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The two-dimensional gravity-driven motion of a relatively dense viscous liquid at the base
of a granular mush is investigated using a model that exploits the relative shallowness of
the flow. The granular mush obeys a μ(I)-rheology, and we assume that the two phases
are segregated throughout the motion. The viscous liquid spreads under gravity, carrying
the granular mush above and transporting it outwards as levees at either end of the flow.
The accumulation of granular material away from the centre of the deposit produces
hydrostatic pressure gradients that retard the viscous gravity current. At later times, the
granular mush is quasi-static relative to the moving liquid owing to the balance of outward
granular transfer by the liquid and inward hydrostatic pressure gradients associated with
the granular free surface. The viscous liquid exhibits a Poiseuille-like flow structure with
negligible velocity at both the base and the granular interface. The flow of a fixed volume
of viscous liquid becomes self-similar with the effective viscosity quadrupled relative to
a classical viscous gravity current owing to the retarding effects of the granular mush.
The case of constant input flux of viscous liquid is also analysed. The qualitative features
are akin to the fixed volume case with the granular mush forming levees and slowing the
viscous spreading. The case in which the upper medium is a Bingham material rather than
a granular mush is also discussed, and the same features are observed, demonstrating the
importance of the yield criterion in the upper medium.

Key words: gravity currents, magma and lava flow

1. Introduction

Models of the gravity-driven motion of a viscous liquid have been used to describe and
interpret a range of geophysical phenomena, including lava flows, magma chambers and
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Figure 1. Schematic diagram illustrating two-dimensional gravity-driven flow of a viscous liquid beneath a
granular mush. The red lines and arrows show a typical flow profile.

glaciers (Huppert 1986). The classical model of the spreading of a viscous liquid on a
horizontal or inclined plane (Huppert 1982; Lister 1992), has been extended to account for
many geophysically relevant features, including cooling (Lyman, Kerr & Griffiths 2005),
a yield stress (Balmforth, Craster & Sassi 2002), and the effect of a second overlying fluid
that can deform during the motion (Kowal & Worster 2015).

Here, we analyse the gravity-driven spreading of a viscous liquid at the base of a
granular mush of finite thickness, which is transported and deformed by the viscous
motion; see figure 1. This problem has fundamental fluid dynamical interest as a novel
two-fluid gravity current of materials with distinct rheological properties. However, the
study is also motivated by the formation of massive sulphide ores in magmatic systems
(Hinton & Slim 2023), and has a secondary application to layered mafic intrusions (Maier,
Barnes & Groves 2013; Liu et al. 2014).

Massive sulphide ore deposits form small portions of basaltic magmatic intrusions
within the Earth’s crust. They are thought to have formed from metal-sulphide-rich liquid
droplets within the dominant silicate melt, coalescing and depositing in particular parts
of the magmatic plumbing system (Robertson, Barnes & Le Vaillant 2016). Transport of
the sulphide-rich liquid occurs as the system cools, and hence involves interaction with a
mush of silicate melt and silicate crystals. Of particular interest is the final location of this
sulphide-rich liquid, thus understanding the transport within the crystal-rich environment
is key.

To capture the dominant processes associated with a coalesced volume of dense
sulphide-rich liquid interacting with a mixture of silicate crystals and liquid, we model
the system as a two-dimensional shallow isothermal flow. The sulphide-rich liquid is
represented by a relatively dense viscous liquid, whilst the silicate crystals within the
silicate liquid are modelled by a continuum granular mush (see figure 1). Importantly, the
two liquids are different, and the silicate crystals within the magma are non-wetting to the
sulphide liquid (Mungall & Su 2005). Hence we assume that there is no interpenetration
across the sharp interface between the viscous liquid and the granular mush. The granular
mush is assumed to obey a μ(I)-rheology, which has been shown to capture accurately
many experimental features of granular flows (GDR-MiDi 2004; Gray & Edwards 2014).

Recently, Hinton & Slim (2023) investigated the spreading of a viscous gravity current
atop a dense granular mush. This was motivated by the same magmatic system but with
the sulphide liquid remaining atop the silicate mush and unable to penetrate downwards
owing to the capillary entry pressure. They found that the viscous liquid initially erodes
the underlying granular mush into levees. Subsequently, the top part of the levee is pushed
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Viscous gravity current beneath a granular mush

outwards by the viscous liquid, with the remnants of the levees trapping a significant
fraction of the liquid.

In the present work, we consider the opposite configuration, with the relatively dense
viscous liquid lying at the bottom of the granular mush. The lower boundary (at ẑ = 0)
is impermeable and corresponds to the host country rock bounding the magma chamber.
Both configurations are geologically relevant as the dense liquid sulphide may penetrate
the mush or become trapped above, depending on its thickness (Naldrett 1973; Chung &
Mungall 2009). Although this leads to substantially different dynamics, there are some
analogies between the two flows, particularly the relatively fast emergence of granular
levees either side of the liquid, which subsequently decay in size.

The shallow model that we deploy builds upon studies of two-liquid gravity-driven flows
(Kliakhandler & Sivashinsky 1997; Balmforth, Craster & Toniolo 2003), which have been
used recently to investigate the lubrication of ice sheets (Kowal & Worster 2015; Kumar
et al. 2021; Christy & Hinton 2023). These inertialess two-liquid flows have the common
feature that the volume flux in each liquid is driven by hydrostatic pressure gradients
associated with the liquid thicknesses. The flux in the upper fluid also includes a term
associated with the lubrication provided by the lower liquid (the lower liquid effectively
carries the upper liquid along with it), which is key in the present work. Two-liquid flows
with different rheology or densities of the two media can give rise to various instabilities
(Balmforth et al. 2003; Leung & Kowal 2022), but here we neglect any such behaviour,
noting that our solutions could be used as the base state for future stability analysis.

The model is presented in § 2. In § 3, we analyse the evolution of a fixed volume of
viscous liquid, and show that the behaviour is self-similar at late times, with the fluid
spreading at a quarter of the rate of a classical viscous gravity current (Huppert 1982).
The case of constant input of viscous liquid is explored in § 4, and conclusions are given
in § 5. Appendix A provides a scaling analysis for the model, and Appendix B discusses
the case of an overlying Bingham material (rather than a granular mush), for which almost
identical dynamics occurs.

2. Model formulation

We analyse the two-dimensional motion of a viscous liquid of density ρ̂l and viscosity η̂

displacing a granular mush with μ(I)-rheology; see figure 1. There is no interpenetration
of the viscous liquid into the granular mush. The granular mush consists of ambient liquid
of density ρ̂a and grains of density ρ̂g > ρ̂a. The solids fraction is denoted by φ so that the
bulk density ρ̂u of the granular mush is

ρ̂u = ρ̂a(1 − φ) + ρ̂gφ, (2.1)

and we assume that ρ̂u < ρ̂l (i.e. the granular mush is lighter than the viscous liquid). There
is an impermeable horizontal boundary at ẑ = 0. The viscous liquid occupies 0 < ẑ <

ĥl(x̂, t̂), whilst the granular mush occupies ĥl(x̂, t̂) < ẑ < Ĥ(x̂, t̂). The vertical extent of
the granular mush is ĥu(x̂, t̂) = Ĥ(x̂, t̂) − ĥl(x̂, t̂). Throughout the paper, we use subscripts
u and l to refer to quantities related to the upper and lower media, respectively, and we use
·̂ to indicate dimensional or unscaled quantities.

The flow is assumed to be shallow (a scaling analysis is given in Appendix A). The
pressure in each medium is thus hydrostatic and given by (Huppert 1982)

p̂u = ρ̂uĝ(Ĥ − ẑ), for ĥl < ẑ < Ĥ, (2.2)

p̂l = ρ̂uĝĥu + ρ̂lg(ĥl − ẑ), for0 < ẑ < ĥl. (2.3)
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The leading-order momentum balance (∂τ̂/∂ ẑ = ∂ p̂/∂ x̂) then furnishes the shear stress τ̂

in each medium:

τ̂u = −ρ̂uĝ(Ĥ − ẑ)
∂Ĥ
∂ x̂

, ĥl < ẑ < Ĥ, (2.4)

τ̂l = η̂
∂ ûl

∂ ẑ
= −ρ̂uĝ

[
ĥu

∂Ĥ
∂ x̂

+
(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
(ĥl − ẑ)

]
, 0 < ẑ < ĥl, (2.5)

where we have used continuity of the shear stress at the interface between the media,
ẑ = ĥl, and vanishing shear stress at the free surface, ẑ = Ĥ, and introduced the density
ratio

D = ρ̂l − ρ̂u

ρ̂u
> 0. (2.6)

Integrating (2.5) with respect to ẑ furnishes the velocity within the viscous liquid (Kowal
& Worster 2015):

ûl = − ρ̂uĝ
η̂

[
∂Ĥ
∂ x̂

ĥuẑ +
(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
ẑ
(

ĥl − 1
2

ẑ
)]

, (2.7)

where we have used no slip at ẑ = 0.
The constitutive model for the granular mush is provided by the μ(I)-rheology with

(GDR-MiDi 2004; Gray & Edwards 2014)

τ̂u = μ(I) p̂u sgn
(

∂ ûu

∂ ẑ

)
. (2.8)

For the relatively slow flows considered in the present work, the relationship between the
inertial number I and the effective friction coefficient μ is linearised to obtain (Da Cruz
et al. 2005; Kamrin & Koval 2012)

I = max(0, μ − μs)

b
, where I =

∣∣∣∣∂ ûu

∂ ẑ

∣∣∣∣√m̂/p̂u, (2.9)

and μs is the minimum friction coefficient for which the granular mush deforms; μs
is assumed to be small (for further discussion, see Appendix A). The parameter b is a
dimensionless constant, and m̂ is the grain mass (per unit length in the third dimension).
Substituting (2.2) and (2.4) into (2.8), we find that μ(I) is independent of the ẑ coordinate
and given by (Gray & Edwards 2014)

μ(I) =
∣∣∣∣∣∂Ĥ
∂ x̂

∣∣∣∣∣ . (2.10)

The definition of I in (2.9) then furnishes the relation

∣∣∣∣∂ ûu

∂ ẑ

∣∣∣∣
√

m̂
p̂u

=
max

(
0,

∣∣∣∣∣∂Ĥ
∂ x̂

∣∣∣∣∣− μs

)

b
. (2.11)
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Equation (2.11) is integrated with respect to ẑ to obtain the velocity profile in the granular
mush:

ûu = −2
√

ρ̂uĝ

3b
√

m̂

[
ĥ3/2

u −(Ĥ−ẑ)3/2
]
F̂
(

∂Ĥ
∂ x̂

)
− ρ̂uĝ

η̂

[
∂Ĥ
∂ x̂

ĥuĥl +
(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
1
2

ĥ2
l

]
,

(2.12)
where we have used continuity of velocity at the interface, ẑ = ĥl, utilising (2.7) (there is
no interpenetration of viscous liquid into the granular medium), and we have introduced
the function

F̂
(

∂Ĥ
∂ x̂

)
= sgn

(
∂Ĥ
∂ x̂

)
max

(
0,

∣∣∣∣∣∂Ĥ
∂ x̂

∣∣∣∣∣− μs

)
. (2.13)

The volume flux in each medium is calculated by integrating the velocity over the
thickness:

Q̂l = − ρ̂uĝ
6η̂

[
3

∂Ĥ
∂ x̂

ĥuĥ2
l + 2

(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
ĥ3

l

]
, (2.14)

Q̂u = −2
√

ρ̂uĝ

5b
√

m̂
ĥ5/2

u F̂
(

∂Ĥ
∂ x̂

)
− ρ̂uĝ

2η̂

[
2

∂Ĥ
∂ x̂

ĥ2
uĥl +

(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
ĥuĥ2

l

]
. (2.15)

The flux in the viscous liquid, Q̂l, is driven by viscous shearing arising from hydrostatic
pressure gradients associated with the thickness variations of the two media. The flux in
the granular mush, Q̂u, consists of two terms: the first term is associated with shearing of
the granular mush, whilst the second term arises from ‘lubrication’ by the viscous liquid
(motion in the liquid can carry the granular mush) (cf. Kowal & Worster 2015). Hence the
granular mush can move even when |∂Ĥ/∂ x̂| does not exceed μs owing to the motion of
the underlying viscous liquid; see figure 1. For further discussion regarding motion of the
quasi-rigid mush, see Appendix A. Mass conservation in each medium is written as

∂ ĥi

∂ t̂
+ ∂Q̂i

∂ x̂
= 0, for i = u, l. (2.16)

The model is completed with appropriate initial and boundary conditions; we generally
take a constant total thickness Ĥ(x, 0) ≡ â and consider different starting shapes of the
viscous deposit.

We analyse two distinct cases: (i) a fixed volume of viscous liquid (§ 3), and (ii) a
constant input flux of viscous liquid (§ 4). In each case, global mass conservation of the
viscous liquid takes the form

∫ x̂f

−x̂f

ĥl dx̂ =
{

Â0 (fixed volume),

q̂0 t̂ (constant input flux),
(2.17)

where x̂f (t̂) is the distance of the tip of the viscous layer from the origin.
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2.1. Non-dimensionalisation
Initially, the two media combined have thickness â, which motivates the non-
dimensionalisation

(z, hl, hu, H) = (ẑ, ĥl, ĥu, Ĥ)/â, x = x̂μs/â, t = t̂ρ̂uĝâμ2
s /η̂, (2.18a–c)

where t̂ has been scaled with the time scale for viscous deformation. The horizontal length
scale is chosen to remove the parameter μs from the dimensionless model, and thus make
the critical slope for yielding of the granular layer equal to unity. The dimensionless
velocities in each medium ((2.7) and (2.12)) take the forms

ul = −1
2

[
2

∂H
∂x

huz +
(
D ∂hl

∂x
+ ∂H

∂x

)
z (2hl − z)

]
, (2.19)

uu = −5
3

K
[
h3/2

u − (H − z)3/2
]
F
(

∂H
∂x

)
− 1

2

[
2

∂H
∂x

huhl +
(
D ∂hl

∂x
+ ∂H

∂x

)
h2

l

]
,

(2.20)

where

F
(

∂H
∂x

)
= sgn

(
∂H
∂x

)
max

(
0,

∣∣∣∣∂H
∂x

∣∣∣∣− 1
)

(2.21)

and

K = 2η̂

5b
√

m̂ρ̂uĝâ
, (2.22)

which is the ratio of the viscosity of the Newtonian liquid, η̂, to the effective ‘viscosity’
of the granular mush (which quantifies the resistance of the granular mush to deformation
when the yield criterion is exceeded, i.e. |∂H/∂x| > 1). The dimensionless volume fluxes
((2.14) and (2.15)) become

Ql = −
[

∂H
∂x

huh2
l

2
+
(
D ∂hl

∂x
+ ∂H

∂x

)
h3

l
3

]
, (2.23)

Qu = −Kh5/2
u F1

(
∂H
∂x

)
−
[

∂H
∂x

h2
uhl +

(
D ∂hl

∂x
+ ∂H

∂x

)
huh2

l
2

]
. (2.24)

This is combined with dimensionless mass conservation (2.16):

∂hi

∂t
+ ∂Qi

∂x
= 0, for i = u, l. (2.25)

Equation (2.25) is integrated numerically using finite differences with an appropriate
initial condition; the method is described in the appendix of Hinton & Slim (2023).

Finally, global mass conservation (2.17) becomes∫ xf

−xf

hl dx =
{
A (fixed volume), see § 3,

Qt (constant input flux), see § 4,
(2.26)

where

A = Â0μs

â2 , Q = q̂0η̂

â3ρ̂uĝμs
. (2.27a,b)
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Figure 2. Evolution of a fixed volume of viscous liquid beneath a granular mush with ‘viscosity’ ratio K =
1 and density ratio D = 0.5. (a) Initial condition (t = 0) given by (3.1). (b–i) The interface shapes at t =
1, 5, 20, 30, 35, 40, 100, 250. The red arrows in (e,h) show the flow directions schematically; see also figure 3
and the discussion in the text.

3. Fixed volume of viscous liquid

Numerical results for the spreading of a fixed volume of relatively dense viscous liquid
beneath a granular mush are shown in figure 2 with D = 0.5, K = 1. The initial shape
takes the form

hl(x, 0) = 1
2 [1 − tanh(50(|x| − 0.5))] , (3.1)

which is shown in figure 2(a). This is an approximation to the Heaviside function. (The
Heaviside function is slightly smoothed for efficient numerical integration, but we note
that steeper initial profiles lead to imperceptible changes in the results.) The initial shape
of the upper free surface is H(x, 0) = hl(x, 0) + hu(x, 0) = 1.

Figure 2 shows that initially, the viscous liquid spreads outwards driven by hydrostatic
pressure gradients associated with the thickness of the viscous liquid, D ∂hl/∂x. Although
there is negligible deformation in the granular mush initially (with |∂H/∂x| < 1), the
outward motion of the liquid carries the granular mush outwards; see figures 2(a,b).
Granular material is piled into levees above the edges of the viscous liquid; see figure 2(b).
These levees grow initially with their outer slope being quasi-rigid, |∂H/∂x| ≈ 1.

Figure 3 shows the horizontal velocity fields for figures 2(c,g,i). The outward carrying
of the crest of the levees by the liquid can be seen in the thin vertical slices of high velocity
at edges of the liquid in figure 3.

The combination of outward transfer of granular material in the levee and inward
collapse of granular material above the viscous liquid creates a positive slope between
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Figure 3. Horizontal flow velocity u in each medium obtained using (2.19) and (2.20). Parameter values and
initial condition are as in figure 2, with (a) t = 5 corresponding to figure 2(c), (b) t = 40 corresponding to
figure 2(g), and (c) t = 250 corresponding to figure 2(i).

the origin and the crest of the levee in the combined height profile. This provides an
adverse contribution to the hydrostatic pressure gradient, decelerating the viscous flow
and in particular reducing the outward flow velocity near the viscous–granular interface;
see figure 3.

Eventually, the slumping liquid detaches from the upper free surface as the central
granular material moves slowly inwards; see figures 2 and 3. (This was handled
numerically by initially adding an artificial film of granular material of thickness 10−4

over the entire region of the viscous liquid, which ensures that in the numerical method,
there is no transition from two-layer flow to one-layer flow; the resulting solution was not
sensitive to the thickness of this granular film.) Subsequently, the viscous liquid continues
to thin and spread laterally, pushing the levees outwards. The perturbation to the upper
free surface diminishes in time owing to the lateral spreading, and the levees are also
reduced in size. The small gradients in the upper free surface continue to retard the viscous
deformation, even at late times. The system becomes self-similar at late times, which is
analysed in § 3.1.

To investigate the sensitivity to the details of the initial condition, figure 4 shows the
flow evolution with a semicircular initial condition (and D = 0.5, K = 1) given by

hl(x, 0) =
{ √

1 − x2, |x| < 1,

0, otherwise,
(3.2)

which is shown in figure 4(a). Comparison of figures 2 and 4 demonstrates that the system
generally passes through the same stages regardless of the initial shape. Indeed, figures 2(e)
and 4(e) are very similar, and the evolution is almost identical at later times. (This is
associated with late-time self-similar behaviour that ‘forgets’ the initial conditions; see
§ 3.1.)

The effect of varying the density ratio D is demonstrated in figure 5. The qualitative
behaviour of the flow is unchanged with different values of D. Larger D is associated with
faster flow because the motion of both media is driven primarily by the gravity-driven
spreading of the liquid. However, there is no simple quantitative rescaling of time with
D. Changes in the relative granular viscosity K have negligible influence on the results
because the granular material is rigid or quasi-rigid everywhere.

3.1. Late-time self-similar behaviour
For a wide range of initial conditions and parameter values, the late-time evolution
becomes self-similar, with the viscous liquid spreading outwards and the perturbation
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Figure 4. Evolution of a fixed volume of viscous liquid beneath a granular mush with ‘viscosity’ ratio K =
1 and density ratio D = 0.5. (a) Initial condition (t = 0) given by (3.2). (b–i) The interface shapes at t =
1, 5, 20, 40, 60, 80, 150, 300. The red arrows in (a,d,g) show the flow directions schematically.
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Figure 5. Flow evolution for three different values of the density ratio D with K = 1: D = 0.25 (green lines),
D = 0.5 (black lines) and D = 1 (red lines). The initial condition is (3.1) (as in figure 2). Times are (a) t = 1,
(b) t = 10, and (c) t = 100.

to the upper free surface thinning and extending laterally; see figures 2(i) and 4(i). At
first sight, it appears that ∂H/∂x ≈ 0 at late times, so the viscous liquid should spread
independently of the overlying granular mush as the classical self-similar gravity current
of Huppert (1982). As we show below, this description is incorrect; the flow is self-similar,
but the small gradients in the upper free surface retard the outward propagation, and this
leads to the rate of spreading being exactly a quarter of that of a classical (or ‘unconfined’)
viscous gravity current.

The hydrostatic pressure gradient associated with ∂H/∂x competes with the outwards
carrying of the granular mush by the gravity-driven spreading liquid as discussed in § 3.
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Figure 6. A slice 1.1 ≤ x ≤ 1.25 from the horizontal velocity field at t = 250 shown in figure 3(c). The
granular mush is quasi-static, and the viscous liquid moves with a parabolic profile for the horizontal velocity
(Poiseuille flow).

At late times, the granular mush is in a quasi-static balance; any substantial velocity at
the top of the viscous liquid drives significant movement of granular material, which then
immediately suppresses the motion through the increased reverse gradient of the upper
free surface. Thus the velocity at the top of the viscous liquid is approximately zero.

Using (2.19), the flow velocity at the interface is

ul(z = hl) = −∂H
∂x

huhl −
(
D ∂hl

∂x
+ ∂H

∂x

)
h2

l
2

≈ 0. (3.3)

This condition provides a relation between the two thickness gradients, ∂hl/∂x and ∂H/∂x,
which ensures that the granular mush is quasi-static. Equation (3.3) can be used to rewrite
the velocity in the viscous liquid (2.19) as

ul = −D ∂hl

∂x
1
2

z(hl − z), (3.4)

where we have also assumed that |∂H/∂x| � D |∂hl/∂x|, which we confirm a posteriori
(this assumption also implies that hl � 1; see (3.3)). Equation (3.4) is analogous to a
Poiseuille flow with no-slip at both the top and bottom of the viscous liquid; see figure 6.
The Poiseuille flow structure contrasts with an ‘unconfined’ viscous gravity current with
no overlying granular mush, which has a velocity field with no-slip at z = 0, and zero
vertical gradient at z = hl.

The flux in the viscous liquid is obtained by integrating (3.4) across its thickness to
obtain

∂hl

∂t
+ ∂Ql

∂x
= 0, where Ql = −D ∂hl

∂x
h3

l
12

. (3.5)

The flux in the viscous liquid is driven by the same hydrostatic pressure gradients as a
classical (or ‘unconfined’) viscous gravity current (Huppert 1982), but the flux is reduced
by a factor of four owing to the different boundary condition at the top of the viscous liquid
(arising from the retarding influence of the overlying granular mush).

The self-similar flow of the viscous liquid is calculated by combining (3.5) with global
mass conservation (2.26), which motivates the similarity solution

hl = A2/5D−1/5t−1/5 fl(ξ), ξ = x
(A3Dt)1/5 . (3.6)
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Figure 7. Late-time self-similar interface shapes. (a) Comparison of the numerical solutions for hl(x, t) at
t = 100, 250, 1000, 5000, 50 000 (solid lines) with the similarity solution (3.7) (dot-dashed magenta line).
Parameters and initial conditions are as in figure 2. (b) Comparison for the upper free surface H(x, t). The
similarity solution is given by (3.11).

The self-similar shape function is given by

fl(ξ) =
(

18
5

)1/3 (
ξ2

0 − ξ2
)1/3

, ξ0 = 1
2

⎡
⎣ 5

π1/2

(
10
9

)1/3 Γ
(

5
6

)
Γ
(

1
3

)
⎤
⎦

3/5

≈ 0.566, (3.7)

where we have used global mass conservation of viscous liquid (2.26) to determine ξ0.
The solution (3.7) is compared to the numerical results at various late times in figure 7(a).

Once hl(x, t) has been determined, the evolution of the upper free surface H(x, t) is
obtained via (3.3), which we rewrite as

−∂H
∂x

hl − D h2
l

2
∂hl

∂x
≈ 0, (3.8)

since hl � 1, hu ≈ 1 and |∂H/∂x| � D |∂hl/∂x|. Equation (3.8) reflects the balance of
the competing hydrostatic pressure gradients associated with the two interfaces. Given the
self-similar scalings for hl and x (3.6), we obtain the following solution for H(x, t):

H(x, t) = 1 + A4/5D3/5t−2/5 F(ξ). (3.9)

Equation (3.8) is recast in the similarity variables as

−fl
dF
dξ

= 1
2

f 2
l

dfl
dξ

, (3.10)

which we integrate to obtain

F(ξ) =
(

9
20

)2/3 [
F0 −

(
ξ2

0 − ξ2
)2/3

]
, F0 = 10

7

(
25π3

12

)1/30
⎡
⎣Γ

(
5
6

)
Γ
(

1
3

)
⎤
⎦

9/5

≈0.346,

(3.11)
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Figure 8. Interface evolution and horizontal flow velocity u of the granular mush and viscous liquid for a
constant input flux Q = 0.1, of viscous liquid with K = 1 and D = 0.5, for (a) t = 1, (b) t = 5, (c) t = 15,
(d) t = 30, (e) t = 50, and ( f ) t = 80. The red dashed lines show the numerical integration of (3.5) with the
same input flux condition as for the two-media flow.

where we have used global mass conservation of the combined media,
∫∞
−∞(H − 1) dx =

0, to determine F0. The solution (3.11) is compared to the numerical results at various late
times in figure 7(b).

We note that this similarity solution also applies to the gravity-driven spreading of a
viscous liquid beneath a viscoplastic material; see Appendix B. The key feature that gives
rise to the self-similar behaviour is a yield criterion in the upper layer.

Finally, we observe that since hl ∼ t−1/5 and H − 1 ∼ t−2/5, our assumptions that
|∂H/∂x| � D |∂hl/∂x| and hl � 1 are valid. It is worth noting that although ∂H/∂x is
relatively small, it is non-zero and cannot be neglected when determining the leading-order
behaviour.

4. Constant input flux of viscous liquid

In this section, we analyse the evolution in the case that the volume of viscous liquid
increases linearly in time at a rate Q; see (2.26). The viscous liquid is injected uniformly
in the interval −0.5 ≤ x ≤ 0.5. Initially, hl = 0 and hu = 1 everywhere.

Numerical results for the interface shapes (black lines) and the velocity field are shown
in figure 8 at six different times, with K = 1, Q = 0.1 and D = 0.5. At early times, the
viscous liquid is entirely enclosed by the granular mush and the upper free surface develops
an ‘M’ shape (e.g. figure 8c). This is because the early-time input of viscous liquid has two
key effects: (i) the upper free surface is lifted around x = 0, and (ii) granular material is
transferred horizontally outwards from x = 0 into two levees as it is carried by the liquid;
see the horizontal velocity fields in figure 8.

The ‘M’ shape of the upper free surface leads to hydrostatic pressure gradients that
retard the viscous gravity current, in a fashion identical to the evolution of a fixed volume
release; see § 3. Indeed, the horizontal velocity has an approximately Poiseuille-like flow
structure in the liquid until the liquid penetrates the upper free surface; see figure 8(c).
This suggests that the viscous liquid evolves as a gravity current with a quarter of the
flux of an ‘unconfined’ viscous gravity current (so (3.5) applies). The red dashed lines in
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Figure 9. Constant input flux of viscous liquid with K = 1. (a–c) Thicknesses at t = 0.5, 5, 50 for Q = 0.5
and D = 0.25. (d–f ) Corresponding plots for Q = 0.5 and D = 1. (g–i) Corresponding plots for Q = 1.5 and
D = 1.

figure 8 show the numerical integration of (3.5) with the same input flux condition as for
the two-media flow. There is good agreement at early and intermediate times.

At later times, the viscous liquid penetrates the upper free surface owing to continued
input of viscous liquid; see figure 8( f ). The viscous gravity current becomes segregated
into different regions separated by the contact points with the granular mush: (i) an
‘unconfined’ region in the centre where the liquid is not bounded above by granular mush
and the flow is driven solely by the liquid’s weight, and (ii) outer regions on either side
in which the gravity-driven spreading of the liquid is retarded by the hydrostatic pressure
gradients associated with the upper granular interface; see figure 8( f ). This resistance to
the liquid motion is evidenced in the discrete change in the gradient of the liquid interface
across the contact point with the granular mush.

The influence of varying the parameters D and Q is indicated in figure 9. Figures 9(a–c)
and 9(d–f ) show identical results but with two values of the density difference D. At
early times, the density difference has little effect on the motion because the input flux
dominates the evolution. At later times, a larger density difference is associated with
greater gravity-driven spreading of the viscous liquid in the lateral direction.

Figures 9(g–i) demonstrate the effect of a larger input flux Q, which is predominantly
to reduce the time scale of the flow (with the qualitative features unchanged). Varying K
leads to negligible change in the results.

In the absence of a granular mush, the constant input of viscous liquid leads to a
self-similar gravity current with increasing thickness (h ∼ t1/5) and extent (x ∼ t4/5)
(Huppert 1982). This scaling does not apply to the present configuration at intermediate
times as demonstrated in figure 10, which shows the solution from figures 9(d–f ) in
rescaled coordinates. If the ‘unconfined’ scalings applied, then the volume of displaced
granular material either side of the liquid would increase in proportion to t4/5 because
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Figure 10. Thicknesses for constant input flux in rescaled coordinates at t = 10 (blue), t = 100 (red) and t =
1000 (black). Parameter values as in figures 9(d–f ). Although the gradients appear to be getting steeper in terms
of these scaled coordinates, in (x, z) coordinates, the interface gradients are diminishing so the flow remains
shallow.

initially hu = 1, but the volume of viscous liquid is proportional to t so it is not possible to
have the same length and thickness scalings in the granular mush and the viscous liquid. At
very late times, the granular volume and thickness will become negligible in comparison
to the viscous liquid, so the ‘unconfined’ similarity solution will apply (results not shown).

5. Discussion and conclusion

This contribution has analysed the gravity-driven spreading of viscous liquid at the base of
a dense granular mush. Numerical integration of a lubrication model has revealed the key
features of the flow of a fixed volume of viscous liquid. At early times, there is a relatively
fast outward transfer of granular material owing to the viscous spreading, which carries
the overlying granular mush. This leads to the formation of levees of granular material at
either side of the liquid. In addition, it produces a hydrostatic pressure gradient against
the viscous flow because the granular mush is thicker away from the centre of the liquid
deposit. The counter-pressure gradient retards the flow. At late times, the flow becomes
self-similar, with the spreading rate quartered relative to a classical viscous gravity current
due to the evolution of the upper free surface (which is also self-similar).

We have also analysed the case in which viscous liquid is injected at a constant rate
at the base of the granular mush. At early times, the liquid is contained entirely by the
granular mush, and the mush is carried into levees. A Poiseuille velocity field develops in
the liquid, and the flux is a quarter of that for an unconfined viscous gravity current. At
later times, the liquid penetrates the upper free surface, but the granular levees continue to
be pushed outwards.

We have used a thin-film model for the flow, but we note that if the system is initially
not shallow, then it will still spread under gravity and eventually become shallow owing
to the outward spreading. Given the insensitive nature of the flow to the initial shape, the
dynamics at later times will be qualitatively unchanged.

Although we focused on a two-dimensional geometry, the qualitative flow features
would be identical for an axisymmetric configuration. This includes the quartering of the
flux relative to a classical viscous gravity current and the late-time self-similar evolution.
Finally, we have shown that the dynamics is unchanged if the overlying medium is a
Bingham material rather than a granular mush; see Appendix B.
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Viscous gravity current beneath a granular mush

Appendix A. Scaling analysis

In this appendix, we analyse the validity of the shallow-flow approximation. We assume
that μs � 1.

The governing equations in each medium are conservation of mass and conservation of
momentum in the x̂ and ẑ directions, given by

0 = ∂ ûi

∂ x̂
+ ∂ŵi

∂ ẑ
, (A1)

0 = −∂ p̂i

∂ x̂
+ ∂τ̂xx,i

∂ x̂
+ ∂τ̂xz,i

∂ ẑ
, (A2)

0 = −∂ p̂i

∂ ẑ
+ ∂τ̂xz,i

∂ x̂
+ ∂τ̂zz,i

∂ ẑ
− ρ̂iĝ, (A3)

where i = u, l. These equations are combined with the Newtonian constitutive law in the
viscous liquid and the μ(I)-rheology in the granular mush.

We follow a standard thin-film analysis (Ockendon & Ockendon 1995) and scale
thicknesses (ẑ, ĥ) with Ĥ and lengths x̂ with L̂, where we assume that ε = Ĥ/L̂ � 1.
Horizontal velocities are scaled with û ∼ Û , where this scale is determined later (see
(A9)). Continuity (A1) furnishes the vertical velocity scale: ŵ ∼ εÛ . The ẑ-momentum
equation (A3) motivates the pressure scale p̂ ∼ ρugĤ in both materials, where we have
assumed that the two densities ρ̂u and ρ̂l have the same order of magnitude.

In the (Newtonian) viscous liquid, the constitutive law furnishes the following scalings
for the stresses:

τ̂xx ∼ η̂
∂ û
∂ x̂

∼ η̂
εÛ
Ĥ

, (A4)

τ̂xz ∼ η̂
∂ û
∂ ẑ

∼ η̂
Û
Ĥ

, (A5)

τ̂zz ∼ η̂
∂ŵ
∂ ẑ

∼ η̂
εÛ
Ĥ

. (A6)

The leading-order terms in the momentum equations in the viscous liquid ((A2) and (A3))
are (Huppert 1982)

0 = −∂ p̂
∂ x̂

+ ∂τ̂xz

∂ ẑ
, (A7)

0 = −∂ p̂
∂ ẑ

− ρ̂lĝ, (A8)

and for a balance in (A7), the horizontal velocity scale is set to

Û = ερ̂uĝĤ2

η̂
. (A9)

This furnishes a viscous shear stress scale

τ̂xz ∼ ερ̂uĝĤ. (A10)
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We next consider the stresses in the granular mush, and we assume that μ(I) ∼ μs ∼ ε.
The dominant contribution to the second strain-rate invariant γ̇ is

γ̇ ∼ ∂ û
∂ ẑ

, (A11)

provided that there is deformation of the granular material; the case of quasi-rigid material
(∂ û/∂ ẑ ≈ 0) is discussed in § A.1. The μ(I)-rheology furnishes the following scaling for
the stresses:

τ̂xx ∼ μ(I) p̂
∂ û/∂ x̂

γ̇
∼ μ(I) ερ̂uĝĤ, (A12)

τ̂xz ∼ μ(I) p̂
∂ û/∂ ẑ

γ̇
∼ μ(I) ρ̂uĝĤ, (A13)

τ̂zz ∼ μ(I) p̂
∂ŵ/∂ ẑ

γ̇
∼ μ(I) ερ̂uĝĤ. (A14)

Since μ(I) ∼ ε, the shear stress in the granular mush has the same order of magnitude as
in the Newtonian liquid (A10). The stresses τxx and τzz also have the same magnitude as
in the Newtonian liquid. Hence the momentum equations for the granular mush reduce to
a shallow form identical to that in the Newtonian liquid, given by (A7) and (A8).

A.1. Pseudo-rigid granular material
For shallow flows of viscoplastic fluids, the reduction of the governing equations to the
leading-order shallow form leads to an apparent inconsistency; there are regions that
appear rigid at leading order, but they can deform in the streamwise direction (Lipscomb
& Denn 1984; Putz, Frigaard & Martinez 2009). For free-surface flows, this so-called
‘lubrication paradox’ was resolved by Balmforth & Craster (1999), who showed that the
regions in which ∂u/∂z vanishes at leading order are in fact ‘pseudo-plugs’ that are weakly
yielded owing to the importance of extensional variations in the velocity.

A similar feature occurs for a granular mush carried by an underlying viscous liquid.
The granular mush can appear to be rigid at leading order but is in fact deforming owing
to streamwise variations as it is carried by the spreading viscous liquid below. As for
viscoplastic pseudo-plugs, the velocity in these regions can be written as

u = u0(x, t) + ε u1(x, z, t) + · · ·, (A15)

so the leading-order velocity appears plugged since ∂u0/∂z = 0. The dominant
contributions to γ̇ then arise from both ε ∂u1/∂z and ∂u0/∂x, which are of the same order
of magnitude, and (A11) must be adjusted. The key conclusion is that the leading-order
velocity profiles from the shallow theory remain correct.

Hence, for μs ∼ ε � 1, the model (and the velocity profiles) in § 2 are justified.
The non-dimensionalisation with the horizontal length scale being order 1/μs times the
thickness scale (2.18) is also valid.
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Viscous gravity current beneath a granular mush

Appendix B. Viscous gravity current beneath a Bingham material

The flux in each medium is (Balmforth et al. 2002; Christy & Hinton 2023)

Q̂l = − ρ̂uĝ
6η̂

[
3

∂Ĥ
∂ x̂

ĥuĥ2
l + 2

(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
ĥ3

l

]
, (B1)

Q̂u = − ρ̂uĝ
6ν̂

Ŷ2(3ĥu − Ŷ)
∂Ĥ
∂ x̂

− ρ̂uĝ
2η̂

[
2

∂Ĥ
∂ x̂

ĥ2
uĥl +

(
D ∂ ĥl

∂ x̂
+ ∂Ĥ

∂ x̂

)
ĥuĥ2

l

]
, (B2)

Ŷ = max

⎛
⎜⎜⎜⎜⎝0, ĥu − τ̂Y

ρ̂uĝ

∣∣∣∣∣∂Ĥ
∂ x̂

∣∣∣∣∣

⎞
⎟⎟⎟⎟⎠ , (B3)

where τ̂Y is the yield stress of the Bingham material, and ν̂ is the plastic shear viscosity.
These forms of the flux are identical to (2.14) and (2.15), except for the different first term
in the Bingham flux, associated with its plastic behaviour.

We non-dimensionalise using the following scalings (cf. (2.18)):

(z, hl, hu, H) = (ẑ, ĥl, ĥu, Ĥ)/â, x = x̂τ̂Y

ρ̂uĝâ2 , t = t̂
ρ̂uĝâ

η̂

(
τ̂Y

ρ̂uĝâ

)2

. (B4a–c)

The shallow approximation requires the vertical length scale to be much smaller than the
horizontal length scale, which becomes

τ̂Y

ρ̂uĝâ
� 1, (B5)

which is equivalent to the Bingham number being small. This condition is analogous
to μs � 1 for the granular mush; the yield criterion must be triggered at relatively
small gradients in the free surface so that the outer slopes of the levees are small. The
dimensionless fluxes in each medium are

Ql = −
[

∂H
∂x

huh2
l

2
+
(
D ∂hl

∂x
+ ∂H

∂x

)
h3

l
3

]
, (B6)

Qu = −M
6

Y2(3hu − Y)
∂H
∂x

−
[

∂H
∂x

h2
uhl +

(
D ∂hl

∂x
+ ∂H

∂x

)
huh2

l
2

]
, (B7)

Y = max

⎛
⎜⎜⎝0, hu − 1∣∣∣∣∂H

∂x

∣∣∣∣

⎞
⎟⎟⎠ , (B8)

where

M = η̂

ν̂
(B9)

is the ‘viscosity’ ratio, analogous to K; see (2.22). Mass conservation is given by (2.16).
The system is integrated numerically, and results are shown in figure 11 for M = 1,
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E.M. Hinton and A.C. Slim
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Figure 11. Gravity-driven flow of a fixed volume of viscous liquid beneath a Bingham material with M = 1
and D = 0.5. The initial condition is given by (3.1). Times are (a) t = 1, (b) t = 5, (c) t = 20, (d) t = 100,
(e) t = 1000, and ( f ) t = 10 000. In (a–c), the blue dashed lines correspond to the granular case from figure 2.
In (e, f ), the red dashed line shows the similarity solution ((3.6) and (3.7)) for the lower layer.

D = 0.5, and a fixed volume release of viscous liquid with initial shape given by (3.1).
The evolution is qualitatively similar to the case of an overlying granular mush. Indeed,
the results from figure 2 for a granular mush with the same density difference are overlain
as blue dotted lines in figures 11(a–c) with excellent agreement. At late times, an identical
similarity solution, given by ((3.6) and (3.7)), applies, and it is shown as a red dashed line
in figure 11(e, f ). This demonstrates that the key feature that controls the dynamics is the
yield criterion in the overlying material.
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