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Personalised nutrition allows individual differences in dietary, lifestyle, anthropometry,
phenotype and/or genomic profile to be used to direct specific dietary advice. For persona-
lised nutrition advice to be effective both sides need to be considered; firstly, that factors
influencing variation in response to dietary intervention are identified and appropriate
advice can be derived and secondly; that these are then used effectively in the provision
of nutrition advice, resulting in a positive dietary and/or lifestyle behaviour change. There
is considerable evidence demonstrating genetic and phenotypic influence on the biological
response to the consumption of nutrients and bioactives. However, findings are often
mixed, with studies often investigating at the level of a single nutrient/bioactive and/or a sin-
gle genetic/phenotypic variation, meaning the derivation of specific advice at a dietary level
in an individual/group of individuals can be complex. Similarly, the impact of using this
information to derive personalised advice is also mixed, with some studies demonstrating
no effectiveness and others showing a significant impact. The present paper will outline
examples of phenotypic and genetic variation influencing response to nutritional interven-
tions, and will consider how they could be used in the provision of personalised nutrition.

Nutrition: Personalised: Phenotype: Genotype

Inter-individual variation exists, and is visible in the
variance of our physical features(1). However, inter-
individual variance also exists in response to food con-
sumption, physiological and environmental stressors
and other aspects of life, which in turn effects individuals’
risk of related diseases(2,3). Identifying and understanding
this variance, specifically related to nutrition research is
important for two reasons; firstly to understand how
this variance effects our interpretation of the results of
nutrition intervention studies and secondly, to harness
these variations and tailor nutrition related advice and
therefore deliver personalised nutrition (Fig. 1).

Controlled nutrition intervention studies can provide
definitive evidence of inter-individual variation, however
to date the importance and potential of this information

are often overlooked. Whilst many researchers observe
considerable variation in response to nutrition interven-
tions, many do not report on this, other than noting out-
liers or large standard deviations and/or other variance
statistics. In addition the intervention studies from
where the data are derived are often tightly controlled
to minimise variation in response. Researchers often
apply strict inclusion and exclusion criteria in recruiting
participants with the direct aim to minimise factors
known to influence variation in response to the outcome
being considered, often including factors such as sex,
body weight and biochemical markers specific to the
question being considered(4,5). However, some studies
have captured and reported on variance in response to
the study intervention, either as the main outcome of
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their study or an observation following completion. The
present paper will focus on examples of variation in
response to nutrition intervention studies, focusing on
phenotypic (Table 1) and genotypic (Table 2) factors
influencing variability and will consider how they could
be used in the provision of personalised nutrition.

Phenotypic variation influencing response to nutrition
intervention studies

To date, several studies have focused on inter-individual
variability to standardised (or semi-standardised) meals
such as oral lipid tolerance tests (OLTT) and/or glucose
tolerance tests (OGTT), with some examples given in
Table 1. Examining glycaemic response first, studies
such as Vega-Lopez et al.(6), demonstrated that the inter-
individual variation in response to a glycaemic load is
greater than the intra-individual variation, but didn’t elu-
cidate further on the factors influencing this variation.
Following on from their initial examination of variance
in repeated OLTT and OGTT in a healthy population.
Morris et al.(8) examined factors influencing variation
in response to the OGTT across the study cohort, using
a statistical clustering of baseline characteristics. Using
this method, researchers identified a distinct phenotype
or ‘metabotype’ group, which had a significantly differ-
ent response to OGTT, compared to all other clusters.
This group of individuals had the highest BMI, highest
circulating TAG, C-reactive protein, c-peptide and insu-
lin levels, as well as the highest insulin resistance
(HOMA-IR) score, compared to other clusters(8). van
Dijk et al.(9) noted that exercise levels, preceding the
OGTT measurements also had a clear effect on the post-
prandial glycaemic response, with subjects glycated
haemoglobin levels related to the magnitude of response

to exercise. Examining reported variance in response to
OLTT, results from Morris et al.(12) and Ryan et al.(7),
both from the same group and focusing on the
MECHE (metabolic challenge) study, noted baseline
characteristics similar to those influencing response to
OGTT including age, TAG, circulating fatty acids, as
well as SNP(7,12) (Table 1).

Two things stand out from these studies: firstly that
there is a need for standardisation of parameters in the
measurement of these standardised test meals, in order
that results from differing studies are not influenced by
procedural differences and can thus be both combined
and interpreted correctly. In addition, baseline subject
characteristics clearly influence the response, such as age,
BMI, circulating TAG, C-reactive protein or insulin levels,
for example. This information should be used in two ways:
(1) to direct selection of study populations to ensure vari-
ance within intervention groups is minimised, and/or con-
trolled for in statistical analysis and (2) to direct
personalised or targeted nutrition messages to an identified
group, which differ due to differing response to the stan-
dardised test meal.

Variation in response to non-standardised meals has
also been reported in the literature (Table 1). Childs
et al.(11), noted a significant difference in sex in response
to a 6-month intervention replacing standard margarines
and spreads with products enriched with α-linoleic acid,
with a greater increase in the EPA content of plasma
phospholipids in females compared to males after
6 months. Sex differences such as this are not unique
and have been previously reported in other studies(26,27).
McMorrow et al.(15), noted a significant variation in
response to consumption of an anti-inflammatory nutri-
tional supplement. The authors of the present paper
noted that the supplement modulated adiponectin levels,
but not insulin resistance. However, they did note that

Fig. 1. (Colour online) Inter-individual variation and personalised nutrition.
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Table 1. Examples of studies reporting phenotypic variation influencing response to nutrition intervention studies

Author (year) Population Study design/intervention Variation identified
Potential impact/use in personalised
nutrition advice

Vega-Lopez
et al. (2007)(6)

23 healthy adults
(20–70 years)

Assessment of glycaemic response following
50 g available carbohydrates from
commercial white bread and glucose.

Results suggest that in response to a challenge of
white bread relative to glucose, within-individual
variability is a greater contributor to overall
variability than among individual variability.
Further understanding of all the sources of
variability would be helpful in better defining the
utility of glycaemic index values.

No information on factors influencing
response, to be used in personalised
nutrition advice.

Ryan et al.
(2013)(7)

51 healthy adults aged 18–60
years

Within-person variation in repeated (n 2) OLTT. Variation score (S(v)) low in most (82 %) of the
adults S(v) significantly (P < 0·05) associated with
age, fasting TAG, TAG AUC and fasting
nonessential fatty acids, as well as SNP in
ApoA1, IL1α, IL1β, TLR4, TCF7L2, CCK1Rec and
STAT3.

Stratify personalised nutrition
messages with respect to lipid
metabolism based on influencing
factors – age, baseline lipid levels, and
some SNP.

Morris et al.
(2013)(8)

214 healthy adults aged
18–60 years

Within-person variation in repeated (n 2) OGTT 4 metabotypes with differing responses to OGTT:
e.g. Cluster 1 highest BMI, TAG, hsCRP,
c-peptide, insulin and HOMA-IR score and lowest
VO2max, and a differential response to insulin and
c-peptide compared to other clusters.

Stratify personalised nutrition response
based on identified metabotypes.

Van Dijk et al.
(2013)(9)

60 type 2 diabetes patients Randomised crossover experiment. Glycaemic
function measured by continuous glucose
monitoring over the 24-h period after a single
bout of moderate-intensity endurance-type
exercise or no exercise at all(10).

Moderate-intensity exercise (single bout or more)
substantially improves glycaemic control
throughout the subsequent day in type 2
diabetes patients. Subjects’ HbA1c level was
related to the magnitude of response to exercise.

Exercise needs to be considered when
assessing glycaemic response in type
2 diabetics patients.

Childs et al.
(2014)(11)

Healthy male (M; n 87) and
female (F; n 63) participants
aged 25–72 year

Replacement of normal margarine/butter with
specially formulated margarines for 6 months.
Data from the control and the ‘high-ALA’
which provided contained 41 g ALA/100 g
compared with 1 g ALA/100 g in the control
margarine are considered.

There was a significant difference between sexes
in the response to increased dietary ALA, with
women having a significantly greater increase in
the EPA content of plasma phospholipids (mean
+ 2·0 % of total fatty acids) after six months of an
ALA-rich diet compared to men (mean + 0·7 %,
P = 0·039). Age and BMI were identified as
predictors of response to dietary ALA among
women.

Sex specific advice needs to be
considered in provision of
personalised nutrition. Within women
age and BMI also should be
considered.

Morris et al.
(2015)(12)

214 healthy adults aged
18–60 years

To identify lipidomic changes in response to an
oral lipid tolerance test and identify the effect
of aerobic fitness

Mixed model repeated measures analysis
identified lipids which were significantly changing
over the time course of the lipid challenge e.g.
LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa
C36:3 and N-C16:1-Cer.
Fitness level had a significant impact on the
response to the OLTT: in particular significant
differences between fitness groups were
observed for phosphatidylcholines,
sphingomyelins and ceramides.

Fitness levels impact response to lipid
consumption – personalised nutrition
advice could be stratified by fitness
level.
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Kirwan et al.
(2016)(13)

1607 healthy adults subjects 4 arm, 6-month parallel intervention study –

level 0 (standard non-personalised dietary
and physical activity guidelines), level 1
(personalised advice based on current diet
and physical activity), level 2 (personalised
advice based on current diet, physical activity
and phenotype) and level 3 (personalised
advice based on current diet, physical
activity, phenotype and genotype).

Subjects were classified as responders or
non-responders to dietary advice on the basis of
the change in cholesterol level from baseline to
month 6, with lower and upper quartiles defined
as responder and non-responder groups,
respectively. In a step-wise logistic regression
model, age, baseline total cholesterol, glucose,
five fatty acids and alcohol intakes factors that
successfully discriminated responders from
non-responders, with sensitivity of 82 % and
specificity of 83 %.

Metabolic profiles can be used in
identifying responders to specific
nutritional advice, and advice tailored
to this.

Feliciano et al.
(2017)(14)

10 healthy men Dose response study
Examining inter-individual variability of
absorption, metabolism and excretion of
cranberry (poly)phenols.

Inter-individual variability of the plasma metabolite
concentration was broad and dependent on the
metabolite. The large inter-individual variation in
metabolite profile may be due to variations in the
gut microbiome.

Potentially stratify recommendations
based on gut microbiome
composition

McMorrow
et al.
(2018)(15)

78 adolescents (13–18 years) 8 week randomised controlled crossover trial
of anti-inflammatory nutritional supplement or
placebo.

The supplement was associated with bidirectional
modulation of adipogenic gene methylation in
weight-stable overweight adolescents. HOMA-IR
decreased in a sub-cohort of adolescents with an
adverse metabolic phenotype.

Give personalised advice, based on
phenotype of responders and
non-responders.

Aller et al.
(2019)(16)

154 men (mean age 58 years)
and women (mean age 52
years) with abdominal
obesity and subclinical
inflammation

Double-blind, controlled, crossover study,
participants randomised to three
supplemented phases of 10 weeks each: (1)
2·7 g/d of DHA(17), 2·7 g/d of EPA and (3) 3 g/
d of maize oil, separated by 9-week
washouts.

Supplementation with 2·7 g/d DHA or EPA had no
meaningful effect on TAG concentrations in a
large proportion of individuals with normal mean
TAG concentrations at baseline. Although DHA
lowered TAG in a greater proportion of individuals
compared with EPA, the magnitude of TAG
lowering among them was similar.

Give personalised advice, based on
phenotype of responders and
non-responders.

Abbreviations: OLTT, oral lipid tolerance test; OGTT, oral glucose tolerance test; AUC, area under the curve; IL1α, interleukin 1 alpha; IL1β, interleukin 1 beta; TLR4, toll like receptor 4; TCF7L2, transcription factor 7
like 2; CCK1Rec, cholecystokinin A receptor; STAT3, signal transducer and activator of transcription 3; hsCRP, high sensitivity c-reactive protein; HOMA-IR, insulin resistance index; HBA1C, glycated haemoglobin;
ALA, α linoleic acid; IU, international unit; LPE, lysophosphoethanolamine; PE, phosphoethanolamine; PC, phosphatidylcholines; SM, sphingomyelins.
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Table 2. Examples of studies reporting genotypic variation influencing response to nutrition intervention studies

Author (year) Population Study design/intervention Variation identified
Potential impact/use in personalised
nutrition advice

Shatwan et al.
(2017)(18)

120 adults, with risk of CVD (mean age,
47 years).

Randomised, single-blind, parallel study with
diet high in SFA, MUFA or n-6 PUFA for 16
weeks.

For the ApoE SNP (rs1064725), only TT
homozygotes showed a significant
reduction in total cholesterol after the
MUFA diet compared to the SFA or n-6
PUFA diets.

Greater sensitivity of the ApoE SNP
rs1064725 to dietary fat composition,
advice could be tailored according to
genotype.

Wang et al. (2016)(19) 733 overweight/obese subjects (25 ≤
BMI≤ 40 kg/m2) aged 30–70 years.

Randomised, controlled 2-year weight-loss
trial, stratified using a GRS based on 14
fasting glucose-associated SNP.

GRS was associated with 6-month changes
in fasting glucose, fasting insulin,
HOMA-IR, and insulin sensitivity.
Significant interactions were observed
between the GRS and dietary fat on
6-month changes in fasting glucose,
HOMA-IR and HOMA-S.

Participants with a higher GRS may
benefit more by eating a low-fat diet to
improve glucose metabolism.

Rundblad et al.
(2019)(20)

35 healthy normotriglyceridemic
subjects

Randomised controlled trial received 1·6 g
EPA + DHA/day for 7 weeks. Secondary
analysis, whereby TAG responders identified
as subjects having a TAG reduction beyond
the 20 % day-to-day variation and
non-responders as having a TAG change
between −20 % and +20 % after n-3
supplementation.

TAG responders and non-responders to
omega-3 supplementation identified as
having different lipoprotein subclasses
and PBMC gene expressions. Compared
to non-responders, the expression of 454
transcripts was differentially altered in
responders (P≤ 0·05). Pathway analyses
revealed that responders had altered
signalling pathways related to
development and immune function.

Specific gene expression metabotypes
respond differently to n-3
supplementation, and could be
identified to tailor nutritional advice.

Caslake et al.
(2008)(21)

312 adults aged 20–70 year recruited
according to age, sex, and ApoE
genotype,

Double-blind placebo-controlled crossover
study; control oil, 0·7 g EPADHA/d, and 1·8 g
EPADHA/d each for an 8-week intervention
period, separated by 12-week washout
periods

Significant sex treatment and sex genotype
treatment interactions were observed, with
the greatest TAG-lowering responses
(reductions of 15 % and 23 % after 0·7g
and 1·8g EPADHA/d, respectively) were
evident in ApoE4men.

Stratify personalised nutrition EPA/DHA
recommendations based on sex and
ApoE genotype.

Wilson et al. (2012)(22) 83 patients with risk of CVD, representing
all 3 MTHFR 677CT genotypes who
participated in a placebo-controlled
riboflavin intervention for 16 week in
2004.

Nested within this follow-up, those with the
TT genotype (n 31) proceeded to
intervention with riboflavin (1·6 mg/d for 16
week) or placebo, conducted in a crossover
style whereby the 2004 treatment groups
were placed in opposite intervention groups.

Riboflavin supplementation produced an
overall decrease in systolic and diastolic
BP.

Supplementation of riboflavin in
MTHFR 677TT genotype group
causes significant reduction in systolic
and diastolic BP.

Chouinard-Watkins
et al. (2015)(23)

90 healthy participants (35–70 years),
recruited for ApoE genotype. In this
analysis 41 ApoE4 carriers and 41
non-carriers were prospectively
recruited.

Participants consumed HSF diet for 8-week
followed by 8 week of consumption of an
HSF diet with the addition of DHA and EPA
(HSF + DHA diet; 3·45 g DHA/d and 0·5 g
EPA/d).

ApoE4 carriers were lower plasma
responders to the DHA supplement than
were non-carriers but only in the high-BMI
group.

ApoE4 carriers with higher BMI may
need higher intakes of DHA for
cardiovascular or other health benefits
than do non-carriers.

Aller et al. (2019)(16) 270 obese patients, genotyped for
variant (rs1501299 G-T) of an ADIPOQ
gene

Randomised trial with two hypoenergetic
diets (high-protein and low-carbohydrate
diet v. standard diet) over 9 months of
intervention.

In non-T-allele carriers (GG genotype) after
both diets, the decrease in metabolic
health markers was higher than T-allele
carriers. Only no T-allele carriers showed
an increase in adiponectin levels after both
diets.

GG genotype of an ADIPOQ gene
variant (rs1501299) is related to better
improvement in adiponectin levels,
insulin resistance, and lipid profile
hypoenergetic diet.
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insulin resistance improved in a sub-cohort of adolescents
and concluded that the baseline phenotype of responders
was insulin resistant and dyslipidemic with higher insulin,
HOMA-IR, HOMA-β, total cholesterol, LDL cholesterol
and lower QUICKI (quantitative insulin sensitivity check
index), than non-responders. It is interesting to note that
the authors of the present paper reported that sex, age,
BMI and body composition, were not different between
responders and non-responders, which one might assume
may be due to the homogeneous selection of their popula-
tion, whereby only overweight and obese teens between
13–18 years were recruited. Feliciano et al.(28) also expli-
citly reported variable response in a study examining vary-
ing doses of cranberry polyphenols. The authors examined
inter-individual variation by calculating the CV for Cmax
and area under the curve for each individual plasma
metabolite, and demonstrated that CV for Cmax was
51 %, and the CV of the area under the curve for the
total (sum of all 60) metabolites was 53 %. This varied
between metabolites with a CV of 43 % for dihydroferulic
acid 4-O-sulfate and 216 % for vanillic acid. The authors
note that inter-individual variability of the plasma metab-
olite concentration was broad and dependent on the
metabolite, as had been noted previously(29). There are a
number of factors that are suggested to influence the
metabolism and absorption of such metabolites, including
sex, genetic polymorphisms of transporters or metabolis-
ing enzymes, environmental influences and likely the com-
position of the gut microbiome(30,31).

Again, such studies highlight that variation in response
to any nutrition intervention will vary, and should be con-
sidered in both the interpretation, presentation and report-
ing of any study results. Recent work carried out by the
COST Action POSITIVe, specifically investigated inter-
individual variation in response to consumption of plant-
based bioactive(3). Whilst several meta-analyses to deter-
mine factors influencing variation were conducted, lack of
consideration or reporting of such variance in publications
meant analysis and conclusions were limited(32–34). If fac-
tors influencing response are to be more fully investigated,
then researchers will need to provide information and
clearly address variance in response in their analyses(3).

Genotypic variation influencing response to nutrition
intervention studies

Alongside specific phenotypic characteristics influencing
response to intervention studies, much work has been
conducted which examines and reports the differing
response of specific genotypes to various nutrition inter-
ventions. Too many to mention all within the present
paper, some examples are given in Table 2, and will be
discussed below to give a flavour of how genetic variation
can influence response. Several studies have examined the
effect of various genetic variants on weight loss with par-
ticipants on various diets (Table 1). Gardner et al.(24) in
the DIETFITS study, examined the interaction of a
multi-locus genotype pattern and the impact of a low-fat
or low-carbohydrate diet on weight loss and found there
was no significant interaction or diet-insulin secretionG
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interaction with 12-month weight loss. In contrast, Aller
et al.(16) examined the impact of the adiponectin
(ADIPOQ) gene (rs1501299 G-T), on weight loss in a
two-arm randomised trial with two hypoenergetic diets
(high-protein and low-carbohydrate diet v. standard
diet) over 9 months. In this study, the GG genotype
group, regardless of the diet, the decrease in total choles-
terol levels, LDL cholesterol, TAG levels, insulin levels
and HOMA-IR levels were higher than T-allele car-
riers(16). Likewise, Celis-Morales et al.(25), in a sub-
analysis of the Food4me study, where participants were
randomised to one of four arms: level 0, control group;
level 1, dietary group; level 2, phenotype group; and
level 3, genetic group, level 3 participants were stratified
into risk carriers (AA/AT) and non-risk carriers (TT) of
the alpha-ketoglutarate-dependent dioxygenase (FTO)
gene (rs9939609). This analysis demonstrated that
changes in adiposity markers were greater in participants
who were informed that they carried the FTO risk allele
(level 3 AT/AA carriers) than in the non-personalised
group (level 0) but not in the other personalised groups
(levels 1 and 2)(25). However, this was not seen with
respect to dietary changes in other genetic variants
including ApoE(35) and methylene tetrahydrofolate
reductase (MTHFR)(36).

Much work has also focused on the impact of genetic
variation and response to lipid consumption, examining
the impact of genetic variation in the ApoE gene on
the metabolic response to consumption of differing fat
types (Table 1). For example, Shatwan et al.(18) examined
the impact of diets high in SFA, MUFA or n-6 PUFA
over 16 weeks. Stratifying for ApoE SNP (rs1064725),
they reported that only TT homozygotes showed a sign-
ificant reduction in total cholesterol after the MUFA diet
compared to the SFA or n-6 PUFA diets(18). However,
one must remember that whilst a study may be examin-
ing impact of genotype, that this may not be the only fac-
tor influencing response, for example, Caslake et al.(37),
in a double-blind placebo-controlled crossover study,
where the consumption of different amounts of EPA/
DHA was examined, found significant genotype interac-
tions in response to the intervention, whereby the greatest
TAG-lowering responses (reductions of 15 % and 23 %
after 0·7g and 1·8g EPA DHA/d, respectively) were evi-
dent in ApoE4 men. Similarly, Chouinard-Watkins
et al.(23), in a study examining changes in circulating
lipid profile following 8 weeks consumption of a high-
saturated fat diet with the addition of DHA and EPA,
found that ApoE4 carriers were plasma responders to
the DHA supplement than were non-carriers but only
in the high-BMI group. Again suggesting a genotype–
phenotype interaction in response to the intervention.

Variations in folate metabolism have also been well
researched with respect to response to consumption of
B-vitamins and other nutrients, with much of the work
focusing on variations in the enzyme MTHFR(38–40).
One of the most interesting papers in this area by
Wilson et al.(22), examined the response of thirty-one
MTHFR TT genotype patients with the risk of CVD.
This study, was a 4-year follow on from a study where
eighty-three participants representing all three MTHFR

677CT genotypes, were initially recruited to participate
in a placebo-controlled riboflavin intervention for 16
weeks. In the initial study, the team found the TT
group to be responsive with respect to reduction in
blood pressure. To confirm these findings, the follow-up
study, which only examined those with the TT genotype
proceeded to confirm the effect of consumption of
riboflavin (1·6 mg/d for 16 weeks) or placebo on blood
pressure, conducted in a crossover style whereby the
2004 treatment groups were placed in opposite interven-
tion groups. This study confirmed riboflavin supplemen-
tation produced an overall decrease in systolic and
diastolic blood pressure in this genotype group(22).

Inter-individual variation and personalised nutrition

With many examples of an inter-individual response to
consumption of foods/nutrients published to date, the
challenge is now to potentially use this information in
an informed and appropriate manner to tailor nutritional
recommendations for individuals or groups of indivi-
duals, the cornerstone of personalised nutrition.

Firstly, how does inter-individual variation fit into the
concept of personalised nutrition. There are many pub-
lished definitions of personalised nutrition, which vary
in their manner and/or depth of personalisation. More
recently, definitions recognise that this must be broader,
with definitions basing personalised nutritional advice on
multiple characteristics, such as that used in Food4me
(Grimaldi et al. 2018) which encompasses levels of infor-
mation layering dietary, phenotypic and genotypic infor-
mation from an individual(41). Ordovas et al.(42), simply
described personalised nutrition as ‘an approach that
uses information on individual characteristics to develop
targeted nutritional advice’, not defining the depth or
nature of information required. Finally, more recently
Stewart-Knox et al.(43), have built on these to contextual-
ise the information by including factors influencing food
choice determinants, and considering the framework in
which the information would be offered. Examining
and understanding variation in response to nutrition
interventions is important to further the field of persona-
lised nutrition. Using the examples discussed within the
present paper, one might suggest that stratifying based
on age, sex, baseline biomarkers and exercise levels
with respect to glucose metabolism would be recom-
mended (Table 1). Similarly, fitness level, baseline meta-
bolic markers and identified SNP could also be
considered when giving advice on lipid consumption
and metabolism. However, there needs to be some cau-
tion. Whilst variation was observed in many of these
studies, before recommendations could or should be
used, confirmation in other studies and cohorts, and a
full understanding of the mechanism of the variation
needs to be elucidated. Furthermore, the impact of the
recommendation based on the variation needs to be
determined. Both of these issues were addressed in the
recent Food4me project. Firstly, Grimaldi et al.(41) in
their paper proposing guidelines to evaluate scientific val-
idity and evidence for genotype-based dietary advice
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focus on a framework that considers study design, type of
gene–nutrient interaction, biological plausibility and the
scientific validity of the published evidence. Joining the
reported presence of variability with some levels of bio-
logical explanation for this, ensures a scientific rigour
in the development of tailored recommendations, ensur-
ing that they have sound scientific rationale. Secondly,
the findings of the Food4me proof of principle study
are also of interest when discussing the use of known
variation within personalised recommendations.
Examining the impact of personalisation on change in
dietary intake, researchers within Food4me undertook
a large multicentre study, across Europe, which exam-
ined the impact of levels of personalised advice, on
change in dietary intake. Following recruitment, inter-
ested and eligible participants were randomised to con-
trol (general healthy eating guidelines), level 1
(nutritional advice based on diet alone), level 2 (nutri-
tional advice based on diet and phenotype) or level 3
(nutritional advice based on diet, phenotype and geno-
type). Full details of the study are published else-
where(44). A change in dietary intake and other
parameters were examined at baseline (0), 3 and 6
months. Following completion comparisons were made
between control and personalisation (levels 1, 2 and 3
together) and then across the levels of personalisation.
The researchers found that there was a greater positive
change in dietary intake in the personalised groups com-
pared to the control group, but that there was no differ-
ence between the levels of personalisation, suggesting
that participants are responsive to personalisation but
the manner in which the advice was personalised didn’t
have an effect(45). Further examination of response to
knowledge of specific genetics variants had similar
results(35,36). For example, O’Donovan et al.(36), exam-
ined the impact of an individual’s knowledge of their
MTHFR 677 genotype, and found that the TT group
(risk group), who were given specific advice on to
increase consumption of folate (foods) or folic acid (sup-
plement), there was no difference in the change of folate
in the diet in this group compared to the non-risk group.
Thus suggesting that even knowledge of their risk and a
recommendation to increase the consumption of the
specific nutrient, did not result in a greater behavioural
change(36). Whilst this pattern has also been found in pre-
vious studies, other studies have demonstrated a change
with knowledge of risk; however, overall results are
mixed(46).

This brings about a variation that also needs to be con-
sidered. Variation in response to personalised recommen-
dations, not at a physiological level, but at a behavioural
level. Consumer studies within the Food4me project
explored associations between food choice motives, atti-
tudes towards and intention to adopt personalised nutri-
tion and found that food choice motives such ‘weight
control’, ‘mood’, ‘health’ and ‘ethical concern’ had a
positive association and ‘price’ had a negative association
with attitude towards, and intention to adopt, persona-
lised nutrition(47). This suggests that underlying health
perceptions, food beliefs and other psychological factors
will influence variability in response to personalised

advice, (which was given to address variability in an indi-
viduals’ requirement), thus increasing an additional level
of inter-individual variability when considering the
response in large population cohorts.

Conclusion

Inter-individual variation in response to diet exists, but
remains largely unexplored. Understanding what pheno-
typic and genotypic factors influence response will aid in
the interpretation of nutrition intervention results and
exploitation of such variation in the provision of perso-
nalised nutrition. However, to truly understand such
variation, we need to both design specific studies to test
the influence of factors (both phenotypic and genotypic)
on variation and also report such variation in response in
future publications.
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