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ABSTRACT

We consider a dependent portfolio of insurance contracts. Asymptotic tail
probabilities of the ECOMOR and LCR reinsurance amounts are obtained
under certain assumptions about the dependence structure.
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1. INTRODUCTION

Insurance companies often use reinsurance as a mechanism for sharing risk,
particularly when there is the possibility of catastrophic losses. Two appealing
reinsurances are ECOMOR (excédent du coût moyen relatif) and LCR (largest
claims reinsurance). Under ECOMOR, the reinsurer pays the sum of the
exceedances of the l largest claims over the l + 1st largest claim. Under LCR,
the reinsurer pays the sum of the l largest claims. ECOMOR and LCR treaties
were proposed by Thépaut (1950) and Ammeter (1964), respectively.

We consider a portfolio of n insurance contracts with associated loss ran-
dom variables Xi, i =1, …, n assumed to be dependent. Let X1,n $ … $ Xn,n be
the corresponding upper order statistics. Then the reinsurance amounts under
ECOMOR and LCR are given by
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The purpose of this paper is to establish the asymptotic tail probabilities of the
reinsurance amount under ECOMOR and LCR for a portfolio of dependent
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insurance contracts. This may be quite useful for risk management purposes,
as it allows one to determine high quantiles of the reinsurance amount and
therefore enables one to obtain capital amounts that will be adequate with
high probability. This can also be done by performing a simulation study.
However, to estimate high quantiles, a very large number of simulations are
required, and since multivariate outcomes must be generated, the computa-
tions may be very time consuming.

2. PRELIMINARIES

Let Yi , i = 1, 2, … be a sequence of independent random variables with com-
mon distribution F, and let Mn be the maximum of Y1, …, Yn . If there exist
constants an, bn and a random variable Z with nondegenerate df G such that
anMn + bn converges weakly to Z, then F is in the maximum domain of attraction
of G and we write F ! MDA(G). Moreover, by the Fisher-Tippett theorem (see,
for example, Embrechts et al., 1997), G belongs to the type of the distribution 
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Hz is known as the generalized extreme value distribution. For z > 0, Fz(x ) :=
H1/z (z(x – 1)) is the standard Fréchet distribution, Cz(x) := H–1/z (z(x + 1)) is
the standard Weibull distribution, and L(x) := H0(x) is the standard Gumbel
distribution.

The dependence structure associated with the distribution of a random vec-
tor can be characterized in terms of a copula. An n-dimensional copula is a
multivariate df defined on [0,1]n with uniformly distributed marginals. Due to
Sklar’s Theorem (see Sklar, 1959), if X1, …, Xn has a joint distribution func-
tion with continuous marginals, then there exists a unique copula, C, such that 

Pr(X1 # x1, …, Xn # xn) = C (Pr(X1 # x1), …, Pr(Xn # xn )).

Similarly, the survival copula, C, is defined as the copula relative to the joint
survival function and satisfies 

Pr(X1 > x1, …, Xn > xn) = C (Pr(X1 > x1), …, Pr(Xn > xn)).

A well-known class of copulas is the Archimedean class. By definition, an
Archimedean copula C is given by 

C (u1, …, un) = f–1 ,uf i
i

n

1=

! ^e ho
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where f : [0,1] 7 [0,3) is its generator. Some regularity conditions are necessary
to ensure that C is a valid copula (see Kimberling, 1974 and Nelsen, 1999, ch. 4).

An important concept that is crucial to establishing the main results of this
paper is vague convergence. Let { mn, n $ 1} be a sequence of measures on a
locally compact Hausdorff space � with countable base. Then mn converges
vaguely to some measure m (written mn $

v m) if for all continuous functions f
with compact support we have

lim f d f d
� �n

n =
"3

.m m# #

A thorough background on vague convergence is given by Kallenberg (1983)
and Resnick (1987).

3. MAIN RESULTS

Wüthrich (2003) and Alink et al. (2004 and 2005) consider the asymptotic tail
behavior for a sum of dependent random variables when the survival copula
is Archimedean. A similar problem is discussed by Albrecher et al. (2006),
Barbe et al. (2006), Alink et al. (2007) and Kortschak and Albrecher (2007),
when a more general dependence structure is assumed. Since the ECOMOR
and LCR reinsurances are linear combinations of the order statistics, studying
the asymptotic tail probability for the losses associated with these reinsurance
treaties is closely related to the aforementioned problem.

The sufficient conditions of our main results imply that all individual losses
are tail equivalent to a distribution function that is either in MDA of Fréchet
or MDA of Gumbel. We now discuss these two cases.

3.1. Results for MDA of Fréchet

The next assumption is sufficient to establish our first main result.

Assumption 1. For any set I 3 {1, …, n},
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exists and is finite for all xi > 0.

This assumption implies that the distribution functions are tail equivalent. This
means that 0 < limt"3Pr(Xi > t) / Pr(X1 > t) < 3 holds for any i ! {1, …, n}.
Moreover, there exists b > 0 such that the distribution function of X1 is in
MDA(Fb) (see Resnick, 1987).
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Now, if the random variables X1, …, Xn are exchangeable then,
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(1)

for any x1 > … > xl , where Al = {(k1, …, kl) : i # k1 + … + ki # n, i = 1, …, l}.
Each term on the right-hand side of (1) can be expressed as a linear combi-
nation of joint survival probabilities. This fact combined with Assumption 1
allows us to conclude that there exists a positive function fl such that 

Pr(X1,n > tx1, …, X1,n > txl ) + fl (x1, … xl ) Pr(X1 > t ), t "3. (2)

Under more general assumptions for which the exchangeability property does
not hold, a similar but even more cumbersome relationship to that in (1) can
be obtained.

Now, relation (2) implies that 
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holds on [0, 3] l 5 {0} where the measure ml is given by 

ml ((x1, 3] ≈ ··· ≈ (xl, 3]) := fl (x1, …, xl ). (3)

From the above and Proposition A2.12 of Embrechts et al. (1997 p. 563), we
now have the essential development for the main results of this subsection,
which are stated in the following theorem.

Theorem 1. Let (X1, …, Xn) be a positive random vector such that Assumption 1
holds. For l = 1, …, n – 1, the asymptotic tail probability for El , the reinsurance
amount under an ECOMOR treaty, is given by 

Pr(El > t ) + CEF (l, a, b ) Pr(X1 > t ) as t $3,

where

CEF (l, a, b ) = ml +1 : > , > > > ,x lx x xx 1 0i l l
i

l

1 1 1
1

g- + +

=

!e o

with ml defined by (3).
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For l = 1, …, n, the asymptotic tail probability for Ll , the reinsurance amount
under an LCR treaty, is given by 

Pr(Ll > t ) + CLF (l, a, b ) Pr(X1 > t ) as t $3,

where

CLF (l, a, b ) = ml : > , > > > .x x xx 1 0i l
i

l

1
1

g
=

!e o

It should be noted that in order to obtain these results, we used the fact that
each measure ml has no mass on the boundaries of the sets used in defining the
asymptotic constants, CEF and CLF (see Hult and Lindskog, 2002; and
Kortschak and Albrecher, 2007).

3.2. MDA of Gumbel

As in the Fréchet case, the sufficient assumption from this subsection implies
that the marginal distribution functions are tail equivalent and are from the
MDA of Gumbel. It is well-known (see, for example, Embrechts et al., 1997) that
if F ! MDA(L), then there exists a positive, measurable function a(·) such that 
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for any real x. The sufficient condition of the next main result is now defined.

Assumption 2. For any set I 3 {1, …, n},
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exists and is finite for –3 < xi < 3, where a(·) is the corresponding scaling func-
tion defined by (4) for the distribution function of X1.

In the same manner as the previous subsection, we have 

Pr(X1,n > t + x1a(t), …, Xl,n > t + xl a(t)) + F(t) gl (x1, … xl ), (5)

where gl is a positive function.
Now, relation (5) implies that 
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holds on (–3,3]l where the measure nl is given by 

nl ((x1, 3] ≈ ··· ≈ (xl ,3]) := gl (x1, …, xl ). (6)

Now, we are able to give the main result from this subsection, which is only
for the LCR reinsurance. This is stated as Theorem 2, which is a consequence
of Proposition A2.12 of Embrechts et al. (1997 p. 563).

Theorem 2. Let (X1, …, Xn) be a positive random vector such that Assumption 2
holds. In addition, if there exists a positive function V(·) such that gl (x + c1) $
gl(x)V(c) holds for any x ! �l and c > 0, where l = 1, …, n, then

Pr(Ll > lt ) + CLG( l,a) Pr(X1 > t ) as t $3,

where

CLG(l, a ) = nl : > , > > ,x x xx 0i l
i

l

1
1

g
=

!e o

with nl defined by (6).

Two more remarks are useful in understanding Theorem 2. First, note that
each measure nl has no mass on regions around –3. This is obvious for l = 1,
so we consider the case in which l > 1. It is sufficient to check that 
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In doing so, we first mention that the following clearly holds 

Pr(X1,n > t) = n
1
d n Pr(X1 > t) – ··· + (–1)n+1

n
n
d n Pr(X1 > t, …, Xn > t) 

+ DPr(X1 > t), as t $3,
(8)

where the last step is due to Assumption 2 and D is a positive constant. Com-
bining (4) and (8), we have 
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which leads to (7). Second, using the same reasoning as in the Fréchet case, the
remainder of the boundary of the set used in defining the asymptotic constant
CLG is nl-negligible due to the fact that gl (x + c1) $ gl(x)V(c).

4. EXAMPLES

Some multivariate distributions which satisfy the conditions imposed in The-
orems 1 and 2 are now given. For ease of presentation, the assumption of
identical marginals is made in all examples.

4.1. Survival Archimedean

The survival copula C is an Archimedean copula such that the generator f is
regularly varying at 0 with index –a (f ! RV– a

0 ). That is,
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t
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for any positive x. For more details on regular variation, we refer the reader
to Bingham et al. (1987).

The Clayton copula is an example of an Archimedean copula with gener-
ator, f(u) = u–a – 1, which satisfies the property f ! RV– a

0 . This copula has the
form
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where a > 0.
If F ! MDA(Fb ) and f ! RV– a

0 , then Assumption 1 is satisfied with 
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For more details, see Alink et al. (2004).
If F ! MDA(L) and f ! RV– a

0 , then Assumption 2 is satisfied with 
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For more details, see Alink et al. (2004). It is obvious that the other sufficient
condition is satisfied with V(c) = e–c.
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4.2. Archimedean Copula

The sufficient conditions from Theorems 1 and 2 are also satisfied if the actual
copula is Archimedean such that the generator f is regularly varying at 1.
By definition, this means that for any positive x the following holds

,lim
t
tx

x
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f

1
1 a

t 0 -

-
=

. ^

^

h

h

and we write f ! RVa
1. Furthermore, the index satisfies the condition that a $ 1

(see Juri and Wütrich, 2003). The Gumbel copula is an example of such a cop-
ula with regularly varying generator f(u) = (–lnu)a, which satisfies the latter
property (f ! RVa

1).
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For this example, Assumption 1 holds with 
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provided that 1 < a < 3 (see Juri and Wütrich, 2003). For simplicity, the bivariate
case has been considered, but the result can be extended to the multivariate case,
which is more cumbersome. The remaining condition of the Gumbel case is
obviously satisfied with V(c) = e–c.

4.3. t-copula

A well known non-Archimedean copula is the t-copula. For the ease of presen-
tation, we check the sufficient conditions only in the bivariate case. The bivariate
t-copula is given by 
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where t –1(· ; a ) is the inverse function of a standard univariate Student t-dis-
tribution with a degrees of freedom.

Simple computations yield 

C(ux, uy) + uh(x /y)y, as u . 0,

where 
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For more details, see Asimit and Jones (2007a). Note that we use the fact that
h(x) = xh(1/x) holds. By using the same reasoning as Alink et al. (2007), one
can establish 
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when the distribution function of X1 is in MDA(Fb). Similarly, the expression
in the Gumbel case is given by 
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Once again, the other sufficient condition assumed in Theorem 2 is satisfied
with V(c) = e–c.

4.4. A non-copula example

The previous examples were given for some well-known copulas. It would be
restrictive to limit our attention only to the cases for which the underlying cop-
ula is known. For this reason, an example is provided for which the copula does
not have a closed form. Provided that the individual losses are identically dis-
tributed, the multivariate phase-type distribution satisfies the sufficient condi-
tions of Theorem 2, at least for the bivariate case (see Asimit and Jones, 2007b).
In this case, gl (x + c1) = gl (x)V(c), and therefore the condition in Theorem 2
is satisfied with a constant V(c) = e–c.

5. NUMERICAL EXAMPLES

In this section, examples for the asymptotic constants from Theorems 1 and 2
are given. In order to avoid long computations, a portfolio consisting of n = 3
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insurance contracts is considered. Explicit forms of the asymptotic constants
are provided for n = 3 and l = 2, but numerical computations are made for
higher dimensions. The required integrations were done using the numerical
integration function in Mathematica. We consider the dependence structure
discussed in Section 4.1. First, the Fréchet case is explored. From (1), we have 

Pr(X1,3 > tx1, X2,3 > tx2) = Pr(X1, X2, X3 > tx1) + 3Pr(X1, X2 > tx1, X3 # tx2)

+ 3Pr(X1, X2 > tx1, tx2 < X3 # tx1)

+ 3Pr(X1 > tx1, tx2 < X2, X3 # tx1)

+ 6Pr(X1 > tx1, tx2 < X2 # tx1, X3 # tx2),

for any x1 > x2 > 0. Otherwise,

Pr(X1,3 > tx1, X2,3 > tx2) = Pr(X1, X2, X3 > tx2) + 3Pr(X1, X2 > tx2, X3 # tx2).

Straightforward computations together with (9) yield the following 
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In a similar manner, if F ! MDA(L) then (10) yields 
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It follows from Theorem 1 that 

CEF (1, a, b )

= m2 ((x1, x2) : x1 – x2 > 1, 0 < x2 < x1)

= 6b at b 1

0

3
-# {[ tab + (1 + t)ab ] –1 – 1/a – [2tab + (1 + t)ab ] –1 – 1/a}dt

and 
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CLF (2, a, b )

= m2 ((x1, x2) : x1 + x2 > 1, 0 < x2 < x1)

= 6(1 + a) b 2 a
st
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where m2 ((x1,3] ≈ (x2,3] ) := f2(x1, x2). Also, from Theorem 2,

CLG (2,a)

= n2 ((x1, x2) : x1 + x2 > 0, x1 > x2)

= 6(1 + a) e a s t

s

s

0

3
+

-
## ] g [(eas + eat)–2 – 1/a – (eas + 2eat)–2 – 1/a ] dt ds,

where n2 ((x1,3] ≈ (x2,3] ) := g2(x1, x2).

Numerical exemplifications of our main results are now considered for the
LCR treaty. It is assumed that each marginal is a two-parameter Pareto dis-
tribution with df

FPareto(x; b,g) = 1 – ,x
g b1

b

+
-

d n x $ 0

in order to illustrate Theorem 1 and exponentially distributed for Theorem 2.
In both cases, the expected value is set to 10,000, which implies that the Pareto
parameters should satisfy g = b /(( b – 1) ≈ 10,000). We performed the calcula-
tions for a variety of a and b values. Tables 1 to 3 show the values of the
asymptotic constants and the resulting quantiles at level 0.999. Table 2 shows
that, in the Fréchet case, changing the value of a does not have a significant
impact on the quantile, but the sensitivity to b is quite apparent. Similarly,
table 3 shows that, in the Gumbel case, the value of a does not significantly
influence the quantile.
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TABLE 1

ASYMPTOTIC CONSTANTS CLF ( l, a, b ).

l = 2

b = 1 b = 3 b = 5

a n = 2 n = 3 n = 4 n = 2 n = 3 n = 4 n = 2 n = 3 n = 4

1 2.00 2.67 3.17 6.84 9.82 12.0 26.4 38.6 47.3 
3 2.00 2.31 2.49 7.81 9.13 9.88 31.1 36.4 39.5 
5 2.00 2.20 2.30 7.92 8.75 9.20 31.6 35.0 36.8 

10 2.00 2.10 2.16 7.98 8.41 8.62 31.9 33.6 34.5

l = 3

b = 1 b = 3 b = 5

a n = 3 n = 4 n = 3 n = 4 n = 3 n = 4

1 3.00 3.75 21.8 29.8 186 261 
3 3.00 3.37 26.1 29.8 234 268 
5 3.00 3.24 26.7 29.0 239 261 

10 3.00 3.13 26.9 28.1 242 253

TABLE 2

QUANTILE ESTIMATES OF L2 AT 0.999 LEVEL BASED ON THEOREM 1.

a b = 2 b = 3 b = 4 b = 5

1 698,462 408,318 324,199 290,675 
3 666,514 397,994 318,609 286,866 
5 651,930 392,197 315,049 284,226 

10 638,451 386,682 311,612 281,654

TABLE 3

ASYMPTOTIC CONSTANTS CLG(2,a) AND QUANTILE ESTIMATES OF L2 AT LEVEL 0.999.

a CLG (2,a) Quantile 

1 1.18 141,402 
3 1.14 140,688 
5 1.09 139,918 

10 1.05 139,139
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