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ON THE GENERALIZED HADAMARD PRODUCT

AND THE JORDAN-HADAMARD PRODUCT

JEN-CHUNG CHUAN AND WAI-FONG CHUAN

The generalized Hadamard product S * T and the Jordan-Hadamard

product S o T of two operator-matrices 5 and T are

introduced. They coincide with the usual Hadamard product of two

complex matrices when the underlying Hilbert spaces are one-

dimensional. Some inequalities which hold true for the usual

Hadamard product of positive definite complex matrices are shown

to "be true for these two new products of positive invertible

operator-matrices.

In [2] the concavity of certain tensor product maps are applied to

obtain old and new inequalities of Hadamard product of positive definite

complex matrices (of. [£]). Recall that the Hadamard product of two

complex matrices is the matrix of entrywise product of the two complex

matrices. In this paper we introduce two binary operations of operator-

matrices, namely the generalized Hadamard product and the Jordan-Hadamard

product. Following Ando's approach we derive some inequalities involving

these products, some of which take precisely the same form as those

obtained in [2].

1. Notations and preliminary results

Given a Hilbert space H , we denote by L{H) the C*-algebra of all

(bounded) operators on H . An operator A € L(H) is said to be positive
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(denoted A > 0 ) i f A = B*B for some B € L(H) . By A > B we mean

i4 - S S 0 . The cone of a l l positive operators on H is denoted by

For posit ive operators A and B , the harmonic mean A I B and the

geometric mean A § B are introduced by Ando [7] and Pusz and Woronowicz

[6] respectively. By definition

{ , S 0 | [ » £ ] * ( * *]}
and

A § B = maxU > 0 > o | .

If A, B are invertible, then

A I B = {%(/l"1+B"1)}"1 = 2{B-BU+B)~1B}

and

4 # B = 4*(iT*ar*)*i4* .

The harmonic mean and geometric mean have the following properties {of.

LH):

(1) A < B = B I A and A # B = B # A ;

(2) i(A+B) >A#B>A\B;

(3) (A+B) ! (C+£>) > (AlC) + (BID) , (A+B) # (C+D) > (i4#C) + (BffD) .

If 4 and B are invertible, then

(k) (AlB)'1 = ̂ t/l^+B"1) and (AffB)'1 = /T 1 # S"1 .

Recall that a map <f> from a convex subset of L [H ) * . .. x L (#,)

to L(H) is said to be convex if

for any 0 < X < 1 . <J> is coneaue if -<)> is convex.

(5) The map /I i - + / on L (#) is concave if 0 5 p 5 1 and is

convex if 1 S p 5 2 or - I S p S O .

A linear map ()> from i(ff ] to i(ffp) is said to be positive if it
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takes positive operators to positive operators. A positive linear map is

said to be normalized if it preserves the identity operators.

For any positive linear map (J> and any positive operators A and B

the following inequalities hold (af. [/], [2]):

(6) <J>U#B) 5 <(>U) # <J)(S) and <j>U!B) 5 <J>U)

If A, B are i n v e r t i b l e , then

(7) <$>(B)4>(A)-1<!>(B) 5 ^(BA^B) .

If <(> i s normalized, then

> <J>U)P (1 5 p < 2) ,

(0 5 p < 1 ) ,

(8)
<p

(1 S p < co) f

( 1 5 P < ( , or %<7 S p 2 1 S q) .

In [?] and [2] Ando studies the concavity and convexity of the tensor

product maps

k p .
[A . . . , A ) H - ® A . 1

1 K i=l V

defined on L [H ) x ... x £ (w ) to obtain the following results.

If 0 S p^ < l ( i = 1, . . . . k) and 5 1 , then the map

is concave on(9) U l 5 . . . , Ak) >-* ® i4

If 0 < p . 2 l ( i = 1, . . . , k) , then the map

k - p .
(10) i s convex on

"V—A.
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k
I f 1 5 < [ S 2 , 0 5 p . 5 1 ( i = 1, . . . , k) and £ p . £ q - 1 ,

then the map

(ID is convex on

2. Generalized Hadamard product and Jordan-Hadamard product

For the rest of this paper we fix a positive integer n . Given a

Hilbert space H the C*-algebra of all n-square matrices whose entries

are operators on H is denoted by M [L{H)) . Its elements, called

n-square operator-matrices, can be considered as operators acting on the

n n
direct sum © H of n copies of H . If P, is the projection on © H

1 t 1

with range the tth direct summand (t = 1, .. . , n) , then each

n
S 6 M [L(H)) has a decomposition of the form S = £ P SP .

s,t=\

DEFINITION. Let H, H and H be Hilbert spaces. For

S= I PaSPt € M[L[H)) and T = I QTQt € M (L [HJ ) , t h e i r
s,t=l s,t=l

generalized Hadamard product S * T i s defined by

s, t=
S * T = I l{ps

sp
t) ® («/<?*)] € Mn{L[Hj ®L[H2)) .

st=l

In terms of the matricial representations of S and 3" , the generalized

Hadamard product S * T is the n-square matrix of entrywise tensor

product. If S and T are in M [L{H)) , their Jordan-Hadamard product

S o T is defined to be %(S*T+T*S) .

When the Hilbert spaces H and H^ are both 1-dimensional, it is

easily seen that the generalized Hadamard product and the Jordan-Hadamard

product just defined coincide with the usual Hadamard product of complex

matrices (of. [2], [S]). The following properties of generalized Hadanard
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(12)

product and Jordan-Hadamard product can be derived directly from the

definition. The underlying Hilbert spaces are assumed to be the same when

addition or Jordan-Hadamard product are dealt with:

(S+T) * R = S*R + T*R,

R * (S+T) = R * S + R*T,

(S*T) * R = S * (T*R) ,

(aS) * T = S * {aT) = a{S*T) for a € C ,

(S+T) oR=S°R+T°R,

R o (S+T) =RoS+R°T,

(aS) o T = S o (aT) = a(S°T) for a € C ,

S o S = S * S .

Following Ando's approach [2], we shall develop some inequalities

involving generalized Hadamard product and Jordan-Hadamard product. Many

of the inequalities obtained in [2] for the usual Hadamard product of

complex matrices hold true for the generalized Hadamard product or Jordan-

Hadamard product. However, the validity of some inequalities in [2]

depends heavily on the commutativity of the usual Hadamard product.

Examples which reveal this fact can easily be found. For such inequalities

we manage to replace them by others in weaker forms.

We begin with the following important theorem which shows that the

tensor product of two n-square operator-matrices and their generalized

Hadamard product are related (cf. [5]). For convenience we write

k k
T T * s- - S-L * • • • * sv and T T * S = S * . .. * S (k times).
i=l l L K 1

THEOREM 1. For each k > 1 there is a normalized positive linear

map dp = 4>, from ® M [L[H.)) i n t o M
K • - Yl % Yl

X.

^=l

X. € M \
v n1

such that

Proof. Write X. = Y PK%'x.PK'1
V u,v=l u % V

as in the definition of
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generalized Hadamard product. To simplify the notations let F be the set

of a l l maps from the set K = {l, 2, . . . , k] into the set

N = {l, 2, . . . , n} . By the operation rule of tensor product we have

s,t(.F

= 1
s,t(.F

d & &)

Let <)> be the normalized positive linear map from ® M \L\H.}) into

M
n

® L (/y defined by

f= fi
for I. € M fife.)) .

projections that

It follows from the mutual orthogonality of the

This completes the proof.

(13) As a consequence of Theorem 1 it is clear that the generalized

Hadamard product (or Jordan-Hadamard product) of positive

(respectively invertible) n-square operator-matrices is

positive (respectively invertible).

Furthermore\ if S^, T. € Mn[L[H.)) are Hermitian and -T. < 5. 5 T.

(i = 1, ..., k) then

k k k

- Tl * T. « 77 * 5. s 77 * T .
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Indeed, by induction, (lit) reduces to the case k = 2 . By (13) the

positivity of T. ± S. (i = 1, 2) implies that
%r Is

and

Hence

- 0

and so

> o .

We conclude that -[f*T ) 5 5 * S S T * T .

Note that (lU) is also true for Jordan-Hadamard product. It follows

immediately that both products preserve ordering.

THEOREM 2. Suppose that S.. {i = 1, ..., k; j = 1, ..., m) are

positive invertible operator-matrices. Then the following inequalities

hold:

(15)

(16)

(17)

m
* 5. .

1/P
1 5 p < CO ;

"Il/P

*SV..]\ if * < p < l ;

m

J=l

1-1/P

L?=i ^ -
if 1 < p <

Proof. Applying (5) and (8) and Theorem 1 we have
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* S. .
m k
y ® 5 . .

3=1 v=X 10 \

-1
m ( k

m
m ( K -i 1/P

1/p

where <j> is as in Theorem 1. This proves (15). (l6) and (17) are proved
similarly.

COROLLARY. The following inequalities hold for positive invertible
operator-matrices S., T. {i = 1, ..., k) :

is if

(18)

(19)

[S.°T.) 5 fc1

EA

\

Vk

EA
k

I
i=l

if 1 2 p < ~ ;

1/P

(20) I (5.or.) >
^=l

-1/p

< p S 1 ;

i f 1 5 p < oo ;

(21)

(22)

(23)

TT * 5. <

TT * s. >

* 5 . >

77*5?

T T * <?P

TT

1/p

1/p

if 1 5 p < oo ;

-1/p

5 p < 1 ;

if 1 5 p < co .

Jrc particular we have the following inequalities:

(2*0 5 o T < ( s P o ^ ) 1 ^ i f 1 S p < oo j
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(25) T > if h < p S 1 ,

if i < p <(26) 5 ° 21 2 (s'Poy-P

for positive and invertible operator-matrices S and T .

1/P,-

The inequality ~[~T * S. 5 J~[ *
v=X

-1

3=1
(p . > 1 and

Y, 1/P • = 1 ) which holds for positive definite complex matrices S.
i=l % %

(i = 1, ..., k) and the usual Hadamard product (cf. [2]) fails in our

case. For example, consider the following 2-square matrices whose entries

are 2-square complex matrices:

5 =

1

0

0

0

0

1

0

0

0

0

2

0

0

0

0

1

and T =

3
0

0

0

0

1

0

0

• 0
[ 0

; 1
: o

0

0

0

1

It is easy to verify that

s * T $ {%(s2+r2)}% * {%(s2+r2)}% .

However, we shall prove that for positive invertible operator-matrices 5

and T ,

S o T t

Indeed, some inequalities in more general forms will be proved and

inequalities of similar type will also be considered in Theorem 3.

THEOREM 3. Suppose that S.. (i = 1, ..., k; j - 1, ..., m) are

13

positive invertible operator-matrices. Then the following inequalities

hold:

(27) I
3=1

In particular,

TJ*s.,
m \l/Pi

if p. > 1 and
ir

1/p.
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(28) I
3=1 i=l

(29) I
3=1

(30) I
3=1

if q t p. > o

It,
3=1 1-3

ilk

* S . . 2 m *
111 ' 'V3 ,-=1

m

3=1

-Up

* S. . >
m
I

3=1
FT

if 1 S p < - ,

- l / p r
- p

i=2

Proof. We f i r s t note tha t the map

k p .
T 7p

(X . . . , X ) ^ T T * X7- (p - 1 and I 1/p = 1 )
1 K i=l r % i=l t

defined for pos i t ive inve r t ib l e operator-matrices X. (i = 1, . . . , k) i s

concave because i t i s simply I|J<|>, where \p i s t n e concave map in (9)-

Thus

- 1 m
m - 1

3=1 * Si3\ =
- 1 X (PA1^

-, m p
-1 V c t

m L S^i
3=1

V*i

-xu m p.

3=1 iJ.

if p. 2 1 and £ 1/p. = 1
1 t

This proves (27). The proofs of (29) and (30) are similar using the

convexity of the maps

k
(x±, ...,
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where 1 5 p < °° , and

i=2

where q, p. > 0 and 1/q - 1 = Z 1/p- - 1 •1 i=2 *

We remark that the inequalities (31) and (32) of the following
corollary are in the form of Holder's inequality. When p = q = 2 , (31)
reduces to the form of Cauchy-Schwarz-Buniakowski inequality {cf. [4]).

COROLLARY. The following inequalities hold for positive invertible
operator-matrices S. and T. ( i = 1, . . . , k) :

I [S;*T.) 5

(31) I [S.°T.) <
• _ -i i i

Z 5^

1

1/p

\l/p

(32) I (5.or.) 2:

A i

^ -7.

I ^

i / p, q > 1 1/p + 1/q = 1 ;

k H / P
2. r,-

1=1

k -1/p

if p, q > 0 and 1/q - 1 = 1/p 5 1 ;

(33)
i=l

k

i=l

'.oT j > k\k x £ 5 . p

I i=l l j
"1 E r"

i=i
i f 1 5 p < <• |

_ | _ |

if p , q > 1 and 1/p + 1/q = 1 ;
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k f k r l [ ^ I *

i=i i ° i ~ i i=i i-i+ *JJ r i=i
i f p , (7 > 0 and 1/q - 1 = 1/p 5 1 ;

k ( V , .I"1/?

-1 .i k-p<j}~(36) E s « , > i
• _ t ' t ' I • - I t ' i^l|

\~1/P
i f 1 2 p < °° .

In particular for positive invertible operator-matrices S and T we have

the following inequalities:

i f p , £7 > 1 and 1/p + 1/q = 1 ;

(37) 5 o T 5 {%(52
+y2)}% o {%(52

+r2)}% ;

(38) S o y > {%(5-p
+T-p)}-1 / p o {%(s-p+T-p)}-1 /p i f 1 2 p < « .

5 o T 5

if q, p > 0 and 1/g - 1 = 1/p 2 1 ;

(39) S o T > {%(s +T)}2 O {%[s +T~ )} .

The same example prior to Theorem 3 can also be used to prove that the

inequalities

S * T > (S#r) * (S#T) ,

s * T > {%(s~1+r~ )}" * {%(5+r)} ,

5 * 5"1 > I ,

S * S > 2(S*J)(S*5+J*J)"1(5*J) ,

which hold for the usual Hadamard product [2], are not valid for the

generalized one. Modifying the proofs of these inequalities in [2] we

obtain the next three theorems and thus obtain the above inequalities with

Jordan-Hadamard product in place of the usual Hadamard product.

https://doi.org/10.1017/S0004972700006663 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006663


Hadamard and Jordan-Hadamard products 333

THEOREM 4 . Suppose that S., T. € M (L[H.)) (i = 1 , . . . , k) are
is Is ft Lr

positive invertible operator-matrices. If S. commutes with 2\

{i = 1, . . . , k) and if 0 5 p 5 1 , then

k
Proof. Let Y = ® 5. and let IJJ be the normalized, positive linear

1

map defined by

for operator-matrix X , where <j> is as in Theorem 1. By (8) we have

for X > 0 . With X = ® S'^T. we see that
i=l % 'i

and the theorem follows.

In case p = % the inequality (Uo) in Theorem U can be expressed in

terms of geometric mean

tf
This inequality is shown to be valid in the next theorem without the

assumption on connnutativity.

THEOREM 5. Let S. and T. (i = 1, ..., k) be positive invertible

operator-matrices. Then
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and

(hi) (51#2'1) o [S2ffT2] < [s^sj g [TX°T2]

Proof. By Theorem 1 and (6) we have

k( AC

TT #
•i=l

1 1

= TT * [S^T) ,
i=i % %

where <f> is as in Theorem 1. The second assertion follows immediately

according to (3).

COROLLARY. The following inequalities hold for positive invertible

S, T and the identity I in M [L(H)) :

(5#T) * I 2 (S*I) # (T*I) ,

(*42) (S#T) o j 5 (Sol) H (Toj) ;

(1*3) S * S S

(1*5) (5*7) # (T*S) >

(U6) 5 ° 2" >

# if p, q > 0 and p + q = 2 ;

^ if p, q > 0 and p + q = 2 ;

* (5#T) ;

° (S#T) ;

(hi) > I ° I .

COROLLARY. If S and T are positive invertible operator-matrices
and if 0 < X < 1 , then

(U8) 5 o T >

In particular

o {(i-A)5+Ay) .
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(1*9) S o T > {%(S~1+2'~1)}~1 o (%(S+T)}

= (S"1+2 '"1)~1 o (S+21) .

Proof. Since [XY~XX) # Y = X for all positive invertible operators

X and Y , it follows from (U6) that

= \~x{i-\)s o s + 5 o T - x'-'-d

5 X^d-XjS o 5 + 5 o T - \~X(1-\)S o S

= 5 o T .

This completes the proof.

We remark that inequality (1+9) implies inequalities (38) and (39)

because

US+T) > {%(S-1
+r

1)}-1 > {%(5"P+T-
P)}-1/P if 1 < p < »

and

%(S+T) 2 {%[S£?+2fl)}1/? i f % 5 q < 1

i n view of ( 5 ) •

THEOREM 6. Let S and T be positive invertible operator-matrices.

Then

S * T > (S*I+I*T) [S~1*T+S*T~1+2I*I]~1(S*I+I*T)

and

(50) S o S > 2{S°I)(SoS~1+Iol)~1(Sol) .

P r o o f . L e t X = S ® T , Y = S ® I + I ® T a n d l e t 2 = y x " 1 } ' . I t

f o l l o w s f r o m ( 7 ) t h a t

where <j) is as in Theorem 1. Hence

s * T > (5*j+j*r)[s*r"1+5"1*r+2J*j]"1(s*i+j*T)

and
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S o S •> 2(5oj) (5o5 1+J°J) 1(5oJ) .

This completes the proof.

In the proof of Theorem 6 if we let X = S*" ® S^ and

(or , where p, q, r are

arbitrary, then similar proofs shows that

S* o 5*" > 2(5Poj

and

(51)

We conclude this paper by looking at the relationship between the

generalized Hadamard product and the usual Hadamard product. Let 5 and

T be two nm-square complex matrices. Divide the entries of both matrices

2
into n blocks, each block of which denotes an operator on an

m-dimensional Hilbert space. Then we may consider the generalized Hadamard

product of the n-square operator-matrices S and T as well as the

Hadamard product of the w?7-square complex matrices S and T . Let ^

denote the normalized positive linear map which takes the tensor product of

two m-square complex matrices to their Hadamard product {of. L53). Then

^ is completely positive; that is, for each p 2 1 , the linear map

(52)

cii ® Du

CP1

%

DP D
PP PP)

where the C's and the £>'s are m-square matrices, is positive (of. [3],

[5], [7]). it is not hard to see that the positive linear map (52) with

p = n takes the generalized Hadamard product of S and T to the

Hadamard product of S and T .
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