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Spectral numbers in Floer theories

Michael Usher

Abstract

The chain complexes underlying Floer homology theories typically carry a real-valued
filtration, allowing one to associate to each Floer homology class a spectral number defined
as the infimum of the filtration levels of chains representing that class. These spectral
numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh,
Schwarz and others. We prove that the spectral number associated to any nonzero Floer
homology class is always finite, and that the infimum in the definition of the spectral
number is always attained. In the Hamiltonian case, this implies that what is known as
the ‘nondegenerate spectrality’ axiom holds on all closed symplectic manifolds. Our proofs
are entirely algebraic and apply to any Floer-type theory (including Novikov homology)
satisfying certain standard formal properties. The key ingredient is a theorem about the
existence of best approximations of arbitrary elements of finitely generated free modules
over Novikov rings by elements of prescribed submodules with respect to a certain family
of non-Archimedean metrics.

1. Introduction

In the various guises of Floer homology, or indeed its forerunners Morse homology and Novikov
homology, one obtains a chain complex C∗ from the critical points of an ‘action functional’ A on
some configuration space, with boundary operator obtained from an enumeration of certain objects
that are interpreted as negative gradient flowlines of A. There is generally some set of allowable
perturbations of A, with any two choices of perturbation giving rise to canonically isomorphic
homology groups H∗. However, the nature of the construction implies that the chain complex also
carries a natural filtration by R, with the subcomplex Cλ∗ generated by the critical points having
action at most λ; typically the homologies Hλ∗ of these filtered groups are not independent of the
way in which A is perturbed. Now in any chain complex carrying a filtration by R, to each homology
class a of the complex one can associate a spectral number, defined as the infimum of all λ with the
property that a lies in the image of the inclusion-induced map Hλ∗ → H∗. These spectral numbers
have been studied in some detail in the case of Hamiltonian Floer homology (see [Oh06] for a
survey); in this case the allowed perturbations of the action functional correspond to Hamiltonian
flows on a symplectic manifold, and the properties of the spectral numbers have yielded interesting
information about Hamiltonian dynamics.

The work described in the present paper was motivated by the work of Oh et al. concerning spec-
tral numbers in Hamiltonian Floer homology. The result of greatest interest to the Hamiltonian case
is that what is known as the ‘nondegenerate spectrality’ axiom holds on general closed symplectic
manifolds. This result is also proven in [Oh04] in the case that the manifold is strongly semipositive.
In addition to not depending on semipositivity, our proof is conceptually quite different, and a good
deal shorter. As explained in [Oh06, § 6.1], the nondegenerate spectrality axiom implies that the
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spectral number of a Hamiltonian flow is unchanged when the corresponding path of Hamiltonian
diffeomorphisms is homotoped rel endpoints, and thus gives rise not just to a function defined on
Hamiltonian functions but also to a function defined on the universal cover of the Hamiltonian
diffeomorphism group. With this fact in hand, many of the results about Hamiltonian dynamics
that were proven using the spectral numbers for special classes of symplectic manifolds now become
accessible for general symplectic manifolds. (For instance, one can verify that the proofs in [EP06],
when combined with the nondegenerate spectrality axiom, go through to show that there exists a
‘partial symplectic quasi-state’ on any closed symplectic manifold (M,ω). As is shown in the proof
of that paper’s Theorem 2.1, this has the striking consequence that, if {F1, . . . , Fm} is any finite
collection of mutually Poisson-commuting functions on M , then there is some (x1, . . . , xm) ∈ Rm

such that the set
⋂m

i=1 f−1
i ({xi}) cannot be displaced from itself by a Hamiltonian isotopy.)

However, the principal ingredient for the results in this paper is an algebraic result that is
insensitive to the particular flavor of Floer homology under consideration. Accordingly we obtain
results applicable to many different theories, among which we mention in particular the fact that
the spectral number is always nontrivial (i.e. not equal to −∞) for any nonzero Floer homology
class. This suggests that these numbers may be worthy of study in contexts other than Hamiltonian
Floer homology.

In order to formulate our results in general terms, we now give a purely algebraic description of
the context in which the results will apply.

Definition 1.1. A filtered Floer–Novikov complex c over a ring R consists of the following data:

(1) a principal Γ-bundle (with the discrete topology)

Γ �P

↓
S

where

(i) S is a finite set, and
(ii) Γ is a finitely generated abelian group, written multiplicatively;

(2) an ‘action functional’ A : P → R and a ‘period homomorphism’ ω : Γ → R satisfying

A(g · p) = A(p) − ω(g) (g ∈ Γ, p ∈ P );

(3) a map n : P × P → R satisfying the conditions

(i) n(p, p′) = 0 unless A(p) > A(p′),
(ii) n(g · p, g · p′) = n(p, p′) for all p, p′ ∈ P, g ∈ Γ,
(iii) for each p ∈ P , the formal sum

∂p =
∑
q∈P

n(p, q)q

belongs to the Floer chain complex

C∗(c) :=
{∑

q∈P

aqq

∣∣∣∣ aq ∈ R, (∀C ∈ R) (#{q | aq �= 0,A(q) > C} < ∞)
}

,

(iv) where the Novikov ring of ω : Γ → R is defined by

ΛΓ,ω =
{∑

g∈Γ

bgg

∣∣∣∣ bg ∈ R, (∀C ∈ R) (#{g | bg �= 0, ω(g) < C} < ∞)
}

and where C∗ inherits the structure of a ΛΓ,ω-module in the obvious way from the Γ-action
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on P , the operator ∂ : P → C∗ defined in (iii) extends to a ΛΓ,ω-module homomorphism

∂ : C∗ → C∗ which moreover satisfies ∂ ◦ ∂ = 0.

Note that we use a ‘downward completion’ with respect to A to define the Floer chain complex
but an upward completion with respect to ω to define the Novikov ring; this is consistent with the
minus sign that appears in part (2) above.

If λ ∈ R, define

Cλ
∗ (c) =

{ ∑
q∈P :A(q)�λ

aqq

∣∣∣∣ aq ∈ R, (∀C ∈ R) (#{q | aq �= 0,A(q) > C} < ∞)
}

.

The condition (3)(i) in the definition of a filtered Floer–Novikov complex implies that the boundary
operator ∂ restricts to maps

∂ : Cλ
∗ (c) → Cλ

∗ (c).

So set

H∗(c) =
ker(∂ : C∗(c) → C∗(c))
Im(∂ : C∗(c) → C∗(c))

, Hλ
∗ (c) =

ker(∂ : Cλ∗ (c) → Cλ∗ (c))
Im(∂ : Cλ∗ (c) → Cλ∗ (c))

.

We then have maps ι∗ : Hλ∗ (c) → H∗(c) induced by the inclusion of Cλ∗ (c).

Definition 1.2. If c is a filtered Floer–Novikov complex with the notation as above, and if a ∈
H∗(c), the spectral number of a is

ρ(a) = inf{λ ∈ R | a ∈ Im(ι∗ : Hλ
∗ (c) → H∗(c))}.

For any nonzero c =
∑

p∈P cpp ∈ C∗(c), the set {A(p) | cp �= 0} is bounded above, nonempty
and discrete, and hence contains its supremum, which we denote by �(c) (if c = 0, put �(c) = −∞).
We have thus defined a function

� : C∗(c) → R ∪ {−∞}
such that

Cλ
∗ (c) = {c ∈ C∗(c) | �(c) � λ}.

An equivalent definition of the spectral number is then

ρ(a) = inf{�(c) | c ∈ C∗(c), [c] = a},
where [c] denotes the homology class of c.

We can now state our main results.

Theorem 1.3. Let c be a filtered Floer–Novikov complex over a Noetherian ring R. Then for any
a ∈ H∗(c) such that a �= 0, we have ρ(a) > −∞. Further, there is M ∈ R such that for any c ∈ C∗(c)
with [c] = 0 there is h ∈ C∗(c) with ∂h = c and �(h) � �(c) + M .

Theorem 1.4. Let c be a filtered Floer–Novikov complex over a Noetherian ring R. Then for every
a ∈ H∗(c) there is α ∈ C∗(c) such that [α] = a and

�(α) = ρ(a).

Recall that R is the ring in which the n(p, q) reside; in every filtered Floer–Novikov complex in
the literature of which the author is aware R is taken to be either a subfield of C or a quotient ring
of Z, so the assumption that R is Noetherian is certainly a modest one. The role of this assumption
in the proof is that it guarantees that a certain submodule of a finitely generated module over the
group ring R[ker ω] will be finitely generated. As we see in Remark 2.6, one can construct examples

1583

https://doi.org/10.1112/S0010437X08003564 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003564


M. Usher

where our main theorems fail when the ring K of Theorem 2.5 (which is set equal to R[ker ω] in the
proofs of Theorems 1.3 and 1.4) is not Noetherian.

Note that the existence of the constant M in Theorem 1.3 is reminiscent of Proposition A.4.9
of [FOOO00].

Let us now recall two of the topological contexts in which filtered Floer–Novikov complexes
arise.

1.1 Novikov homology

Let M be a smooth closed manifold, and let θ be a closed 1-form on M whose graph (as a submanifold
of T ∗M) is transverse to the zero section. Let π : M̃ → M be any covering space of M with the
properties that the deck transformation group Γ is abelian and π∗θ is exact, say π∗θ = df̃ . These
data then give rise to a filtered Floer–Novikov complex as follows. The finite set S is the zero set
{p1, . . . , pn} of θ, while the principal Γ-bundle P → S is just the restriction π|π−1(S). The action
functional A : P → R is given by A = f̃ |P . The period map ω is given by, for g ∈ Γ = π1(M)/π1(M̃),
setting ω(g) = − ∫

γ θ for γ an arbitrary loop representing g. If p̃i, p̃j ∈ P , the numbers n(p̃i, p̃j) are
zero unless indf̃ (p̃i) = indf̃ (p̃j) + 1 (where indf̃ denotes the Morse index), in which case n(p̃i, p̃j)
is obtained by counting integral curves γ : R → M̃ of the negative gradient vector field of f̃ with
respect to the pullback of a generic metric on M , where we require γ(t) → p̃i as t → −∞ and
γ(t) → p̃j as t → ∞.

At least when R is a field, the resulting Novikov chain complex C∗(c) is chain homotopy equiva-
lent to C∗(M̃ )⊗R[Γ]ΛΓ,ω (see [Far04]). Write i∗ : H∗(M̃ ) → H∗(c) for the map induced by coefficient
extension by ΛΓ,ω. For a class i∗a ∈ H∗(c) to satisfy ρ(i∗a) = −∞ is closely analogous to the concept
of a ∈ C∗(M̃ ) being movable to infinity in the sense of [FS07], since ρ(i∗a) = −∞ means that a
can be obtained from critical points of the action functional on M̃ (this functional being a primi-
tive for π∗θ) having arbitrarily large negative action. In [FS07] it is shown that if [θ] ∈ H∗(M ; R)
has rank equal to the rank of Γ then a class a ∈ H∗(M̃ ) can be moved to infinity if and only if
i∗a = 0 ∈ C∗(M̃) ⊗R[Γ] ΛΓ,ω, consistently with Theorem 1.3.

We note that, since Theorems 1.3 and 1.4 do not require any injectivity hypothesis on the map ω,
we can take for M̃ above any abelian cover π : M̃ → M such that π∗θ is exact; thus our theorems
are valid for Novikov homology with arbitrary abelian local coefficient systems.

1.2 Hamiltonian Floer homology

Let (M,ω) be a symplectic manifold and let H : S1 × M → R be a smooth function (we identify
S1 = R/Z). Let XH be the time-dependent vector field defined by d(H(t, ·)) = ιXH

ω, and let
φH : M → M be the time-1 flow of XH . Let L0M denote the space of contractible loops γ : S1 → M .
Assuming that H is nondegenerate in the sense that the graph of φH is transverse to the diagonal
of M × M , the set

S = {γ ∈ L0M | γ̇(t) = XH(t, γ(t))}
is finite. Define

L̃0M =
{(γ,w) ∈ L0M × Map(D2,M) | w|∂D2 = γ}

(γ,w) ∼ (γ′, w′) if γ = γ′,
∫
D2 w∗ω =

∫
D2 w′∗ω, and 〈c1(M), [w′#w̄]〉 = 0

.

The projection L̃0M → L0M then restricts over the finite set S to a principal Γ-bundle P → S,
where

Γ =
π2(M)

ker(〈c1, ·〉) ∩ ker(〈[ω], ·〉) .
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(Here, for example 〈c1, ·〉 denotes the map defined on π2(M) by composing the Hurewicz map with
evaluation of c1(M) ∈ H2(M ; Z).) The period map ω : Γ → R is given by 〈[ω], ·〉. The action
functional A : P → R is given by

A([γ,w]) = −
∫

D2

w∗ω −
∫ 1

0
H(t, γ(t)) dt.

Finally, the numbers n([γ,w], [γ′, w′]) are obtained by enumerating rigid solutions u : R × S1 → M
to the perturbed Cauchy–Riemann equation

∂u

∂s
+ J(t, u(s, t))

(
∂u

∂t
− XH(t, u(s, t))

)
= 0,

which satisfy u(s, ·) → γ as s → ∞, u(s, ·) → γ′ as s → +∞, and w#u = w′. Here J(t, ·) is a
generic family of ω-compatible almost complex structures on TM . See [Sal99] for a survey of the
details of the construction for a large family of symplectic manifolds, and see [FO99] and [LT98] for
the general case. (Conventionally, R is usually taken to be either Z2, Z or Q; when the virtual cycle
methods of [FO99] and [LT98] are needed, it is necessary to take R to be a field of characteristic
zero.) A crucial property of the resulting Floer homology is that it is canonically isomorphic to the
quantum homology of (M,ω).

As mentioned earlier, Hamiltonian Floer homology is the Floer theory for which the spectral
numbers have been most heavily developed, beginning with Schwarz’s work [Sch00] and continuing
with papers by Oh such as [Oh02] and [Oh05] (in turn, Schwarz’s work was motivated in part by
earlier work of Viterbo and Oh on Lagrangian submanifolds). One of the earlier properties to be
established was a nontriviality property analogous to Theorem 1.3 above, which follows as a result
of the nature of the isomorphism with quantum homology. The analog of Theorem 1.4, on the
other hand, has been more of a challenge. Theorem 1.4 in particular implies that, for any nonzero
a ∈ H∗(c), we have

ρ(a) ∈ Im(A : P → R).

The set Im(A : P → R) is known in the literature as the action spectrum Spec(H) of H, and the
fact that ρ takes its values there is known as the spectrality axiom for ρ. We accordingly emphasize
that we have proven the following corollary.

Corollary 1.5. Let H be a nondegenerate Hamiltonian on any closed symplectic manifold. Then
the spectral number ρ of the Floer homology of H satisfies the spectrality axiom.

The main results are consequences of a result (Theorem 2.5) about homomorphisms of free finite-
rank modules over Novikov rings such as ΛΓ,ω. The next section is devoted to stating and proving
that result, while in the final section we will deduce Theorems 1.3 and 1.4 from Theorem 2.5.

2. Approximation over Novikov rings

Throughout this section K will denote a ring (as explained later, in practice K will be a quotient of
a polynomial ring over the ring R that appeared in the last section, which is why we use a different
notation for it), and G � R will denote an additive subgroup of R. Except in this section’s closing
Remark 2.6, we will always assume that K is Noetherian. The Novikov ring of G over K is then,
by definition,

ΛK(G) =
{∑

g∈G

cgT
g

∣∣∣∣ cg ∈ K, (∀C > 0) (#{g | cg �= 0, g < C} < ∞)
}

.
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For a =
∑

cgT
g ∈ ΛK(G) define ν(a) = min{g | cg �= 0} (so ν(a) = ∞ if and only if a = 0). For any

n, this induces a function

ν̄ : ΛK(G)n → R ∪ {∞},
(a1, . . . , an) �→ min

1�i�n
ν(ai),

which attains the value ∞ only at the zero vector. Note that ν̄ satisfies the non-Archimedean triangle
inequality

ν̄(v + w) � min{ν̄(v), ν̄(w)},
which is in fact an equality whenever ν̄(w) �= ν̄(v).

Setting d(v,w) = e−ν̄(v−w) then makes ΛK(G)n into a non-Archimedean metric space. The goal
of this section is to show that, if V � ΛK(G)n is a submodule over ΛK(G), then any w ∈ ΛK(G)n

has a best approximation in V with respect to the metric d, and also with respect to the metrics
obtained by replacing ν̄ with certain other functions ν̄�t in the formula for d. Note that, if G � R
is a dense subgroup and K is a field (which implies that ΛK(G) is a non-Archimedean field), the
example given in, [IH71, § 3] can be adapted to give a non-Archimedean norm on ΛK(G)2 with
respect to which (0, 1) does not have a best approximation in ΛK(G) × {0}. So the property that
we are to prove depends in a meaningful way on the functions ν̄�t and is not just a consequence of
ΛK(G)n having finite rank.

Define

ΛK(G)�0 = {a ∈ ΛK(G) | ν(a) � 0}, ΛK(G)+ = {a ∈ ΛK(G) | ν(a) > 0},
and similarly, for any ΛK(G)-submodule V of ΛK(G)n,

V�0 = {v ∈ V | ν̄(v) � 0}, V+ = {v ∈ V | ν̄(v) > 0}.
Note that V�0 is a ΛK(G)�0-module.
Our argument will twice make use of the following lemma.

Lemma 2.1. Let {u1, . . . , uk} ∈ ΛK(G)n with ν̄(ui) = 0,and let

U = spanΛK(G){u1, . . . , uk}.
Let V � ΛK(G)n be any ΛK(G)-submodule such that U � V . Suppose that φ : V → V is any
function with the following properties:

(i) For all v ∈ V , either φ(v) = v or ν̄(φ(v)) > ν̄(v) (so in particular φ(0) = 0).
(ii) If φ(v) �= v, then v − φ(v) ∈ spanK{T ν̄(v)u1, . . . , T

ν̄(v)uk}.
Then for every v ∈ V there is u ∈ U such that

φ(v − u) = v − u

and either u = 0 or else

ν̄(u) = ν̄(v), T−ν̄(u)u ∈ spanΛK(G)�0
{u1, . . . , uk}.

Remark 2.2. Note that φ need not be an additive group homomorphism (much less a module
homomorphism).

Proof. Now any w ∈ ΛK(G)n can be expressed in the form w =
∑

g wgT
g where wg ∈ Kn, and we

have ν̄(w) = min{g | wg �= 0}. Given any finite subset S ⊂ ΛK(G)n, define

N(S) = {g | (∃w ∈ S) (wg �= 0)}.
Note that the finiteness of S and the definition of the Novikov ring show that N(S) is always discrete
and bounded below. Where φ is as in the statement of the lemma, for any v ∈ V we see that (since
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φ(v) differs from v by an element of the span over K of the T ν(v)ui, and since 0 ∈ N({u1, . . . , uk}))
we have

N({φ(v), v − φ(v)}) ⊂ N({v}) + N({u1, . . . , uk}), (1)
where we use the usual notation A + B = {a + b | a ∈ A, b ∈ B} for sets A,B ⊂ R.

Define sequences {v(j)}∞j=0 and {w(j)}∞j=0 of elements of, respectively, V and U by

v(0) = v, w(0) = 0, v(j+1) = φ(v(j)), w(j+1) = v(j) − φ(v(j)).

By (1) and induction on j, we see that, for any j,

N({v(j), w(j)}) ⊂ N({v}) + j(N({u1, . . . , uk})) ⊂ N({v}) +
∞⋃

r=1

r(N({u1, . . . , uk})),

where for A ⊂ R and j ∈ N we define j(A) = {∑j
i=1 ai | ai ∈ A}. Now since ν̄(ui) = 0, the set

N({u1, . . . , uk}) is a discrete set of nonnegative numbers; hence the set
∞⋃

r=1

r(N({u1, . . . , uk})),

which consists of nonnegative-integer linear combinations of elements of N({u1, . . . , uk}), is also a
discrete set of nonnegative numbers. So since N({v}) is discrete and bounded below, it follows that
the set Z = N({v}) +

⋃∞
r=1 r(N({u1, . . . , uk})) is discrete as well.

Now ν̄(v(j)) is a monotone increasing sequence in this discrete set Z, and if for some N we have
ν̄(v(N+1)) = ν̄(v(N)) then v(j) = v(N) for all j � N , so either there is some minimal N such that
ν̄(v(j)) = ν̄(v(N)) for all j � N , or else ν̄(v(j)) → ∞.

In the first case, by the defining properties of φ we see that φ(v(N)) = v(N), and

v − v(N) =
N∑

j=1

(v(j−1) − v(j)) =
N∑

j=1

w(j).

Each w(j) belongs to T ν̄(v(j−1))spanK{u1, . . . , uk}, so since the ν̄(v(j)) form a monotone increasing
sequence beginning at ν̄(v) it follows that, where u =

∑N
j=1 w(j), we have

T−ν̄(v)u ∈ spanΛK(G)�0
{u1, . . . , uk}.

Furthermore, unless v(N) = v (i.e., unless u = 0) one has ν̄(v(N)) = ν̄(v − u) > ν̄(v), which forces
ν̄(u) = ν̄(v). Thus u is as required.

There remains the case that ν̄(v(j)) → ∞. Now w(j) = v(j−1) − v(j) can, by property (ii), be
written as

w(j) =
∑

i

aijuiT
ν̄(v(j−1)) (aij ∈ K),

so, using that the ν̄(v(j)) strictly increase from ν̄(v) and diverge to ∞,

u =
∞∑

j=1

w(j) =
k∑

i=1

( ∞∑
j=1

aijT
ν̄(v(j−1))

)
ui

validly defines an element of T ν̄(v)spanΛK(G)�0
{u1, . . . , uk}. For any N , one has (using the fact that

the ν̄(w(j)) = ν̄(v(j−1)) are increasing in j)

ν̄(v − u) � min
{

ν̄

(
v −

N∑
j=1

w(j)

)
, ν̄

( ∞∑
j=N+1

w(j)

)}
= min{ν̄(v(N)), ν̄(w(N+1))} = ν̄(v(N)).
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That this holds for all N forces ν̄(v − u) = ∞, i.e., v = u, so the required properties of u follow
immediately.

For a submodule V � ΛK(G)n, define

Ṽ = V�0/V+.

Note that one has K ∼= ΛK(G)�0/ΛK(G)+, with the quotient projection corresponding by this

isomorphism to
∑

g agT
g �→ a0. Then Ṽ is a K-module, and is a submodule of ˜ΛK(G)n ∼= Kn. In

particular, since K is Noetherian (and submodules of finitely generated modules over Noetherian
rings are finitely generated), Ṽ is finitely generated over K.

For v ∈ V�0, let ṽ ∈ Ṽ denote the image of v under the quotient map V�0 → Ṽ . Our first applica-
tion of Lemma 2.1 is the following, which in retrospect is analogous to Lemma A.4.11 in [FOOO00].

Lemma 2.3. If V � ΛK(G)n and u1, . . . , uk ∈ V�0 are such that Ṽ = spanK{ũ1, . . . , ũk}, then

V�0 = spanΛK(G)�0
{u1, . . . , uk}.

Proof. Since if for some i we had ν̄(ui) �= 0 then ũi would vanish in Ṽ , by removing ui if necessary
we may as well assume that each ν̄(ui) = 0. We define a function φ : V → V as follows. First set
φ(0) = 0. If v ∈ V is nonzero, we have ν̄(T−ν̄(v)v) = 0. Since the ũi span Ṽ over K, we can pick
x1(v), . . . , xk(v) ∈ K such that

T̃−ν̄(v)v =
k∑

i=1

xi(v)ũi ∈ Ṽ .

Thus

ν̄

(
T−ν̄(v)v −

k∑
i=1

xi(v)ui

)
> 0.

So if we set φ(v) = v − T ν̄(v)
∑k

i=1 xi(v)ui for v �= 0, φ now satisfies the hypotheses of Lemma 2.1
together with the additional property that its only fixed point is 0. This latter property then forces
the u that is found by the lemma for any given v to be equal to v. Thus for any nonzero v ∈ V ,
we have

T−ν̄(v)v ∈ spanΛK(G)�0
{u1, . . . , uk}.

In particular, if v ∈ V�0 then

v ∈ spanΛK(G)�0
{u1, . . . , uk}.

Lemma 2.4. Let U � ΛK(G)n be any submodule, and let w ∈ ΛK(G)n. Then there is u ∈ U such
that

ν̄(w − u) = sup
v∈U

ν̄(w − v) and either u = 0 or ν̄(u) = ν̄(w).

Proof. As noted earlier, since Ũ is a submodule of the finitely generated module ˜ΛK(G)n ∼= Kn

over the Noetherian ring K, there are u1, . . . , uk ∈ U with ν̄(ui) = 0 such that ũ1, . . . , ũk span
Ũ over K. So by Lemma 2.3, u1, . . . , uk span U�0 over ΛK(G)�0 (from which it of course follows
that they span U over ΛK(G) since any element v ∈ U satisfies T gv ∈ U�0 for suitable g). Define
a function φ : ΛK(G)n → ΛK(G)n as follows. First, if there is no u ∈ U with the property that
ν̄(w−u) > ν̄(w), set φ(w) = w (so in particular φ(0) = 0). Suppose now that w is such that such a u
does in fact exist. This supposition then amounts to the statement that there is v(w) ∈ U such that

ν̄(T−ν̄(w)w − v(w)) > 0. (2)
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Now since ν̄(T−ν̄(w)w) = 0 this forces ν̄(v(w)) � 0, i.e., v(w) ∈ U�0. So since the ui span U�0 over
ΛK(G)�0 there are yi =

∑
g yi,gT

g ∈ ΛK(G)�0 (where yi,g ∈ K) such that v(w) =
∑k

i=1 yiui. Now
set v′(w) =

∑k
i=1 yi,0ui. We then have ν̄(v(w) − v′(w)) > 0, which together with (2) implies that

ν̄(T−ν̄(w)w − v′(w)) > 0. So set φ(w) = w − T ν̄(w)v′(w). This completes the definition of φ; since
v′(w) is a K-linear combination of the ui, φ satisfies the hypotheses of Lemma 2.1. Hence for any w
there is u ∈ U such that φ(w − u) = w − u and either u = 0 or ν̄(u) = ν̄(w). Now φ was defined in
such a way that the only fixed points of φ are those w′ such that ν̄(w′) = supv∈U ν̄(w′ − v). Hence

ν̄(w − u) = sup
v∈U

ν̄(w − u − v) = sup
v∈U

ν̄(w − v),

as desired.

Theorem 2.5. Let A ∈ Mn×m(ΛK(G)) and 
t = (t1, . . . , tn) ∈ Rn. For (a1, . . . , an) ∈ ΛK(G)n define

ν̄�t (a1, . . . , an) = min
1�i�n

(ν(ai) − ti).

Then there is γ ∈ R, depending only on 
t and A, with the following property. If w ∈ ΛK(G)n then
there is x0 ∈ ΛK(G)m such that

ν̄(x0) � ν̄�t (w) − γ and ν̄�t (w − Ax 0) = sup
x∈ΛK(G)m

ν̄�t (w − Ax).

Proof. If 
t = 
0, since we have ν̄�0 = ν̄, except for the existence of γ this is just Lemma 2.4 applied
to the submodule U = A(ΛK(G)m) of ΛK(G)n. To obtain γ, as in the proof of Lemma 2.4 let
u1, . . . , uk generate A(ΛK(G)m)�0 over ΛK(G)�0. Let x1, . . . , xk ∈ ΛK(G)m be such that Ax i = ui

(1 � i � k), and set

−γ = min
1�i�k

ν̄(xi).

Then if u ∈ A(ΛK(G)m), so that T−ν̄(u)u ∈ A(ΛK(G)m)�0, letting ai ∈ ΛK(G)�0 with T−ν̄(u)u =∑
aiui we have u = Ax where x =

∑
i T ν̄(u)aixi satisfies ν̄(x) � ν̄(u) − γ. So given w ∈ ΛK(G)n, if

u ∈ A(ΛK(G)m) is as in the conclusion of Lemma 2.4 then x0 = x as constructed in the previous
sentence will have the desired properties.

We now deduce the theorem for general 
t ∈ Rn from the already proven special case that 
t = 0.
Let G′ be any additive subgroup of R that contains both G and {t1, . . . , tn}.
Where ê1, . . . , ên is the standard basis for ΛK(G′)n, consider the basis ê′1, . . . , ê

′
n for ΛK(G′)n

given by ê′i = T ti êi. Viewing A ∈ Mn×m(ΛK(G)) as a matrix with coefficients in the larger Novikov
ring ΛK(G′), the matrix representing the underlying homomorphism of A with respect to the stan-
dard basis for ΛK(G′)m and the new basis ê′1, . . . , ê

′
n for ΛK(G′)n is A′ = MA where Mij = T−tiδij .

Now we have

ν̄�t

( ∑
w′

iê
′
i

)
= min

1�i�n
(ν(w′

iT
ti) − ti) = min

1�i�n
ν(w′

i) = ν̄(w′
1, . . . , w

′
n).

So for any x = (x1, . . . , xm) ∈ ΛK(G′)m, w = (w1, . . . , wn) ∈ ΛK(G′)n, we have

ν̄�t (w − Ax ) = ν̄(T−t1w1 − (MAx)1, . . . , T−tnwn − (MAx )n).

Hence applying the 
t = 
0 case of the theorem to the matrix MA ∈ Mn×m(ΛK(G′)) and the
vector (T−t1w1, . . . , T

−tnwn) ∈ ΛK(G′)n shows that there is x0 ∈ (ΛK(G′))m such that

ν̄�t (w − Ax 0) = sup
x∈ΛK(G′)m

ν̄�t (w − Ax)

and ν̄(x0) � ν̄(T−t1w1, . . . , T
−tnwn) − γ = ν̄�t (w) − γ.
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So all that remains is to show that if w ∈ ΛK(G)n then this x0 can be taken to lie in ΛK(G)m.
Now if x ∈ ΛK(G′)m, each coordinate xi of x has the form

xi =
∑
g∈G

ai,gT
g +

∑
g∈G′\G

bi,gT
g.

Write x′
i =

∑
g∈G ai,gT

g and x′′
i = xi − x′

i. Since A has its coefficients in ΛK(G), each coordinate of
Ax ′ belongs to ΛK(G), while each coordinate of Ax ′′ has the form

∑
g∈G′\G cgT

g. So if w ∈ ΛK(G)n,
no term in the expansion of any coordinate of w − Ax ′ can cancel with a term in the expansion of
any coordinate of Ax ′′ (for the former only involve exponents in G, while the latter only involve
exponents in G′\G). In view of this, we have, for each i, ν((w−Ax ′)i) � ν((w−Ax )i), and therefore

ν̄�t (w − Ax ′) � ν̄�t (w − Ax).

So where x0 is as above, x′
0 ∈ ΛK(G)m will satisfy ν̄(x′

0) � ν̄(x0) � ν̄�t (w) − γ and

ν̄�t (w − Ax ′
0) � ν̄�t (w − Ax 0) = sup

x∈ΛK(G′)m

ν̄�t (w − Ax ),

so since ΛK(G)m � ΛK(G′)m, x′
0 fulfills the requirements of Theorem 2.5.

Remark 2.6 (A non-Noetherian counterexample). We have assumed throughout this section that
K is a Noetherian ring; we present now a case in which Theorem 2.5 fails for a non-Noetherian K.
For some base field k, put

K =
k[a0, b0, . . . , an, bn, . . .]

〈{ambn | m − n /∈ {0, 1}} ∪ {anbn − a0b0 | n � 0}〉 .

(Incidentally, while this K is not an integral domain, it is not difficult to modify the example
we present here to a slightly more complicated one in which K is an integral domain.)

For some additive subgroup G � R, choose a sequence {λn}∞n=1 in G such that λn ↗ ∞, define

z =
∞∑

n=0

anT λn ∈ ΛK(G),

and consider the ideal 〈z〉 in ΛK(G) generated by z. If

w =
∞∑

n=0

(anT λn + an+1T
λn+1)bn,

note that for any N we have
( N∑

n=0

bn

)
z =

N∑
n=0

(anT λn + an+1T
λn+1)bn

and so

ν

(
w −

( N∑
n=0

bn

)
z

)
= λN+1 → ∞ as N → ∞.

However (recalling that
∑∞

n=0 bn is not an element of ΛK(G)) it is easily seen that w /∈ 〈z〉. Thus
if A : ΛK(G) → ΛK(G) is defined by Ax = xz then the supremum of {ν̄(w − Ax ) | x ∈ ΛK(G)}
(namely ∞) is not attained by any x, and the analog of Theorem 2.5 (with m = n = 1) fails for
this choice of A.

One could also ask whether sup{ν̄(w −Ax ) | x ∈ ΛK(G)} could ever be finite and yet fail to be
attained. Of course if G � R is discrete, since ν̄(w − Ax) always belongs to G when it is finite, the
supremum is indeed attained in this case. However, suppose that G is not discrete, and again let
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z =
∑∞

n=0 anT λn , with the λn now chosen to have the property that λn+1 − λn ↗ C for some finite
C > 0. We then have

bnT−λnz = a0b0 + an+1bnT λn+1−λn ,

in view of which (again putting Ax = xz ) sup{a0b0 − Ax | x ∈ ΛK(G)} is equal to C and is not
attained.

3. Proofs of the main theorems

Let c denote a filtered Floer–Novikov complex as defined in the introduction, with data S,P,Γ,A, ω,
∂ as above, giving rise to the Floer complex C∗(c), which is a module over ΛΓ,ω. Recall also the
function � : C∗(c) → R ∪ {−∞}, defined above.

Let π : P → S be the principal bundle projection in the definition of c. Write S = {s1, . . . , sn}
and choose and fix pi ∈ P such that π(pi) = si. By definition, then, we have

C∗(c) =
{ n∑

i=1

(∑
g∈G

bg,ig

)
pi

∣∣∣∣ bg,i ∈ R, (∀C ∈ R) (#{(i, g) | bg,i �= 0,A(g · pi) > C} < ∞)
}

=
{ n∑

i=1

(∑
g∈G

bg,ig

)
pi

∣∣∣∣ bg,i ∈ R, (∀i) (∀C ∈ R) (#{g | bg,i �= 0, ω(g) < C} < ∞)
}

,

where we have used the formula A(g · pi) = A(pi) − ω(g) from the definition of a filtered Floer–
Novikov complex.

This provides us with an identification

C∗(c) ∼=
n⊕

i=1

ΛΓ,ω〈pi〉 ∼= Λn
Γ,ω. (3)

Note that, with respect to this identification, for (a1, . . . , an) ∈ Λn
Γ,ω, we have

�(a1, . . . , an) = max
1�i�n

(A(pi) − ω(ai)), (4)

where writing ai =
∑

g ai,gg we set ω(ai) = ming:ai,g �=0 ω(g).
We now turn our attention to the Novikov ring ΛΓ,ω. Since ω : Γ → R is a homomorphism

whose domain is a finitely generated abelian group and whose image G � R is torsion free, the
exact sequence ker ω � Γ � G splits and so identifies Γ with ker ω ⊕ G. With respect to this
identification, an element of ΛΓ,ω is a formal sum of the type

∑
g∈G

∑
h∈ker ω ag,hshT g (ag,h ∈ R)

having the property that for each C ∈ R there are only finitely many nonzero ag,h with g < C. This
property holds if and only if both (i) for each C > 0 there are only finitely many g such that any
ag,h is nonzero and g < C, and (ii) for any g there are just finitely many h such that ag,h �= 0, so
that, for any g,

∑
h ag,hsh defines an element of the group ring R[ker ω]. Thus, setting K = R[ker ω],

we have
ΛΓ,ω = ΛK(G).

Moreover, setting 
t = (A(p1), . . . ,A(pn)), (4) gives

�(a1, . . . , an) = −ν̄�t (a1, . . . , an).

Now since ker ω is a finitely generated abelian group, K = R[ker ω] is the quotient of a polynomial
ring on finitely many variables over R, so by the Hilbert basis theorem and the fact that quotients
of Noetherian rings are Noetherian, K is Noetherian whenever R is.

As such, Theorems 1.3 and 1.4 are now immediate consequences of Theorem 2.5. Namely, take
m = n in Theorem 2.5, and take for A the matrix representing the ΛK(G)-module homomorphism ∂
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with respect to the identification (3). By definition, if a ∈ H∗(c) and c0 ∈ C∗(c) is any representative
of the class a we have

ρ(a) = inf{�(c) | [c] = a} = inf{�(c0 − ∂h) | h ∈ C∗(c)} = − sup{ν̄�t (c0 − ∂h) | h ∈ C∗(c)}.
Theorem 2.5 then produces an h attaining this infimum and such that

−�(h) = ν̄�t (h) � ν̄(h) − max
i

A(pi) � −�(c0) − γ − max
i

A(pi). (5)

Then α = c0 − ∂h is a representative of a satisfying ρ(a) = �(α), as required by Theorem 1.4. In
particular, if ρ(a) = −∞ we necessarily have �(α) = −∞, so ∂h = c, and (5) gives �(h) � �(c0)+M
where M = γ + maxi A(pi), proving Theorem 1.3.
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