SOME INEQUALITIES OF JENSEN TYPE FOR ARG-SQUARE CONVEX FUNCTIONS OF UNITARY OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR

(Received 9 August 2013; accepted 21 December 2013; first published online 12 May 2014)

Abstract

Some inequalities of Jensen type for Arg-square-convex functions of unitary operators in Hilbert spaces are given.

2010 Mathematics subject classification: primary 26D15; secondary 41A51, 47A63.

Keywords and phrases: Jensen's inequality, Riemann–Stieltjes integral inequalities, Unitary operators in Hilbert spaces, Spectral theory.

1. Introduction

Let $(H, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space. We recall that the bounded linear operator $U: H \to H$ on the Hilbert space H is *unitary* if and only if $U^* = U^{-1}$.

It is well known that (see for instance [4, pages 275–276]) if U is a unitary operator then there exists a family of *projections* $\{E_{\lambda}\}_{{\lambda}\in[0,2\pi]}$, called the *spectral family* of U, with the following properties:

- (a) $E_{\lambda} \leq E_{\mu}$ for $0 \leq \lambda \leq \mu \leq 2\pi$;
- (b) $E_0 = 0$ and $E_{2\pi} = 1_H$ (the *identity operator* on H);
- (c) $E_{\lambda+0} = E_{\lambda}$ for $0 \le \lambda < 2\pi$;
- (d) $U = \int_0^{2\pi} e^{i\lambda} dE_{\lambda}$, where the integral is of *Riemann–Stieltjes* type.

Moreover, if $\{F_{\lambda}\}_{{\lambda}\in[0,2\pi]}$ is a family of projections satisfying the requirements (a)–(d) for the operator U, then $F_{\lambda}=E_{\lambda}$ for all $\lambda\in[0,2\pi]$.

Also, for every continuous complex-valued function $f : C(0,1) \to \mathbb{C}$ on the complex unit circle C(0,1),

$$f(U) = \int_0^{2\pi} f(e^{i\lambda}) dE_{\lambda},$$

where the integral is taken in the Riemann-Stieltjes sense.

^{© 2014} Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

In particular, we have the equalities

$$f(U)x = \int_0^{2\pi} f(e^{i\lambda}) dE_{\lambda}x,$$
$$\langle f(U)x, y \rangle = \int_0^{2\pi} f(e^{i\lambda}) d\langle E_{\lambda}x, y \rangle$$

and

$$||f(U)x||^2 = \int_0^{2\pi} |f(e^{i\lambda})|^2 d||E_{\lambda}x||^2, \tag{1.1}$$

for any $x, y \in H$.

For $z \in \mathbb{C} \setminus \{0\}$ we call the *principal value* of $\log(z)$ the complex number

$$Log(z) := ln |z| + i Arg(z),$$

where $0 \le \text{Arg}(z) < 2\pi$.

We observe that for $t \in [0, 2\pi)$ we have $Log(e^{it}) = it$.

If we consider the continuous function $g:[0,2\pi]\to\mathbb{C}$,

$$g(t) := \begin{cases} \operatorname{Log}(e^{it}) = it & \text{if } t \in [0, 2\pi), \\ 2\pi i & \text{if } t = 2\pi, \end{cases}$$

then we can define a bounded linear operator denoted by $Log(U): H \to H$ as follows:

$$Log(U)x := \int_0^{2\pi} g(\lambda) dE_{\lambda}x = \int_0^{2\pi} (i\lambda) dE_{\lambda}x, \ x \in H.$$

In what follows we establish some results connecting this operator with the function of operator f(U) for a class of function we call Arg-square-convex such that a Jensen type inequality and related results can be derived.

2. The results

The function $f: C(0,1) \to \mathbb{C}$ will be called *Arg-square-convex* if the composite function $\varphi: [0,2\pi] \to [0,\infty)$,

$$\varphi(t) = \begin{cases} |f(e^{it})|^2 & t \in [0, 2\pi), \\ \lim_{s \to 2\pi -} |f(e^{is})|^2 & t = 2\pi, \end{cases}$$

is continuous and convex on $[0, 2\pi]$.

To make the distinction between the value $\varphi(0) = |f(e^{i0})|^2 = |f(1)|^2$ and the value $\varphi(2\pi) = \lim_{s \to 2\pi^-} |f(e^{is})|^2$, we write by $f_c(1) := \lim_{s \to 2\pi^-} f(e^{is})$. With this notation, $\varphi(2\pi) = |f_c(1)|^2$.

The function $f_n : C(0, 1) \to \mathbb{C}$, $f_n(z) = (\text{Log}(z))^n$, where n is a positive integer, is Arg-square-convex. We have

$$\varphi_n(t) = |f_n(e^{it})|^2 = |(\text{Log}(e^{it}))^n|^2 = |it|^{2n} = t^{2n}, \quad t \in [0, 2\pi),$$

and

$$\varphi_n(2\pi) = \lim_{s \to 2\pi^-} |f_n(e^{is})|^2 = |f_{n,c}(1)|^2 = (2\pi)^{2n}.$$

For $q \ge \frac{1}{2}$, define the function $f_q : C(0,1) \to [0,\infty)$ by $f_q(z) = |\text{Log}(z)|^q$. We have

$$\varphi_q(t) = |f_q(e^{it})|^2 = |\text{Log}(e^{it})|^{2q} = |it|^{2q} = t^{2q}, \quad t \in [0, 2\pi),$$

and

$$\varphi_q(2\pi) = \lim_{s \to 2\pi^-} |f_q(e^{is})|^2 = |f_{q,c}(1)|^2 = (2\pi)^{2q}.$$

The function f_q for $q \ge \frac{1}{2}$ is an Arg-square-convex function.

If $g:[0,2\pi] \to [0,\infty)$ is continuous and convex on $[0,2\pi]$, then the composite function $f:C(0,1) \to [0,\infty)$ defined by

$$f(z) := (g(|\text{Log}(z)|))^{1/2}$$

is an Arg-square-convex function on C(0, 1).

The following Jensen's type result holds.

THEOREM 2.1. Let $U \in B(H)$ be a unitary operator on the Hilbert space H and $f: C(0,1) \to \mathbb{C}$ an Arg-square-convex function on C(0,1). Then

$$\left(\frac{|f(1)|^2(\langle (2\pi 1_H - |\text{Log}(U)|)x, x\rangle) + |f_c(1)|^2\langle |\text{Log}(U)|x, x\rangle}{2\pi}\right)^{1/2} \\
\geq ||f(U)x|| \geq |f(e^{\langle \text{Log}(U, x, x\rangle)})|, \tag{2.1}$$

for any $x \in H$, ||x|| = 1, where $f_c(1) := \lim_{s \to 2\pi^-} f(e^{is})$.

Proof. Since f is continuous on C(0, 1) and U is a unitary operator, then, by (1.1),

$$||f(U)x||^2 = \int_0^{2\pi} |f(e^{i\lambda})|^2 d||E_{\lambda}x||^2 = \int_0^{2\pi} |f(e^{i\lambda})|^2 d\langle E_{\lambda}x, x \rangle$$

for any $x \in H$, ||x|| = 1, where $\{E_{\lambda}\}_{{\lambda} \in [0,2\pi]}$ is the spectral family of U.

Now, since $|f(e^i)|^2$ is continuous convex on $[0, 2\pi]$, then, by Jensen's integral inequality for the Riemann–Stieltjes integral with monotonic nondecreasing integrators,

$$\frac{\int_{0}^{2\pi} |f(e^{i\lambda})|^{2} d\langle E_{\lambda}x, x \rangle}{\int_{0}^{2\pi} d\langle E_{\lambda}x, x \rangle} \ge \left| f\left(\exp\left(i \frac{\int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle}{\int_{0}^{2\pi} d\langle E_{\lambda}x, x \rangle} \right) \right) \right|^{2}$$
 (2.2)

for any $x \in H$, ||x|| = 1.

Since

$$\int_0^{2\pi} d\langle E_{\lambda} x, x \rangle = ||x||^2 = 1$$

and

$$\int_0^{2\pi} (i\lambda) \, d\langle E_\lambda x, x \rangle = \int_0^{2\pi} \operatorname{Log}(e^{i\lambda}) \, d\langle E_\lambda x, x \rangle = \langle \operatorname{Log} Ux, x \rangle$$

for any $x \in H$, ||x|| = 1, then we get from (2.2) the second inequality in (2.1).

Now, if $\varphi : [a, b] \to \mathbb{R}$ is a convex function on [a, b] then for any $\lambda \in [a, b]$ we have the inequality

$$\frac{(b-\lambda)\varphi(a)+(\lambda-a)\varphi(b)}{b-a} \ge \varphi(\lambda).$$

If we write this inequality for the continuous convex function $\varphi(t) = |f(e^{it})|^2$ on the interval $[0, 2\pi]$, then

$$\frac{(2\pi - \lambda)|f(1)|^2 + \lambda|f_c(1)|^2}{2\pi} \ge |f(e^{i\lambda})|^2$$

for any $\lambda \in [0, 2\pi]$.

Integrating on $[0, 2\pi]$ over the monotonic nondecreasing integrator $\langle E_{\lambda}x, x \rangle$,

$$\frac{|f(1)|^2(2\pi - \int_0^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle) + |f_c(1)|^2 \int_0^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle}{2\pi} \ge \int_0^{2\pi} |f(e^{i\lambda})|^2 \, d\langle E_{\lambda}x, x\rangle$$

for any $x \in H$, ||x|| = 1.

Now observe that the Riemann–Stieltjes integral $\int_0^{2\pi} \lambda \, d\langle E_{\lambda} x, x \rangle$ exists and can be written as

$$\int_0^{2\pi} \lambda \, d\langle E_{\lambda} x, x \rangle = \int_0^{2\pi} |\text{Log}(e^{i\lambda})| \, d\langle E_{\lambda} x, x \rangle = \langle |\text{Log}(U)| x, x \rangle$$

for any $x \in H$, ||x|| = 1.

The proof is complete.

The following result also holds.

THEOREM 2.2. Let $U \in B(H)$ be a unitary operator on the Hilbert space H and $f: C(0,1) \to \mathbb{C}$ an Arg-square-convex function on C(0,1). Then

$$\frac{1}{\pi} \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2} \right) \langle (\pi 1_{H} - |\text{Log}(U) - i\pi 1_{H}|)x, x \rangle
\leq \frac{|f(1)|^{2} (\langle (2\pi 1_{H} - |\text{Log}(U)|)x, x \rangle) + |f_{c}(1)|^{2} \langle |\text{Log}(U)|x, x \rangle}{2\pi} - ||f(U)x||^{2}
\leq \frac{1}{\pi} \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2} \right) \langle (\pi 1_{H} + |\text{Log}(U) - i\pi 1_{H}|)x, x \rangle,$$
(2.3)

for any $x \in H$, ||x|| = 1.

PROOF. First, we recall the following result obtained by the author in [1] that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$n \min_{i \in \{1, \dots, n\}} \{p_i\} \left(\frac{1}{n} \sum_{i=1}^n \Phi(x_i) - \Phi\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right)$$

$$\leq \frac{1}{P_n} \sum_{i=1}^n p_i \Phi(x_i) - \Phi\left(\frac{1}{P_n} \sum_{i=1}^n p_i x_i\right)$$

$$\leq n \max_{i \in \{1, \dots, n\}} \{p_i\} \left(\frac{1}{n} \sum_{i=1}^n \Phi(x_i) - \Phi\left(\frac{1}{n} \sum_{i=1}^n x_i\right) \right),$$
(2.4)

where $\Phi: C \to \mathbb{R}$ is a convex function defined on the convex subset C of the linear space X, $\{x_i\}_{i \in \{1,...,n\}}$ are vectors and $\{p_i\}_{i \in \{1,...,n\}}$ are nonnegative numbers with $P_n := \sum_{i=1}^n p_i > 0$.

For n = 2 we deduce from (2.4) that

$$2\min\{t, 1-t\}\left(\frac{\Phi(x) + \Phi(y)}{2} - \Phi\left(\frac{x+y}{2}\right)\right)$$

$$\leq t\Phi(x) + (1-t)\Phi(y) - \Phi(tx + (1-t)y)$$

$$\leq 2\max\{t, 1-t\}\left(\frac{\Phi(x) + \Phi(y)}{2} - \Phi\left(\frac{x+y}{2}\right)\right)$$

for any $x, y \in C$ and $t \in [0, 1]$.

Now, if $\varphi : [a, b] \to \mathbb{R}$ is a convex function on [a, b], then, for any $\lambda \in [a, b]$,

$$2 \min \left\{ \frac{b - \lambda}{b - a}, \frac{\lambda - a}{b - a} \right\} \left(\frac{\varphi(a) + \varphi(b)}{2} - \varphi\left(\frac{a + b}{2}\right) \right)$$

$$\leq \frac{(b - \lambda)\varphi(a) + (\lambda - a)\varphi(b)}{b - a} - \varphi(\lambda)$$

$$\leq 2 \max \left\{ \frac{b - \lambda}{b - a}, \frac{\lambda - a}{b - a} \right\} \left(\frac{\varphi(a) + \varphi(b)}{2} - \varphi\left(\frac{a + b}{2}\right) \right). \tag{2.5}$$

If we write (2.5) for the continuous convex function $\varphi(t) = |f(e^{it})|^2$ on the interval $[0, 2\pi]$, then

$$\frac{1}{\pi} \min\{2\pi - \lambda, \lambda\} \left(\frac{|f(1)|^2 + |f_c(1)|^2}{2} - |f(-1)|^2 \right) \\
\leq \frac{(2\pi - \lambda)|f(1)|^2 + \lambda|f_c(1)|^2}{2\pi} - |f(e^{i\lambda})|^2 \\
\leq \frac{1}{\pi} \max\{2\pi - \lambda, \lambda\} \left(\frac{|f(1)|^2 + |f_c(1)|^2}{2} - |f(-1)|^2 \right)$$

for any $\lambda \in [0, 2\pi]$.

Let $x \in H$ with ||x|| = 1. Integrating on $[0, 2\pi]$ over the monotonic nondecreasing integrator $\langle E_{\lambda} x, x \rangle$,

$$\frac{1}{\pi} \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2} \right) \int_{0}^{2\pi} \min\{2\pi - \lambda, \lambda\} \, d\langle E_{\lambda}x, x \rangle
\leq \frac{|f(1)|^{2} (2\pi - \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x \rangle) + |f_{c}(1)|^{2} \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x \rangle}{2\pi}
- \int_{0}^{2\pi} |f(e^{i\lambda})|^{2} \, d\langle E_{\lambda}x, x \rangle
\leq \frac{1}{\pi} \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2} \right) \int_{0}^{2\pi} \max\{2\pi - \lambda, \lambda\} \, d\langle E_{\lambda}x, x \rangle$$
(2.6)

and since

$$\begin{split} &\int_{0}^{2\pi} \min\{2\pi - \lambda, \lambda\} \, d\langle E_{\lambda} x, x \rangle \\ &= \int_{0}^{2\pi} (\pi - |\lambda - \pi|) \, d\langle E_{\lambda} x, x \rangle = \pi - \int_{0}^{2\pi} |\lambda - \pi| \, d\langle E_{\lambda} x, x \rangle \\ &= \pi - \int_{0}^{2\pi} |\lambda - \pi| \, d\langle E_{\lambda} x, x \rangle = \pi - \int_{0}^{2\pi} |i\lambda - i\pi| \, d\langle E_{\lambda} x, x \rangle \\ &= \pi - \int_{0}^{2\pi} |\text{Log}(e^{it}) - i\pi| \, d\langle E_{\lambda} x, x \rangle = \pi - \langle |\text{Log}(U) - i\pi 1_{H}| x, x \rangle \\ &= \langle (\pi 1_{H} - |\text{Log}(U) - i\pi 1_{H}|) x, x \rangle \end{split}$$

and similarly

$$\int_0^{2\pi} \max\{2\pi - \lambda, \lambda\} d\langle E_{\lambda} x, x \rangle = \langle (\pi 1_H + |\text{Log}(U) - i\pi 1_H|) x, x \rangle, \tag{2.7}$$

then by (2.6)–(2.7) we get the desired result (2.3).

In the following, an upper bound for the nonnegative difference

$$||f(U)x||^2 - |f(e^{\langle \operatorname{Log} Ux, x \rangle})|^2,$$

where $x \in H$ with ||x|| = 1, is also provided.

THEOREM 2.3. Let $U \in B(H)$ be a unitary operator on the Hilbert space H and $f: C(0,1) \to \mathbb{C}$ an Arg-square-convex function on C(0,1). Then

$$0 \leq ||f(U)x||^{2} - |f(e^{\langle \text{Log } Ux, x \rangle})|^{2}$$

$$\leq \frac{1}{\pi} \max\{\langle (2\pi 1_{H} - |\text{Log}(U)|)x, x \rangle, \langle |\text{Log}(U)|x, x \rangle\}$$

$$\times \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2}\right)$$

$$\leq 2\left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2}\right)$$
(2.8)

for any $x \in H$, ||x|| = 1.

Proof. By the convexity of the function $\varphi(t) = |f(e^{it})|^2$ on the interval $[0, 2\pi]$,

$$||f(U)x||^{2} - |f(e^{\langle \log Ux, x \rangle})|^{2}$$

$$= \int_{0}^{2\pi} |f(e^{i\lambda})|^{2} d\langle E_{\lambda}x, x \rangle - |f(\exp(i \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle))|^{2}$$

$$= \int_{0}^{2\pi} |f(e^{i(((2\pi - \lambda)/2\pi) \cdot 0 + (\lambda/2\pi) \cdot 2\pi)})|^{2} d\langle E_{\lambda}x, x \rangle$$

$$- |f(\exp(i \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle))|^{2}$$

$$\leq \int_{0}^{2\pi} \left(\frac{2\pi - \lambda}{2\pi} |f(1)|^{2} + \frac{\lambda}{2\pi} |f_{c}(1)|^{2}\right) d\langle E_{\lambda}x, x \rangle$$

$$- |f(\exp(i \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle))|^{2}$$

$$= \frac{|f(1)|^{2} (2\pi - \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle) + |f_{c}(1)|^{2} \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle}{2\pi}$$

$$- |f(\exp(i \int_{0}^{2\pi} \lambda d\langle E_{\lambda}x, x \rangle))|^{2}$$

for any $x \in H$, ||x|| = 1.

Applying the second inequality from (2.5) for the convex function $\varphi(t) = |f(e^{it})|^2$ on the interval $[0, 2\pi]$ and for the intermediate point $\int_0^{2\pi} \lambda \, d\langle E_{\lambda} x, x \rangle \in [0, 2\pi]$ we can write that

$$\frac{|f(1)|^{2}(2\pi - \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle) + |f_{c}(1)|^{2} \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle}{2\pi} \\
- \left| f\left(\exp\left(i \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle\right)\right) \right|^{2} \\
\leq 2 \max\left\{ \frac{2\pi - \int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle}{2\pi}, \frac{\int_{0}^{2\pi} \lambda \, d\langle E_{\lambda}x, x\rangle}{2\pi} \right\} \\
\times \left(\frac{|f(1)|^{2} + |f_{c}(1)|^{2}}{2} - |f(-1)|^{2} \right) \tag{2.10}$$

for any $x \in H$, ||x|| = 1.

Since, as above,

$$\int_{0}^{2\pi} \lambda \, d\langle E_{\lambda} x, x \rangle = \langle |\text{Log}(U)| x, x \rangle,$$

for any $x \in H$, ||x|| = 1, then we deduce from (2.9) and (2.10) the desired result (2.8).

3. Examples

Let $U \in B(H)$ be a unitary operator on the Hilbert space H. Then, for a natural number $n \ge 1$,

$$\begin{split} (2\pi)^{n-1/2} \langle |\operatorname{Log}(U)|x,x\rangle^{1/2} &\geq ||(\operatorname{Log}(U))^n x|| \\ &\geq |\ln|\langle \operatorname{Log}Ux,x\rangle| + i\operatorname{Arg}(\langle \operatorname{Log}Ux,x\rangle)|^n, \end{split}$$

for any $x \in H$, ||x|| = 1. This follows from (2.1) applied for the function $f_n : C(0, 1) \to \mathbb{C}$, $f_n(z) = (\text{Log}(z))^n$.

If we apply the same inequality for $f_q: C(0,1) \to [0,\infty), f_q(z) = |\text{Log}(z)|^q$, then

$$(2\pi)^{q-1/2} \langle |\text{Log}(U)|x, x\rangle^{1/2} \ge |||\text{Log}(U)|^q x||$$

$$\ge |\ln|\langle \text{Log } Ux, x\rangle| + i \operatorname{Arg}(\langle \text{Log } Ux, x\rangle)|^q,$$

for any $x \in H$, ||x|| = 1 and $q \ge \frac{1}{2}$.

Now, if we use the inequality (2.3) for the function $f_n(z) = (\text{Log}(z))^n$, then

$$(2^{2n-1} - 1)\pi^{2n-1} \langle (\pi 1_H - |\text{Log}(U) - i\pi 1_H|)x, x \rangle$$

$$\leq (2\pi)^{2n-1} \langle |\text{Log}(U)|x, x \rangle - ||(\text{Log}(U))^n x||^2$$

$$\leq (2^{2n-1} - 1)\pi^{2n-1} \langle (\pi 1_H + |\text{Log}(U) - i\pi 1_H|)x, x \rangle,$$

for any $x \in H$, ||x|| = 1, where n is a natural number with $n \ge 1$.

The same inequality applied for $f_q(z) = |\text{Log}(z)|^q$ provides

$$\begin{split} &(2^{2q-1}-1)\pi^{2q-1}\langle(\pi 1_{H}-|\text{Log}(U)-i\pi 1_{H}|)x,x\rangle\\ &\leq (2\pi)^{2q-1}\langle|\text{Log}(U)|x,x\rangle-|||\text{Log}(U)|^{q}x||^{2}\\ &\leq (2^{2q-1}-1)\pi^{2q-1}\langle(\pi 1_{H}+|\text{Log}(U)-i\pi 1_{H}|)x,x\rangle, \end{split}$$

for any $x \in H$, ||x|| = 1 and $q \ge \frac{1}{2}$.

Finally, if we use the first inequality from (2.8), we also get

$$0 \le \|(\operatorname{Log}(U))^n x\|^2 - |\operatorname{ln}|\langle \operatorname{Log} Ux, x \rangle| + i \operatorname{Arg}(\langle \operatorname{Log} Ux, x \rangle)|^n$$

$$\le (2^{2n-1} - 1)\pi^{2n-1} \max\{\langle (2\pi 1_H - |\operatorname{Log}(U)|)x, x \rangle, \langle |\operatorname{Log}(U)|x, x \rangle\}$$

$$\le 2(2^{2n-1} - 1)\pi^{2n}$$

for any $x \in H$, ||x|| = 1, where n is a natural number with $n \ge 1$. If $q \ge \frac{1}{2}$, then

$$0 \le \||\operatorname{Log}(U)|^{q} x\|^{2} - |\operatorname{ln}|\langle \operatorname{Log} Ux, x \rangle| + i \operatorname{Arg}(\langle \operatorname{Log} Ux, x \rangle)|^{2q}$$

$$\le (2^{2q-1} - 1)\pi^{2q-1} \max\{\langle (2\pi 1_{H} - |\operatorname{Log}(U)|)x, x \rangle, \langle |\operatorname{Log}(U)|x, x \rangle\}$$

$$< 2(2^{2q-1} - 1)\pi^{2q}$$

for any $x \in H$, ||x|| = 1.

If $g:[0,2\pi]\to[0,\infty)$ is continuous and convex on $[0,2\pi]$, then the composite function $f:C(0,1)\to[0,\infty)$ defined by

$$f(z) := (g(|\text{Log}(z)|))^{1/2}$$

is an Arg-square-convex function on C(0, 1).

As examples of such functions we have

$$f_{\alpha}(z) := \exp(\alpha |\text{Log}(z)|);$$

these are Arg-square-convex functions on C(0, 1) for any real number $\alpha \neq 0$.

We also notice that the functions $f_{m,n}: C(0,1) \to \mathbb{C}$, $f_{m,n}(z) = z^m (\text{Log}(z))^n$, where $m \neq 0$ is an integer and n is a positive integer, are Arg-square-convex functions.

The reader may apply the above inequalities for these functions as well; the details are omitted here.

For Jensen's type inequalities for functions of selfadjoint operators see the recent book [2]. For related results, see [3].

Acknowledgements

The author would like to thank the referee and the editor for valuable comments that have been implemented in the final version of the paper.

References

- S. S. Dragomir, 'Bounds for the normalized Jensen functional', Bull. Aust. Math. Soc. 74 (2006), 471–476.
- [2] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics (Springer, New York, 2012).
- [3] S. S. Dragomir, *Operator Inequalities of Ostrowski and Trapezoidal Type*, Springer Briefs in Mathematics (Springer, New York, 2012).
- [4] G. Helmberg, Introduction to Spectral Theory in Hilbert Space (John Wiley & Sons, New York, 1969).

S. S. DRAGOMIR, Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia and

School of Computational & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

e-mail: sever.dragomir@vu.edu.au