Then we have u, = n —2 = ¢,. In turn this implies p3 > 3. As ¢3 = 3a3 by
(17)and a» = 1,wehave2(n—2):fo1 cize+m=2)+c3+> 30> (n—3)+
2az + Zi\l a; = 2n — 4 + 2a;, which implies a3 = 0, a contradiction. Hence #A =2
as claimed.

We cannot have p, = 0, otherwise a1, a, = n/2, contrary to (14). By a similar
argument, if u, =1 then also p; = 1. Therefore u, > 1> py,. If h; <2 then
f(X) — 71 has at most two roots, hence exactly two or we would fall in case (1). Write
M f(X) — A1) = [, m]: since deg( /) > 3 we fall in case (3).

So suppose from now on that s > 3.

We are going to prove that u, <3. We have (n— )2 <ap,=n—1—a; =
n—1-m—mh)=h—1,s0 n+2—-2h < u, and ¢; = pa, = w,(hy — 1), by (17).
Using (18) with g =0 and ¢; > a; = n — h; we thus get

n+2—2h <p, and (i — D(hy — 1) — 3.

Combination of these inequalities gives (n+ 1 —2h)(h; — 1) <n—3, that is
(h—=2m<(h —1)2h;1 —1) =3 = —2)2h; + 1), whence n<2h +1 (recall
hy = 3). Finally,

_l<l’l—3 <2/’11—2_
=Sy IS o1 T

2.

We have thus p, < 3 as desired.

Suppose @, = 1. Then also y; =1, and a;,a; = (n — 1)/2, where equality must
hold because a; + a, = n — 1. In other words, f(X) — 4; and f(X) — 4, have both
exactly one simple root, all other ones being double. By Proposition 2.3 f would
be L.r. to a Chebyshev polynomial, a case which we exclude.

Let then in the following be p, = 2 or 3. We show that, in this case, y; = 1. If
u; =0, f(X)—7; has no simple root, and not all the roots can be double, since
f(X) is indecomposable. Hence, a; = (n+ 1)/2 (holding with equality if and only
if there is exactly one triple root and the remaining ones are double), whence
ay < (n—3)/2. Since a, = (n — u,)/2 we deduce that y, = 3 and all such inequalities
are in fact equalities. In particular /(X)) — 4, has three simple roots and all remaining
roots double. These facts give ¢; = %(n —3)=¢y, whence 2n —4 =3n—9and n = 5,
hy = 2, a contradiction. Therefore u; = 1.

Let M(f—A4)=1[r,...,ry] (recall by = 3) and put M := max{r;} > 1. Let ¢ be
the number of roots (of f— 4;) of multiplicity M. If 0 #4r < M then M — (M, r) >
M—max{d : d| M,d < M} =: M*, say. We then get >, (M~ (M,r))) >
M*(h; — 1 — ¢q) whence, directly from (13),

hy
az ) ri=D+gM(h—1—-q)=n—h+Mqh —1-q). (19)
i=1
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Since u; =1 and h; >3, we have n>=5, so ¢ = u,(n— py)/2 = min(n — 2,
%(n—3)) >n—2 whence ¢;<n—2. By (19), hy =224+ M*qhy —1—gq). If qg#
hy—1 then g(hy —1—¢q) = h; —2, so M*=1. However M* =1 if and only if
M =2, which implies ¢ = h; — 1. Therefore in any case we have ¢ =h; — 1 and
ag=M-1)/Mmn-—1), ag=mn—1)/M. Since a; = (n — 3)/2 by (15), we see that
M=2orn<T.

If M=2then ap =a; =m—1)/2 and h) = hy = (n+ 1)/2. It is now easy to see

=
that if p, = 2 the root type at A, must be [1, 1, 2XHT, 3], while if g, = 3 it must be

[1,1,1, 2X%, 3,3lor[l,1,1, ZX%, 4]. A quick verification shows that the only case
compatible with (18) is n = 5 with root types [1, 1, 3], resp. [1, 2, 2] at 4;, resp. 4;.
Replacing f with a l.r. polynomial we may assume that 1, =0 and f(¢):=
((t + a)*(t + b)>, where ab(a — b) # 0. Also, f(1) — J, has a triple zero, say . This
zero ¢ must be a double zero of f’(f), &# —a,—b. The discriminant of
(f'(0))/((t + a)(t + b)) = 52 + 3(a + b)t + ab which is 9(a + b)> — 20ab must then
vanish. Hence we fall in case (4).

Last,letn <7and M > 3. Recall iy =3 andg=h; —1l,son>=14+3(h) — 1) =7,
hence in fact n = 7, with root type at 4;, resp. 4, equal to [1, 3, 3], resp. [1, 1, 1, 2, 2].
Replacing / with a Lr. polynomial we may assume that f(r) = 1(1 + a)*(t + b)*,
ab(a — b) #0. Now we must impose that f takes the same value at the two zeros
of /7 distinct from —a, —b. We have /(1) = (t + a)*(t + b)*(7¢% + 4(a + b)t + ab).
Solving 7#> +4(a + b)t +ab =0 and substituting into f we obtain an equation
which leads to the equations 8a> — 5ab + b*> =0 and a’> — 5ab + 8b> =0 (here we
used a computer), hence we fall in the last case. O

Remark 4.4. Consider now cases (3)—(5) of the Proposition just proved. The root
types of the special points of P; (with degree at least 4), P, and P3 show that they
cannot be Lr. to cyclic or Chebyshev polynomials. Also, they are indecomposable.
This is clear for P, and P; since they have prime degree. The following Lemma
settles the question for P;.

LEMMA 4.5. P(t; p, q) is indecomposable.

Proof. Suppose that P(r) = (¢t + 1)? = fi( f>(¢)) with deg( f}), deg( f2) = 2. As p
and ¢ are coprime, f] is not a power of a linear polynomial and has N > 2 distinct
roots. Write fi(1)=[[",(t—¢&)" with &#¢& if j#k Thus #(t+1)! =
Hj]il(fz(t) —¢;)" and the factors f5(r) — ¢; being pairwise coprime, we have N < 2,
hence N = 2. At least one of the polynomials f5(r) — &; and f(¢) — &, has at least two
distinct roots, which implies that P;(¢) must have at least three distinct roots, which

is a contradiction. O

Remark 4.6. Let us consider now the sporadic polynomials P,(t; a,b) and
Ps(t; a, b) and the corresponding curves (f(X) —f(Y))/(X — Y). It is clear that L.r.
polynomials define isomorphic curves.
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We prove that the polynomials P,(¢; a, b) form only one l.r.-class. First observe
that Ps(t; ca, cb) = > P(t/c; a, b). Let a; and a, be the roots of 94> — 2a + 9: It is
easily seen that a3 Py(t; a1, 1) = Pa(apt; ap, 1), so we have only one class.

On the other hand, we have two l.r.-classes of polynomials Ps(z; a, b). As above
assume b = 1, let a; and a, be the two roots of &> — 5a + 8 and consider the equation
(pP3(t; a, )+ q) — Ps(ct + d; ay, 1) = 0: This is a system of § equationsin ¢, d, p and
¢ (corresponding to the coefficients of #/, 0 < j < 7) which has, however, no solutions.

PROPOSITION 4.7. Suppose that f is one of the polynomials given in Proposition 4.1

(1)—(5). Then there exist distinct nonconstant rational functions g(t), h(t) with

f(g(0)) = f(h(1)) and all pair of such functions are given by the formulae g(t) = g,(r(t))

and h(t) = hi(r(t)), where r(t) is a rational function, and respectively in cases (1)—(5):

(1) g1(t) = t and hi(t) = {t where " =1, { # 1.

) gi() =1+, () =t + 4, where (" =1, {# 1.

3) £1(0) = 55 (D) = 1"g1(0).

(4) Put c:=a+b and 6:=a—b. Also, put U=U(t):=Xr*+§)., Z=Z(1)=
%(12— %l - é—i). Then

—2abt? z
5 > and (1) =g1()— -
(22 +1Z+2)+8(Z — 1)U 1

(5) Define a, 6 as before. Also, define e =%, f=1 ——"2, Finally, put U= U(t) :=
4b 4
%(t2 +1), Z=2(t) = %(t2 —et—f). Then

—2ab’

gi1(t) =

3
gi1(t) = and h(f) = gl(l)%.

AR
Z—t
In cases (2)—~(5) the expressions for g, are reduced (i.e. numerator and denominator
are coprime) and with square-free denominator.
Proof. The case (1) is trivial.
Consider case (2) and assume that T,(g(7)) = T,(h(¢)). Write, in an algebraic
closure of C(), g(r) = &+, h(t) = f + . Then the defining equation for 7}, gives
1 1
n [ -
o 4 o p"+ &
which we rewrite as (o' — (1/8")(1 — (f"/a")) = 0. So o = {f for some nth root of
unity { and some ¢ = 1. Replacing § with 1/f if necessary, we may assume that
¢ =1. Now observe that (g(¢) — h(r) = (> — 1)B, that { # —1 because n is odd
and that { # 1 since g and £ are assumed distinct. Then f = r(¢), say, is a rational
function and, by the above formulae, we are done.
In the remaining cases F; (X, Y')isabsolutely irreducible by Proposition 2.4, since, by
Remark 4.4, f'is indecomposable in those cases. Let @ := C(x, y) where Fy(x,y) = 0.
Suppose we find rational functions gi(u), hi (1) € C(u) with Fr(gi(u), hi(u)) = 0 and

o +0(Z2+4(1 —e)tZ+ 12U
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C(g1(u), hy(u)) = C(u). Then ® = C(u). Now, if g(¢), h(f) are distinct and satisfy
Fr(g(?), h(r)) = 0, we have ® = C(g(?), h(t)) C C(1). Also, g(t) = g*(w), h(t) = h*(u)
for certain rational functions g*, #*. Since x = g;(u) = g(f) = g*(u) we have g| = g*
and similarly 4; = i*. Moreover u € C(¢), so u = r(¢) for a rational function r. Hence,
to complete the proof it suffices to find g;, 4, as above, in each of the cases (3)—(5).

In case (3) we verify by direct substitution that the given formulae satisfy the rele-
vant equation. Observe that " = h;/g; € C(gy, hy). Hence ¢ = (14 g1)/(t"g1 + 1)
also lies in C(gy, /1), which thus contains ¢, since /, m are coprime.

In case (4), rather than verifying by brute force that the displayed formulae satisfy
the relevant conditions, we reconstruct in several steps the formulae themselves.
Put ® = C(x,y), where Fy(x,y)=0. Put z:=(x+a)(x+b)/(y+ a)y+ b)), so
y = z’x. We have C(x, z) = ®. Substituting y = z°x in the right side of the formula
defining z we get

= DxX* 4+ (a+b)Z — Dx+ab(z—1) = 0. (20)

Let A=A(z) = (a+ b)*(z* — 1)* —4ab(z — 1)(z° — 1) be the discriminant of this
quadratic equation in x. We have ® = C(x, z) = C(z, VA).

If we can find nonconstant g; and sy with Fy(g1(¢), hi(¢)) = 0 then the field @
has genus zero, and the latter condition, as is well known, means that A has
at most two roots of odd multiplicity. In fact, it can be easily verified (for
example using maple) that if 94> —2ab+9b*>=0 and S=a—b, then
A=8(-1"2+1z +1). Hence

® = C(z, VA) = C(z,,/ 22 +%z+ 1).

Put u? =22 + %z + 1. It is well known how to parametrise this type of equation.

On completing the square we obtain (u— z — ))(u + z +§) = §5. Now the parametri-
sation comes by setting 7:=u-+z+3, s0 &2 =u—z—{ and we obtain z = z(r) =
e—L -Dandu=u@):=1c+L). X

,

The roots of a quadratic equation aX?> + X +7 =0 can be also given by T
n = ~/A. Using these formulae to solve equation (20) for x, we can express x (and

also y) as a rational function of 7 and thus obtain

—2ab
o(zZ2+z+1)+6(z— Du

gi1(t) = and 1 (1) = g1(0)2>.

Putting Z := ¢z, U := tu we obtain the formulae given in the statement. By construc-
tion ® = C(¢). The expression for g is a fraction with both denominator and
numerator polynomial and it is reduced, as the denominator does not vanish for
t = 0. We compute (with maple) the greatest common divisor of the denominator
and its derivative with respect to ¢. Since the result is 1, we conclude that the denomi-
nator is square-free.
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The procedure to obtain case (5) is similar to the preceding one. Defining z by the
same formula we have y = z3x and again ® = C(x, z). Again we obtain a quadratic
equation for x, namely (z/ — 1)x?> 4+ o(z* — 1)x + ab(z — 1) =0 with discriminant
A :=a2(z* = 1)> — 4ab(z — 1)(z" — 1). By verification as before we find that A(z) =
(22 +4(1 —e)z+ 1)*(z — 1)*(z* + ez + 1). As in the previous case we parametrise
22 + ez + 1 =u?, solve the quadratic equation for x, put U = ut, Z = Zt and get
the formulae displayed in the statement. The formula for g; also in this case is
reduced and with square-free denominator. O

In [Fr2, p. 141] Fried stated that, for (unspecified) applications, it would have been
of interest to consider the reducibility of rational functions f(X) — g(Y) where f'is
a polynomial but g is a rational function. Our next theorem is one such result, which
will be needed in the proof of Theorem 1.

THEOREM 5. Let S(X), p(X) and q(X) be polynomials over C, with S(X) inde-
composable, deg(S) =2, deg(q) =1, deg(p) <deg(q)+1 and (p,q)=1. Put
¢(X,Y):=S(X) — p(Y)/q(Y). Then the rational function ¢(X, Y') is irreducible (as a
rational function in 2 variables) and, if q is square-free and deg(q) = 3, it defines a
curve of positive genus.

Proof. Suppose that ¢(X, Y) is reducible. Hence S(X)g(Y)— p(Y) splits in at
least two absolutely irreducible factors (which are bivariate, ¢ and p being coprime).
Put H(Y) = p(Y)/q(Y). By Lemma 3.1 Qg C Q. The infinite places of Qg over P!
are ramified with index deg(S) > 1, contradicting the fact that those of Qg are
unramified.

Assume now ¢ square-free and deg(q) = 3. Put m := deg(S). The genus formula
(5) with f=S and g= H implies 2(m+ g —1) > 3(m — 1) (just considering the
contributions at infinity), i.e. g > 0. O

Proof of Theorem 1. If f is one of the polynomials given in cases (1)—(5), then
F;(X, Y) has a genus zero factor by Proposition 4.7.

Conversely, suppose that Fr(X, Y') has a genus zero factor P(X, Y). The function
field of the associate curve is ®(x, y) with P(x, y) = 0. It is of the form C(¢) and
x=g), y= l?(t), where g and i are distinct rational functions. Also,
1 (&) = f(h(0)).

Let f now be a composite polynomial
f=RioRyo---0R,,

where the polynomials Ry, ..., R, have degrees >2.

Then there exists j, 1 <j<p such that Sog# So h where S = Rii1o---0R,
(it is understood that S has degree 1 if j=p) but RioSog =R;joSo h. Let
A=RioRyo---0oR;_;. Setting R=R;, and f: RoS we have that
R(So08) = R(Soh) with Sog# Soh, so by Proposition 4.7 (of which we adopt
the notation in the following) we conclude that (So g, S o /’/l\) must be one of the pairs
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(g, 1) described there. Possibly exchanging g with }7, we can assume that Sog
= g1 or. In other words, the equation

Ri1(X)—g1(Y)=0 (21

defines an algebraic set with at least one genus zero component.

If we fall in cases (3)—(5) note that the rational function g;(¢) has square-free
denominator coprime to the numerator, of degree at least 3 and always larger than
that of the numerator. By Theorem 5, if deg(S)>2 (and thus j<p and
deg(Rj;+1) = 2) then (21) defines a curve of positive genus: This contradiction proves
S linear. Moreover A = RjoRyo---0oR;_j and M = S.

If we fall in case (2) then we can assume (composing R to the right and S to the left
with suitable linear polynomials) that R is a Chebyshev polynomial.

It easy to see that S(X) — g1(Y) = 0 is irreducible: indeed Y?> — YS(X) + 1 splits
into factors (which, by Gauss’ Lemma, must be polynomials in Y and X, linear in
Y) only if S(X) is a constant. Now we want to determine all the polynomials
S(X) such that the genus is 0. If Z = ¥ — 39, we get Z*> = L(S(X)? — 4) which has
genus zero if and only if S = €T gee(s) © M where € = 1 and M is a linear polynomial
by Proposition 2.3. Hence R oS = Tdeg(r)deg(s) © M, and, if deg(R) is odd and
¢ = —1, we replace A(X) with A(—X).

Last, consider case (1). If R(X) = X then

m—1
S(X)m _ S(Y)m — H(S(X) — CfnS(Y)),
k=0
where (,, is a mth primitive root of unity. It follows that P(X, Y) divides one of the
factors S(X) — CﬁqS(Y). Plainly, P(X, Y') can divide only one polynomial of the form
S(X)—{S(Y), { e C, for otherwise it would divide S(X) and S(Y), and it would
be a constant. As Sog # Soh, it must be k # 0. Hence S(X) — (¥ S(Y) is given

m

by Theorem 2. ]

5. Proof of Theorem 2

Asin the proof of Theorem 1, we adopt the notation of Section 2.3. Also, (12)—(15) and
Lemma 4.2 hold. From (5) we deduce a formula for the genus g of the curve associated
to an absolutely irreducible polynomial f(X) — g(Y) where deg( /) | deg(g), namely:

2deg(f)+g-D= )Y ) (22)

reA(f)

We shall mainly deal with polynomials of the form f(X) — ¢f(Y), in which case

g(1) = ¢f (0), Hg(4) = p(4/0),
k(2) = h(2/c) and  si(2) = ri(A/c).
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Beside the definition of linear relation, in this section we shall need a stronger
equivalence relation:

DEFINITION 5.1. We say that two polynomials P and Q are similar if there exist a
linear polynomial £ and a nonzero constant « with P = o Q o £.

PROPOSITION 5.2. A4n indecomposable polynomial f(t) € C[t] of degree n is such
that an absolutely irreducible factor of f(X)— cf(Y) with ¢ # 1 defines a curve of
genus zero if and only if either n = 1 or it is similar to one of the following polynomials:

(1) Z,, with n prime.

(2) T,, with n prime. If ¢ # —1 then n = 2.

(3) A polynomial of the form t"g(t?) which is not Lr. to a cyclic or a Chebyshev
polynomial, where g € C[t], r and d are coprime integers with r > 0 and d = 2.
In this case c is a dth root of unity.

(4) Py. Then ¢ # 1.

(5) Ts+d where d#0,£2, with c = (d+2)/(d—2) or c =(d —2)/(d+ 2).

(6) Py. Then ¢ = —1.

(7) Ps. Then ¢ = w or w?.

(8) Pg. Then ¢ = —1.

Observe that in cases (1), (3) and in case (2) withn odd (so ¢ = —1) the polynomial
f(X)—cf(Y) is reducible, whereas in the remaining cases it is absolutely irreducible.

Proof. If f(X) — ¢f(Y) is reducible then by Theorem 3 we obtain cases (1)—(3). In
the first case it splits in linear factors. In the second case one sees that by Proposition
2.2 the absolutely irreducible factors of T,,(X) + T,(Y) define curves of genus zero.
In the third case it is clear that a linear factor exists.

From now on let f(X) — ¢f(Y) be irreducible. Put A := A( f), n := deg( /). Either
#A =1, that is fis L.r. to a cyclic polynomial, or #A > 1, in which case f(X) — 1 is
not a perfect power of a polynomial of smaller degree for any 4 and n > 2. In the first
case we can assume up to similarity that f(z) = " + Awithn > 1. Then X" — cY" — ¢/
is irreducible and defines a curve of genus zero (where ¢’ = (¢ — 1)4). Clearly it must
be ¢’ # 0, which implies 4 # 0 (so we can even assume 1 = —2) and n = 2. We have
thus f(t) = T», and fall in case (2).

Henceforth we work under the assumption #A > 1.

Putting i(2) := p(4) = u(c™'2), inequalities (16) and (17) give

c(2) = a(Z) max(1, i(2)). 23)

We show now that #A € {2, 3}. From (14) and the r.h.s. of (15) both applied to ¢f
in place of f we obtain

SRS SEE (R Sy (0]

’eC IIN

(Note that the second sum is over A, not over ¢A.) On the other hand by equations
(22) with g =0 and (17) it is 2(n — 1) > >, _, fi(4). Adding twice the first of these
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inequalities to the second one gives 4(n — 1) = n#A, whence #A < 3. (In other words,
fdefines a Riemann Sphere cover ramified over the point at infinity and at most three
finite points.)

We consider two cases: (i) fi(4) > 1 for all 2 € A and (ii) there exists 4 € A with
1(2) < 1. These will be further divided into two subcases according to #A.

We warn the reader that, due to the nature of our result, the remainder of the proof
consists mainly of several verifications, which lead to the various sporadic polynomials.

o Case (1): W(A) > 1 for all 1 € A.

As 2n—1)=>", 0 c(A) = D>, aDA) = 2%, 5 a(Z) =2(n — 1), we infer that
equality must hold throughout, so i(4d) =2 and c¢(1) = 2a(1) for all 1 € A. But
n>=3 and this implies that, in fact, n >4 and 1€ A(¢f) for 1€ A, whence
A = ¢A. This implies that ¢ is a root of unity. Furthermore, u(1) =2 for all 1 € A.
Let then be r;(1) = s;(2) =1 for i < 2.

Fix now 4 € A. Should one of the r;i(4) not divide s;(1) where 7,/ > 3, it would be
2(n — h(2)) = 2a(2) = c(2) > M 2(r(2) — 1) = 2(n — h(2)) (the inequality holds
strictly because there is at least one more non-vanishing summand in the sum for
c(2)). Hence ri(A)|si(4) for all i,j>3. By symmetry also sj(4)|ri(4), whence
ri(A) = 5;(4). Therefore there exists an integer r(4) such that ri(4) = s;(4) = r(4) for
i,j = 3. In other words, for all 4 € A, both f(X) — 4 and ¢f(Y) — 4 have two simple
roots, all the other ones having multiplicity 7(1). Hence a(1) = (n — 2)(r(A) — 1)/r(A)
and, by (14),

n—l:(n—Z)Zr(i)(/gl. 24)
AEA

e Subcase (i,a): #A = 3.

Clearly n > 4. Equation (24) implies n— 1 > %(n —2), i.e. n <4, which forces
n = 4. It follows that M( f(X)— 1) =[2, 1, 1] for all A € A. Now c¢ is an mth root
of unity with m < 3 and ¢ # 1.

If ¢ = —1 then A = {0, =p} with  # 0: Replacing f with a suitable similar poly-
nomial we can assume that / is monic and f(0) = 0. Write (1) = * —3(a + b)’+
2abr?, with ab(a—b)#0, so that f'(f)=4«t—a)t—b). The condition
f(a)+£(b) = 0 gives a* — 2a°h — 2ab* 4 b* = 0, the left-hand side of which splits into
factors as Hle(cf— &ab + b?) where ¢ and &, are the roots of & —2¢ +2 = 0. We
then fall case (6). We have to prove that P4(X) + P4(Y) is irreducible and defines a
curve of genus zero. First of all note that Py is indecomposable*. The verification that
P4(X) + P4(Y) is irreducible is done by the method described in the next remark:

Remark 5.3. Let f(X) be an indecomposable polynomial which is not Lr. to a
cyclic or a Chebyshev polynomial. Assume f(X) — ¢f(Y) reducible. Theorem 3(3)

*If it were decomposable, it would be the composition of two degree 2 polynomials, and P4(f) + 1
would be a square for some € C, which it is not.

https://doi.org/10.1023/B:COMP.0000018136.23898.65 Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000018136.23898.65

286 ROBERTO M. AVANZI AND UMBERTO M. ZANNIER

implies that ¢f(Y) = f(M(Y)) where M is linear, so (x — M(Y))|( f(X) — cf(Y)).
To wverify the irreducibility of f(X)—c¢f(Y) we may thus consider c¢f(Y)—
f(AY + B) =0 as a system of deg( f)+ 1 equations in the letters 4 and B, and
check whether it admits solutions: in the cases we shall encounter this is straight-
forward. O

Since the root types of P4 are known, it is easily verified that the genus of the curve
associated to P4(X)+ P4(Y) is zero. In fact, as an example, by using (22) with
f(X)= P4(X) and g(Y) = —P4(Y), we see that ¢(1) = 2 for all special 1’s and thus
qg=0.

Consider now the case ¢ = 1. Let Pjs for 0 < j < 2, be the three roots of f’. Then
we can assume f(p,) = of(p;) = of (p,). Up to similarity we can take f monic, with
po =0, f(0)=1. Write /(1) = f(t; a,b) = t* —4a + b)* + 2ab* + 1 with a,b € C.
Then f'(t) = 41(t — a)(t — b) with ab(a — b) # 0. Solving f(a) = w for b we obtain
b= (a* = 3(1 — w))/24*. The condition f(b) = @ implies b* — 2ab> — 3(1 — @) = 0:
In it we substitute the above relation for » and obtain a'® — 24@a'?> — 54wa®—
243 =0, whose Lhs. is equal to (a*+43®)[[_o(@® + 3i¥@a? + 3% wa + 3.
Multiplying a by i has the effect of multiplying also b by i, so we get f(it; a, b) =
£(t: ia, ib). Therefore we need only to consider (up to similarity of f) a = w(—3)"/*
and @ + 30a*+ 3wa+3 = (a+ @)’ +2=0. In the latter case b= (1 — a)w — |
holds*. This shows we are in case (7).

The indecomposability of f, the reducibility of both f(X)— wf(Y) and
f(X) — @f (Y) precisely when a = @(—3)"* and their irreducibility otherwise, and
that in that case they define genus zero curves, are proved exactly as for ¢ = —1
(f, of and @f by construction have the same three special points and all have root
type [2, 1, 1] as above).

e Subcase (i,b): #A = 2.

As c# 1l itis ¢ =—1 and r:=r(L) = r(—4). Plainly n = r + 2. If r = 2 then (24)
yields at once the contradiction n — 1 =n — 2, whereas if r > 3 then n > 5, but
(24) implies n < 4, a contradiction. Thus r =3, n=5 and M(fF1) =[3,1,1]
whence f’ has two double roots. Replacing f with a similar polynomial we assume
that £'(r) = 5(r — 1)*(¢ + 1)>. Integrating and using the condition (1) = —f(—1) we
obtain f(¢) = > — 2% + 5¢. Now X + Y divides f(X)+/f(Y), so we do not find
new polynomials.

o Case (ii): there exists 4 € A with u(4) < 1.

Note that A N cA # (J, because f(4) < 1 implies 4 € cA. (Recall that n > 2.)
As in the proof of Proposition 4.1 it will be convenient to define A = {1, ..., Aua }
and a; := a(4;), ¢; == (L), w; := w(4), i; := j(4;) and so on.

*Use the equation for a to verify that (a* — 3(1 — 0)/2d =1 - aw—1.
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e Subcase (ii,a): #A = 3.

Let iy < 1, so 41 € cA. We can also assume that ji; < ji; for all i.

Being i; <1, fromn—12>= Z?:l (n — f1;)/2 (obtained applying (14) and (15) to
¢f) we get [i, + i3 = n+ 1 and also fi,, i3 = 3.

Put m = min {a,, a3}. Clearly m > 1 and

2n—1) =ci+c+c3=a+ (i + fiz)m > (n+ Dm,
som=1.

We can thus assume without loss of generality that a3 = 1, i.e. f(X) — A3 has root
type [2, 1, ..., 1]. Using (14) again we infer that a; + a = n — 2.

As p;=n—2 it cannot be A, =c/ls;. Suppose that A; = cd,, which implies
U, = ity < 1. Recall that i, > 3. Since a; +ay =n—2 and a, = (n — 1)/2, by (22)
and (23) we obtain 2(n—1)=a; +3ax +3 = —2)+ 2a, + 3 = 2n, which is a
contradiction. Therefore 4; = ¢/;. This implies 4; =0 and p; = f;.

We are going to prove that A =cA. Suppose first that A3;¢cA, that is
M(cf—23) =[1,...,1] and ¢3 = n. Thus, using (22) and (23) we obtain the contra-
diction 2(n — 1) = Z?Zl ciza +3a+n=m—2)+2a+n=2n Hence A3 € cA,
and it must be A3 =cly (because ¢ # 1). Suppose now that A, ¢cA. Then
M(cf—2)=][1,...,1] and ¢, =n. Note that a, =1 otherwise it would be
2(n—1) = arji, = 2n. Hence M( f—4) =[2,1,...,1]. Being a3 =1, (14) implies
ag=n—-3. Now 2n—1)=za +c2+ i3 = (n—3)+n+3=2n which is absurd.
Therefore also 1, € cA.

Summarising, 4 =0, c=—land lp, =—-Asson—2=yu; =g, = 3,ie.n=51If
it were ap; = 2 then 2(n—1) = 1 +2(n — 2) + 3 = 2n. Hence a, = 1, which implies
that uy, =n—2 =[i; and ¢; = ¢ =n—2. By (22) it is now ¢; = 2. By (14) we get
ay=n—3.Thus 2 =¢; > a; =n—3,son=>5. We conclude that M( /') =1, 2, 2].

Up to similarity we can assume f(¢) = #(¢ + a)*(t + b)*. Then

/() = (t — a)(t — b)(5* — 3(a + b)t + ab).

Let y, and y, be the roots of 5> — 3(a + b)t + ab. The condition f(y,) + f()x,) = 0
implies (a + b)(27a* — 117a’b + 212a°b*> — 117ab’® 4 27b*) = 0, that is (a+b) x
]_[f:l(a2 — 22+T55"ab +b%) =0 where & and &, are the roots of &+ ¢+4=0. If
a = —b then f(X) + f(Y) is reducible. In the other cases, by the method of Remark
5.3, it is easily verified that f(X) 4+ f(Y) is irreducible. We then fall in case (8).

To verify that the curve associated to Pg(X) + Ps(Y) has genus zero, we first recall
that the special points of Pg are 0 and +4,. The root type of Pg at 0 is [1, 2, 2] and the
root types at £4, are both [1, 1, 1,2]. We use (22) with f(X) = Ps(X) and g(Y) =
—Pg(Y): we already know that ¢; = ¢(0) =2 and ¢; = ¢3 = ¢(£4;) = 3, so that g = 0.

e Subcase (i, b): #A = 2.

Suppose first that #(A N c¢A) = 1. We can assume without loss of generality that
A €cA and Ay¢cA. Then ¢; = iy =n. Now, a; =1 (in fact, if a; =2 then
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¢y = 2n, contradicting (22)), so a; = n — 2. It follows that M( f— 21) = [p, ¢], with p
and ¢ coprime. Now there are two possibilities: 1; = ¢4 or 4} = ¢/;3.

If A4 =cAy then 41 =0 and f is similar to Pi(t; p, gq). As P1(X) and cP(Y) are
indecomposable (see Lemma 4.5) and have different sets of special points, by Lemma 3.1
the polynomial P(X) — ¢P(Y) must be irreducible: A simple application of formula
(5) proves that it has genus zero. We fall thus in case (4).

If 21 = cAy, then piy = puy, = n— 2, whence, by (22) and (23), it is n = 3. Also,
f(X) —¢f(Y) is irreducible and defines a genus zero curve as in case (4). In this case
it is notationally convenient to express f'in term of a Chebyshev polynomial (which is
also L.r. to P(t; 1, 2)) and we fall in case (5).

Let now be A =cA. Plainly ¢=—1 ie. 4j =—4,. Set ¢t:=pyu; +pn,. By (14)
and (15),2 <t <n—1.1f t =2 then fis l.r. to a Chebyshev polynomial by Proposi-
tion 2.3. The special points being symmetric, fis similar to Tgeg( r) and f(X) 4 f(Y) is
reducible (see Proposition 2.2). Therefore we can assume ¢ > 3, so that n > 4.

One of uj, pyis < 1,80 pyp, <t —1.1Itis

m

2 =5~ b (25)

—
2

—u
2

2(”—1)=Cl+02>n l,uz+n
which implies that 2(n — 1) = n(¢/2) — (¢t — 1) and thus t <442/ (n—2). If n =5
then 1 < 4, whereas if n =4 it is t = 3.

For any ¢ € C, denote by mult,(£) the multiplicity of the root ¢ of f(X) — f(&).

LEMMA 5.4. Let #A = 2. Put 6:=} ;. o= (multy($) = 2). Then o =1 —2.
Proof. Let R be the number of distinct roots of f’. Note that 2n = deg(( f— 41)

(f=X))=t+2R+o0 and n— 1 =deg( f') = R+ o, then eliminate n and R from

the last two equalities. [

Suppose t = 3. By Lemma 5.4, ( f— A1)( f— Z42) has exactly one triple root, all the
other roots being simple or double. We can thus assume that M( f— 4;) = [3, 2*¢,
1] and M( f— Ap) = [2%0, 1*#2], where

-3 —
a:% and b:%

By (22) we then obtain
2n—1) =1 + 2 = b3 + ) + (a+ 2y

n— G+ )
2

n—p
=G+ ) 3 24 1y +2uy =3n— (14 p)uy = 3n— 4,

which, under our assumptions, is impossible.
Last, let t = 4. Here n > 5. Inequality (25) implies p; 1, # 0 and thus one of y;, i,
must be equal to 1 (recall that we are in case (ii)) and A = cA), so uu, = 3.
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Lemma 5.4 shows that ( f'— A1)( f— A2) has either one root of multiplicity four or
two roots of multiplicity three, all other roots being either simple or double. There
are now three possibilities:

(@) M(f—71)=[42">
(b) M(f=i)=[3.3,2>
(© M(f—i)=[32""7"1

= 1] and M(f— Ap) =

—6— i
)

I;
1*#1] and M(f—/4) = [2X_ 1“‘2] and
1*#] and M( f— 42) =3, X o, 1],

By the same method used in the case ¢t = 3 (that is, by a direct application of
formula (22) with @ = 0) we easily arrive at contradictions in all three cases, thus
completing the proof of Proposition 5.2. O

Remark 5.5. Consider now the polynomials given up to similarity in cases (6)—(8)
of Proposition 5.2: We ask how many similarity classes they form.

By the method of Remark 4.6 it can be seen that there are two similarity classes of
polynomials P4 and Pg. It suffices to prove that the two given representants for each
of P4 and Pg are not similar: The equation to solve is analogous to that for P; in the
mentioned Remark, but with ¢ = 0.

We are going to prove that the polynomials Ps form only one similarity class. Let

23! — @, 1 <j < 3 be the roots of (a4 ®)* +2 and b; = (1 —a)w — 1. It
is

@Ps(t; ar, by) = Ps(a(t — ar); az, b).

Letting the Galois group of Q(w,2'/?)/Q(w) act on the displayed equation, the
indices of the a;, b; are permuted cyclically, thus proving our claim. Note also that,
for fixed a, b, the equation Ps(X)— wPs(Y) is obtained from Ps(X)— wPs(Y)
exchanging X and Y and multiplying by @, so that in case (7) there is up to
isomorphism only one curve. O

PROPOSITION 5.6. Suppose that f, is one of the polynomials given in Proposition
5.2 (1)—(8), with n = deg( f'). Let g(1), h(t) be distinct nonconstant rational functions
with f(g(1)) = cf (h(1)).

Then there exists a rational function r(t) with g(t) = g1(r(?)), h(t) = h(r(t)) and
respectively in cases (1)—(8).

(1) gi(9) =t, hi(t) = pt where y" = c.
2) If ¢c=-1 then either g1(f)=1, m(t)=—t and n>2, or gi(t)=1t+1
() =C(t+ 4 7 where ( is a primitive 2nth root of unity (n a prime).
If c# -1 (wzth n=2), then gi(t) =1 (t +21= ‘)) and hy(t) = 2J?(t -
3) g1(t) = t, h(t) = yt where y" = c.
4 &1() = ,,:—”[1 and hy(t) = t"g(t) where y satisfies ¢ = ™.
(5) If c _M then gi(t) =3+ — 1 and hy()) =1 —tg1(1) — t. If ¢ =

B+l

2(1—c)
=)

d +2, exchange

g1 with hy.
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(6) Replace [ with a similar polynomial to assume that b =1 in order to simplify the
expressions. Put d:= —6a, k:=2Q2d*—5a+2), U:=U() = %(t + ‘—t’) and
Z:=Z(1) :%(z—‘— —(a+Y). Then

t

Z-a)(Z-HYU+2a+1)(Z+1)
Z4+ 1

gi1(1) = and (1) = g1(DZ.

(7) Define d:= —w(a* —iv3a+3w) and e:=+\/—3(a—1)/2. Also define py:=
\/Lga2 —w(a—1), p;:= —% >—w(a—1) and P(s):=s*+pis+po. Put
U:=U(t)=(t+9/Q2e) and Z := Z(t) = (t — 9 /2 + p:. Finally

P(Z)U - %(w —o)(a—1)Z? — w(a — w))

~ ] +a and

gi1(t) =
hi(t) = w(g1(t) — a)Z.

(8) Puto:=a+b,d:=a—bande:=251 + 7 (E* + &+ 4 =0 as in Definition 2.1).
Define also U := U(t) = 3(t + e/1) and Z := Z(1) = 35(t — ¢+ 6 — 2&). Then

o2+ 1)+ 62> -E(Z+ 1)U
2075 -1)

() = and (1) = —g1(DZ°.

Proof. The case (1) is trivial.

(2) If ¢ # —1, then n = 2, so we use the usual parametrisations of quadrics.
If T,(g(1)) + T, (h(1)) = 0 then T2,(g(1)) — T2(h(1)) = 0 because

TZn(X) - TZH(Y)

T+ T(Y) = i =

In an algebraic closure of (), we write g(1) = o+, h(f) = f +, and by the
defining equation for 75, we obtain, replacing § with 1/f if necessary, o« = {f§ for
some 2nth root of unity {. If it were (" = 1 we would have T,(g(¢)) — T,(h(z)) =0
and thus T,(g(¢)) =0, which is absurd, g(r) being assumed nonconstant. If
g(t) # —h(t) then also { # —1 and we continue as in the proof of Proposition 4.7
(2) getting the result of the statement. If g(r) = —A(r) clearly n > 2.

(3) The proof of Theorem 2 (3) shows that X — yY is the only genus zero factor of
JX) = cf(Y).

In cases (4)—(8), note that f(X) — ¢f(Y) is irreducible and therefore it suffices to
find g1, i) as in the statement, as remarked in the proof of Proposition 4.7.

Case (4) is verified by substitution as in Proposition 4.7(3).

(5) Let ¢ = (d + 2)/(d — 2). The equation can be rewritten as

X =2)(X 4+ 1)> = (Y +2)(Y — 1)

Upon putting X = —3X; — 1 and Y =3Y, + 1 we get the equation X3(X; + 1) =
—cY3(Y) + 1). We thus fall in case (4) with /=2, m = 1 and —c in place of c.

If ¢ = (d — 2)/(d + 2) then we exchange X with Y and divide by ¢ the equation in
order to fall in the previous case.
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(6) Put P(X, Y) := P4y(X)+ P4(Y). The singular points on the curve P(X, Y) =10
are (X, Y) = (0,0), (1, a) and (a, 1)*. A singular point is the origin, which is easily
blown up via the birational morphism defined by ¥ = ZX. So we obtain an equation

(Z'+ DX —4a+ 1)(Z° + DX +2a(Z> + 1) = 0. (26)
Consider the discriminant of the above equation with respect to X:
A:=AZ) =L@+ 1)(Z2 + 1) —8a(Z* + 1)(Z> + ).

It can be verified that A = kG (Z — a)(Z — ) (Z + a*)(Z + %) where k is as in the
statement. We parametrise U? = k(Z* 4 (a> +5)Z + 1) in the usual way. We are
then able to extract a square root of A, so we can solve (26) for X = X(¢) = g(¢)
in rational functions, and thus express also Y = /;(¢).

Case (7) is obtained in a similar way, but the details are more intricate. We begin
with Ps(X) — wPs(Y) =0 where Ps(t) = Ps(t; a, b) and a, b satisfy the conditions
@ 4+ 3wa’> +3wa+3 =0and b = (1 — a)w — 1 given in Definition 2.1. Upon putting
Y = @Y, consider the equation Ps(X) — wPs(wY;) =0, and as in Case (6) we see
that the singular points on the associated curve are (X, Y;) = (q,0), (0, wb) and
(b, wa). We translate the first of these points to the origin: Putting X = X| +a in
we see that X7 divides the constant term with respect to Y of the resulting equation,
and that the coefficient of Y; is 0. We then put Y; = ZX; and get

(Z' = 1DX] — (0 — d)(a — 1)Z° — w(a — w))X]
—2a((a — 1 4+ @) Z> — d(a — w + ®)) = 0.

Let A = A(Z) be the discriminant of this quadratic equation in X;. It can be verified
that, defining Q(s) := s> — 2p1s + po where py, p; and P(s) are as in the statement:

-8
A=
1

2
e e

Therefore, as in case (6), we parametrise U? = —2/(3(a — 1))Q(Z), we express X
using U and P(Z), and finally obtain the formulae displayed.

(8) We use (essentially) the method of Proposition 4.7 (4) and (5). Put ® = C(x, y),
where Pg¢(x; a,b)+ Pe(y;a,b) =0. Put Z:=(x+a)(x+b)/((y+a)y+b)), so
y = —Z%x: Upon substituting this in the right side of the formula defining Z, we
get a quadratic equation for x, namely (Z° — 1)x> — (Z3 4+ 1)(a + b)x + ab(Z — 1).
By direct verification we see that the discriminant of this equation in x is
A=(a — b)(Z2 — EZ 4+ 1)X(Z2 — 3%gVZ—i— 1). Upon parametrising U>=2> — %Z +1,
we express first U and Z, then x and y, as rational functions of . O

*They are obtained upon solving the system OP/OX = 0P/0Y = P(X,Y) = 0. Alternatively we could
observe that the curve D defined by P(X, Y) = 0 is the fibred product of the two covers of the Riemann
sphere by itself given by X > Z = P4(X) and by Y i—> Z = —P4(Y). By Abhyankhar’s Lemma, over a
point (xg,y0) € D there are (r,s) distinct places where r = multp,(xp) and s = mult_p,(yp). Now it is
straightforward to detemine the singular points on D, as the special points of P4 are known.
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Proof of Theorem 2. If fis one of the polynomials given in cases (1)—(8), then
f(X)—cf(Y) has a genus zero factor by Propositions 5.2 and 2.2.

Conversely, suppose from now on that f(X)— ¢f(Y) has a genus zero factor
P(X,Y).

Write f= fy of; with fy indecomposable of degree n greater than 1. The map
(X, Y) — (fi(X), f1(Y)) defines a nontrivial morphism of the curve associated to
P(X, Y) onto the curve associated to some factor of fo(X) — ¢fo(Y), which must then
have genus zero.

Hence we can apply Proposition 5.2 to fo(X) — cfo(Y): We get at once the state-
ments of the theorem regarding the types of f;. Replace fy and f; with fy o £~ and
Lo f) for a suitable linear ¢ to assume, without loss of generality, that f; is one of
the polynomials displayed in cases (1)—(8); we can further assume f, monic. We
consider now these cases one by one.

(1) If fo = Z, then there is nothing to prove.

(2) Let first ¢ = —1. Let g(1), h(t) be nonconstant rational functions such that
P(g(1), h(l)) =0. Then fiog and fjo h parametrise a genus zero factor of
T.(X)+ T,(Y). We apply Proposition 5.6(2) and infer that either fj og = —fj o h
and n > 2 or, possibly exchanging g with I, that £1(g()) = g1(r(1)) with g(1) =t + 1.

In the first case P(X, Y) must divide f1(X) + f1(Y). In fact, under the notation of
Propos1t10n 2.2, if P(X,Y) divided Y,, (1(X), f1(Y)) for some k with 1 <k < n,

= I(mod 2), then Y, (f1(g()).fi (h(t))) =0. Since fiog=—f10 h the poly-
nomial Y, (X, —X) would vanish for infinitely many values taken by the variable
X, so it would be zero. On the other hand Y, (X, —X)=2(1 + cos(nk/n))
X2 — 4sin’(nk/n) # 0 the coefficient of X? being nonzero.

In the second case we have that the curve f1(X) — g;(Y) is irreducible and has
genus zero, implying fi = €Tgeg( ;) © M where ¢ = +1 and M is a linear polynomial:
the argument is the same as in the proof of Theorem 1(2), with R replaced here by f;.
Hence T}, o fi = Thdeg(s1) 0 M.

Consider next the case ¢ # —1. Now fy = T>. For ¢ #0,+1 the polynomial
T>(X) —cT>(Y) = X*> —2 — ¢(Y> —2) is irreducible. If the curve W? =cf(Y)—2
were reducible, then f(Y) —% would be a square of a polynomial, but as f(Y) + 2
is a square, this cannot happen. Thus W? = ¢f(Y) — 2 defines an irreducible curve
C. For the same reason also the curve C' : f(X)+ 2c = Z? is irreducible. All the
components of the algebraic set f(X)—c¢f(Y)=0 map onto C, resp. C, via
Xi— W=f(X), resp. Y — Z =f(Y). Therefore C and C’' have genus zero. This
means that there exist polynomials R, S with f(Y)+ % =Y —n)(Y - 112)R(Y)2
and f(X)+2c=(X—¢)) (X — &)S(X)®. Moreover f(X)+2=/fi(X)*. As R, S
and f; are pairwise coprime factors of f’, the sum of their degrees is
< deg( f’) = deg( f) — 1. This implies deg( /) < 2, hence f; is linear.

(3) It suffices to prove that the only genus zero factor of ®(X, Y) := fo(X) — cfo(Y)
is X — (Y where { is a dth root of unity with {" = ¢ (in which case { = ¢ where

r =1 (mod d)). By Proposition 24, F,(X,(Y)= % is absolutely
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irreducible. Our claim shall follow from Proposition 4.1 and obvious trans-
formations after we have proved that fy(7) is not lL.r. to either Py, P, or Ps.
Observe that fo({1) = " fo(¢) for all j, so

the root types of fo(r) ar 4 and /¢ are the same for all j. (27)
In particular a(d) = a(Z/¢") and p(2) = p(A/C").

e Assume first f Lr. to P;. Write fo(r) = (1 4+ 0)'(1 + )" + A with o £ B. If 2 =0
then, possibly exchanging « and f, it is « = 0, and / = r, g(¢) = (t + )", which is
not possible. Then A # 0 and, by (27), a(2) = a(A/{") = (I — 1)+ (m — 1) = n — 2 with
(" # 1. Formula (14) yields n — 1 = a(X) + a(1/{") = 2(n — 2) i.e. n < 3, contradicting
the assumption that n =1+ m > 4.

e Suppose now fy Lr. to P,. Plainly we can write fo(r) = (¢ + u)(1 + u + o)’
(t+u+ B)> + 4 for some u € C and with «, f € C* satisfying

90 — 20 + 9% = 0. (28)

There are three possibilities for d and r: d =2 with r = 1, i.e. fo = tg(#*) where
deg(g)=2; d=3 with r=2, ie. fo=13(*—v); and d=4 with r=1, ie.
fo = t(t* —v).

Assume 4 =0. Only in the first of the three listed possibilities it can be
M( fo) =11,2,2] and since fo(—1t) = —fo(¢) (because { = —1), we also have u =10
and g(7) = (¢ — v)* (with v # 0). Thus fo(1) = #(2 — v)?, and o = —f, contrary to (28).

Hence 2 #0. Now (27) holds, and a(l) = a(A/{") = a()¢*) =---=2. This
and formula (14) (where n =5) imply that d =2 and thus { = —1. Also, the
root types at 4 and —/ are equal, therefore M( fo — ) = M( fo + 1) =[1,2,2]. By
Proposition 2.3 we infer that f; is L.r. to Ts, which is a contradiction.

e Last, suppose fy Lr. to P3. Write fo(1) = (1 + u)(t + u+ o)’ (t + u+ p)> + 2
where 80> — 58 + > = 0. If 2 = 0 then, by an argument similar to that for the case
fo L.r. P,, we see that it has to be « = —f, contradicting the relation defining o and f.
If 1#0 we arrive at M(fo—2) = M(fo—24/{)=1I1,3,3] with " #1, ie.
a(2) = a(A/{") =4, and (14) (recall that n = 7) yields again a contradiction.

For the next cases we need some auxiliary results. The following Lemma can be
derived using Ritt’s Theory [R, To]. For a simple proof follow [Z2, Lemma 6].

LEMMA 5.7. Let A, B, C,D be nonconstant polynomials over a field K of zero
characteristic with degA =degC and Ao B= Co D. Then there is a nonconstant
K-linear polynomial € such that Aof = C and B= (o D.

PROPOSITION 5.8. Let f, g be polynomials of the same degree over the complex
field, with f indecomposable and f(X') — g(Y) irreducible.
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Then f(X) — g(h(Y)) is irreducible for all h(Y') € C[Y].

Proof. Suppose f(X) — g(h(Y)) is reducible. Now [Fr2, Prop. 2] (or [BT, Prop.
8.1]) implies that there exist polynomials g and i with goh= go/;, such that
f(X)—2g(Y) is reducible and Qz; = Q. Thus, deg(g) = deg( /) = deg(g). Now
g=gol with £ linear by Lemma 5.7. This clearly implies that f(X)— g(Y) is
reducible. O

We handle cases (4) and (5) together. We are in the following situation: f; is an
indecomposable polynomial with A( fo) = {41, 42} and 4; € A(cfp) (in case (4) it is
A1 = cAy, s0 41 = 0, whereas in case (5) it is 4] = c¢4;) but 4, ¢ A(cfy). From the proof
of Proposition 5.2 we know that fy(X) — ¢fo(Y) is irreducible and that its associated
curve has genus zero. Also M( fo — A1) = M(cfo — 1) = [p, q] with p, g coprime,
p> 1

Let now f; be a polynomial of degree m. We know by Proposition 5.8 that
D: fo(X) — cfo( f1(Y)) =0 is an irreducible curve.

Write ¢fo(Y) — A1 = co(Y —n)'(Y — )7 and ¢fo(Y) — 2o = ¢o [T (Y — &) with
the n;, &; pairwise distinct. Let vy (resp. vy ; for 1 < j < n), be the number of simple
roots of f1(Y)—n, (resp. fi(Y) —¢;). Therefore the number of simple roots of
cfo( 1(Y)) — 21 (resp. cfo( f1(Y)) — A2) 1s at least v; (resp. Z;’Zl v2, ;). By (14) and
(15) with f} in place of ' we have

n
m — vy m—yva ;
_12 )
m 3 +Z 5

J=1
whence v; + 377 va ;= m(n — 1) 4 2. By the genus formula (22) with fy and ¢f o f;
in place of fand g we have 2(n+ g — 1) = c(41) + c(42) = v, + 27:1 v i(n—1)4+2,
whence g > 0 if m > 1.
Each of the absolutely irreducible factors of /(X)) — ¢f(Y') define coverings of D in
an obvious way, so they all define curves of genus >gq. Thus f| must be linear.

Cases (6)—(8) are dealt with an argument similar to that for cases (4)—(5), by virtue
of the following Lemma (recall that fo(r) = Pi(f) with 4 < j < 6 is indecomposable
and that fy(X) — ¢fo(Y) is irreducible).

LEMMA 5.9. Suppose f(t) € C[t] is an indecomposable polynomial with at least 3
special points (and thus of degree at least 4) and ¢ € C\{0} is such that f(X) — c¢f(Y)
is irreducible (thus ¢ # 1) and defines a curve of genus zero. Let h(t) € C[{] be of degree
greater than 1.

Then f(X)—cf(W(Y)) is irreducible and defines a curve of positive genus. In
particular, and thus of degree at least 4 this holds if f is one of Pu(t; a, b), Ps(t; a, b)
and Pg(t; a, b).

Proof. The irreducibility of f(X) — ¢f(h(Y)) follows from Proposition 5.8. Set
n =deg( ) and p = deg(h). Let 11, 42, /3 be distinct special points of £, and #; be the
number of simple roots of ¢f(h(Y)) — 4; for 1 <i < 3. By formula (22) with g =0
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and g =c¢foh we have 2(n — 1) = Zle c(A) = 2?21 n; whereas by (14) and (15)
applied to g in place of f we obtain nmp—1> Y7, = 3np — 2;1%’ )
np+2< Z?:l n; < 2(n — 1), which implies p < 1, a contradiction.

This concludes the proof of Theorem 2. O
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