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Abstract. We use Gaussian measure-preserving systems to prove the existence
and genericity of Lebesgue measure-preserving transformations 7 : [0, 1] — [0, 1]
which exhibit both mixing and rigidity behavior along families of asymptotically
linearly independent sequences. Let \1,...,hy €[0,1] and let ¢1,..., ¢y : N —> Z
be asymptotically linearly independent (that is, for any (ai,...,ay) € ZN \ {6},
limg_ oo | Z?’zl aj¢j(k)| = 00). Then the class of invertible Lebesgue measure-
preserving transformations 7 : [0, 1] — [0, 1] for which there exists a sequence (1ny)reN

in N with
klim WANT By = (1 — % )u(A N B) + nju(A)u(B),
—00
for any measurable A, B C [0, 1] and any j € {l,..., N}, is generic. This result is

a refinement of a result due to Stépin (Theorem 2 in [Spectral properties of generic
dynamical systems. Math. USSR-Izv. 29(1) (1987), 159-192]) and a generalization of a
result due to Bergelson, Kasjan, and Lemariczyk (Corollary F in [Polynomial actions of
unitary operators and idempotent ultrafilters. Preprint, 2014, arXiv:1401.7869]).
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1. Introduction
Let ([0, 1], B, ) be the probability space where B = Borel([0, 1]) and u is the Lebesgue
measure. Denote by Aut([0, 1], B, ) the set of invertible measure-preserving transforma-
tions 7 : [0, 1] — [0, 1] endowed with the weak topology (that is, the topology defined
on Aut([0, 1], B, ) by T, — T if and only if for each f € L3(w), I T, f — Tfl2— 0.
With this topology, Aut([0, 1], B, ) is a completely metrizable space.

Stépin proved in [11, Theorem 2] that, given \ € [0, 1], the set of transformations T €
Aut([0, 1], B, w) for which there exists an increasing sequence (n)reny in N = {1,2, ...}
such that for any A, B € B,

Jim u(ANT " B) = (1 = Wu(AN B) + hp(A)u(B), (1.1)

is a dense Gy set in Aut([0, 1], B, u). A refinement of Stépin’s theorem, which is a special
case of Theorem 1.2 below, states that for any (strictly) monotone sequence ¢ : N — Z
and any A € [0, 1], the set G(¢, \) consisting of all transformations T € Aut([0, 1], B, n)
for which there exists an increasing sequence (ny)xeN in N such that for any A, B € B,

Jim (AN T=?I By = (1 — W)u(A N B) + Mu(A)(B),

is again dense Gs.

It follows that for any A, A € [0, 1] and any monotone sequences ¢1, ¢2 : N — Z, the
set G(¢p1, M) N G(¢p2, N2) is residual (that is, it contains a dense Gy set). Thus, there exists
T € Aut([0, 1], B, ) such that for some increasing sequences (n,(cl))keN and (n,(cz))keN in
Nandany A, B € B,

lim (A NT=AD B) = (1= h)R(A N B) 4+ M (A u(B) (12)
— 0
and
lim (A =20 By = (1 = %) (A N B) + hau(A)u(B). (1.3)
—00

Note that depending on our choice of h1, N2, ¢1, and ¢, it might be the case that for every
T € G($1, M) N G(¢2, M), the sequences (1 )ey and (287 )ken in (1.2) and (1.3) must
be different.
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For instance, when A; = 0, Ao = 1, and ¢1(n) = ¢2(n) = 2n for each n € N, we have
that if (1.2) and (1.3) hold for some 7' € G(¢1, M) N G(¢2, \2), then

: (1 )
lim |n,’ —n = 0.
k—00 | k k |

To see this, suppose for sake of contradiction that lim;_, n,((i) —ng) =a € Z for
some increasing sequence (k;);en in N. Picking A € B with 11(A) € (0, 1) and letting
B = T2% A, we obtain

_n, @
p2(A) = w(A)u(B) = lim w(ANT 2 B)
J—00

—2}11((1? +2a
J

= lim p(ANT B) = wW(ANT*B) = p(A).

J—>00
Noting that w?(A) # w(A), we reach the desired contradiction.

The following result, which is a consequence of [3, Corollary F], provides sufficient
conditions on sequences of the form (vi(k))xen and (va(k))ken, Where vy, vy € Z[x],
to ensure the existence of a T € Aut([0, 1], B, ) such that (1.2) and (1.3) hold with
(n,(cl))keN = (n,({z))kEN and arbitrary \i, Ay € {0, 1}. We denote the set of all (strictly)
increasing sequences (7 )renN in N by N{i.

THEOREM 1.1. Let N €N, let \,...,\ny €{0,1}, and let vy,...,vy € Z[x] be
Q-linearly independent polynomials such that v;(0) = 0 for each j € {1, ..., N}. Then
the set

{T € Aut([0, 1], B, ) [3(1i)ken € Ny Vj € {1,..., N}

VA, B € B, klim WANT By = (1 — % j)u(AN B) + %ju(A)u(B)}
—00
is a dense Gj set.

Theorem 1.2 below, which we prove in §5, extends Theorem 1.1 to any real numbers

M, -..., Ay €[0,1] and arbitrary asymptotically linearly independent sequences
d1,...,¢n : N— Z. The sequences ¢1,..., ¢y are asymptotically (linearly) inde-
pendent if for any @ = (ay, . . ., ay) € ZN \ {0},

N

Tim | aj;n)| = co.

j=1
THEOREM 1.2. Let N €N and let \i,...,\y €[0,1]. For any asymptotically
independent sequences ¢1, . . ., N : N — Z, the set

{T € Aut([0, 1], B, ) [A(n)ken € Ny ¥j € {1,..., N}

VA, B € B, klim pANT 9By = (1 =% j)u(A N B) 4+ x;u(A)u(B))
— 00
is a dense Gy set.

We will now formulate two results which are needed for the derivation of Theorem 1.2
(see Theorems 1.3 and 1.6 below).
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The first of these results is proved by using a modified version of the ‘interpolation’
techniques introduced in [11] and can be stated as follows.

THEOREM 1.3. Let N €N, let \,...,\ny €[0,1], and let ¢1,...,¢n : N — Z.
Suppose that ¢1, . . ., ¢y satisfy the following condition:
Condition C: There exists an (np)reN € NE‘O such that for any §= (&1,....&EN) €
{0, 1}V, there exists an aperiodic Tg € Aut([0, 11, B, i) with the property that for each
je{l,...,Nlandany A, B € B5,
. —¢j(nk)

lim p(ANT; "™ B) = (1 - £)u(A N B) + &;1(Au(B). (14)

Then the set
{T € Aut([0, 1], B, ) |3(ke)een € Ngo Vjef{l,...,N}

VA, B € B, Jim pan T %) By = (1 — % )u(A N B) + Nju(A)(B))
—00
is a dense Gy set.

To help the reader appreciate the content of Theorem 1.3, let us consider the case N = 1.
Fix an increasing sequence (my)kenN in N and set ¢y (k) = my for each k € N. We claim
that there exists an increasing sequence (rn)ien in N for which ¢; satisfies Condition C.
In other words, there are transformations Ty and 77 such that for any A, B € B,

Jim p(an 7, 7" B) = w(AN B) (1.5)
— 0
and

Jim p(ANTM Y B) = w(A)u(B). (1.6)

Note that the set ﬂqu Ukenfa e R | |eZTie1®e _ 1| < 1/} is a dense Gy subset of
R. Thus, we can pick an irrational « and an increasing sequence (ny)xen such that
limg_, 00 (1 (nx)a mod 1) = 0. Letting Ty be the (aperiodic) transformation defined by
To(x) = (x + o) mod 1, we have that Ty satisfies (1.5). Our claim now follows by
noting that any strongly mixing transformation 7 € Aut([0, 1], B, i) is aperiodic and
satisfies (1.6). (Let (X, F, v) be a probability space. A measure-preserving transformation
T :X — X is called strongly mixing if for any A, B € F, lim,,oo V(ANT™"B) =
v(A)v(B).)

The above discussion leads to the following corollary to Theorem 1.3. (Corollary 1.4
below is a refinement of the result due to St€pin mentioned above.)

COROLLARY 1.4. Let (my)reN be an increasing sequence in N and let '\ € [0, 1]. Then

(T € Aut([0, 1], B, 1) [A(ke)een € Ny, VA, B € B,
Jim u(ANT™™B) = (1= 2)u(AN B) + hu(A)u(B))
— 00

is a dense Gy set.
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Remark 1.5

(1) The special case of Corollary 1.4 corresponding to h = 0 gives an equivalent form
of Proposition 2.8 in [2], which states that given an increasing sequence (my)reN in
N, the set

(T € Aut([0, 1], B, i) |3(ke)een € NI VA, B € B,
elim W(ANT™eB) =u(ANB)}
— 00
is residual.

(2) The special case of Corollary 1.4 corresponding to . = 1 gives an equivalent form of
the ‘folklore theorem’ in [1, Proposition 2.14], which states that given an increasing
sequence (my)ken in N, the set

(T € Aut([0, 1], B, 1) [A(ke)een € Ny, VA, B € B,
Jm (AN T B) = pu(A)p(B)}
—00

is residual.

As we will see below, Condition C in Theorem 1.3 is satisfied by any asymptoti-

cally independent sequences ¢1, ..., ¢n : N — Z. We remark in passing that for each
N > 2, there exist Q-linearly dependent polynomials vy, ..., vy € Z[x] for which the
(non-asymptotically independent) sequences (¢;(k))ken = (vj(k)ren, j € {1,..., N},

satisfy Condition C. For instance, one can use the results in [3] to show that ¢{(n) = 2n
and ¢y (n) = 3n, n € N, satisfy Condition C. Moreover, one can deduce from [3] that for
any N > 2, the sequences

¢,-(n)=( I1 pm)n, jell .. N},

{mell,..2V =2} | jeAn}

where Ay, ..., Ayv_, is an enumeration of the non-empty proper subsets of {1, ..., N}
and pi, ..., pon_, are distinct prime numbers, satisfy Condition C (see also §6 of
this paper). For more information on necessary and sufficient conditions for a family of
polynomials ¢1, . . ., ¢y € Z[x] to satisfy Condition C, see [3].

The second result needed for the proof of Theorem 1.2 guarantees the existence
of measure-preserving transformations for which the sequences ¢1,...,¢ny : N — Z
in Theorem 1.2 satisfy Condition C. Let (X, F,v) be a probability space. A
measure-preserving transformation 7 : X — X is called weakly mixing if for any
A, B e F,

li Ly ANT™"B A)v(B 0
Jim > W(ANTT"B) = v(A)w(B)| =0.

n=1

Note that every weakly mixing transformation S defined on ([0, 1], B, ) is aperiodic.

THEOREM 1.6. Let N € N and let ¢y, ..., ¢n : N — Z be asymptotically independent
sequences. Then there exists an increasing sequence (np)ren in N such that for any
£=(&,...,Ey) €{0, 1}V, there exists a weakly mixing Tg e Aut([0, 1], B, u) with the
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property that for each j € {1,..., N}Yand any A, B € B,

lim w(ANT; 7" B) = (1= £)u(A N B) + & u(A)u(B). (17)

Remark 1.7. When (¢;(k))ken = (v; (k))ken, j € {1, ..., N}, for some Q-linearly inde-
pendent polynomials vy, . . ., vy € Z[x] satisfying v;(0) = 0, Theorem 1.6 follows from
Theorem 3.11 in [3]. We give an alternative proof of this restricted version of Theorem 1.6
in §3.

Consider now the polynomials vy, ..., vy € Z[x]. We conclude this introduction by
formulating a simple corollary of Theorem 1.6 which links the linear independence of
the polynomials vy (x) — v1(0), ..., vy(x) — vny(0) € Z[x] to the possible values of the
limits of the form

lim uw(ANT VB,
k—00

(Observe that the linear independence of the polynomials vy(x) — vy (0), ..., vy (x) —
vy (0) is equivalent to the asymptotic independence of the sequences (vi(k))keN, - - - »

(v (k)ken.)

COROLLARY 1.8. (Cf. Corollary F in [3]) Let N € N and let t € {0, ..., N}. For any

non-constant polynomials v1,...,vyN € Z[x] such that vi(x) —v1(0),...,vn(x) —
vy (0) are Q-linearly independent, there exists an increasing sequence (ny)ien in N and a
T € Aut([0, 1], B, ) with the property that for any A, B € Bandany j € {1,..., N},

n(ANB) ifj=<t,

lim p(ANT VB) = {
k=00 w(AuB) ifjefl,....,NI\{0,...,1}.

The structure of this paper is as follows. In §2, we introduce the necessary background
on Gaussian systems. In §3, we prove a version of Theorem 1.6 dealing with polynomials
having zero constant term. In §4, we prove Theorem 1.6. The proof of the special case
of Theorem 1.6 given in §3 is quite a bit simpler than, and somewhat different from, the
proof of Theorem 1.6 and is of interest on its own. In §5, we prove Theorem 1.3 and obtain
Theorem 1.2 as a corollary. In §6, we use a slight modification of the methods introduced in
§3 to provide examples of non-asymptotically independent sequences for which Condition
C holds.

2. Background on Gaussian systems
In this section, we review the necessary background material on Gaussian systems.

2.1. Basic definitions. Let A = Borel(R%) and consider the measurable space (RZ, A).
For each n € Z, we will let

X, :RZ 5> R 2.1)

denote the projection onto the nth coordinate (that is, for each w € RZ, X, (w) = w(n)).
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A non-negative Borel measure p on T = [0, 1) is called symmetric if for any n € Z,

/eZHinx dp(x) :/ e*ZT[inx d,O(X)
T T

It is well known that for any symmetric non-negative finite Borel measure p on T, there
exists a unique probability measure y = y, : A — [0, 1] such that: (a) for any f € H| =

spang{X, | n € Z}LZ(V), f has a Gaussian distribution with mean zero (we will treat the
constant function f= 0 as a normal random variable with variance zero); and (b) for any
m,n €7,

/R XX dy = /T XM=Y g5 (x). (2.2)

We call the probability measure y the Gaussian measure associated with p and refer to p
as the spectral measure associated with y. As we will see below, many of the properties
of p (and hence Hj) are intrinsically connected with those of y.

Let T : RZ — RZ denote the shift map defined by

[T(@)](n) =wn+1)

for each w € RZ and each n € Z. The quadruple (R%, A, y, T) is an invertible probability
measure-preserving system called the Gaussian system associated with p. (For the
construction of a Gaussian system, see [5, Ch. 8] or [8, Appendix C], for example.)

Most of the results in the coming sections deal with non-trivial Gaussian systems.
A Gaussian system (RZ, A, y, T) is non-trivial if its spectral measure is not the zero
measure. (When p is the zero measure, the associated Gaussian system is isomorphic to
the probability measure-preserving system with only one point.)

2.2. Gaussian self-joinings of a Gaussian system. In this subsection, we review the
necessary background material on Gaussian self-joinings of Gaussian systems, which were
introduced in [10].

A self-joining of a Gaussian system (RZ, A, y, T) is a (T x T)-invariant Borel proba-
bility measure I' : A ® A — [0, 1] such that forany A € A, T(R? x A) = '(A x R%) =
y (A). Denote the set of all self-joinings of (RZ, A, y,T) by J(y). Identifying y with a
Borel probability measure on [0, 1], one can view [J(y) as a topological subspace of the
space of all Borel probability measures on [0, 1] x [0, 1] with the weak-* topology. With
this topology, J (y) is a compact metrizable space with the property that for any sequence

(Fiken in T (),
if and only if for every A, B € A,
lim Tu(A x B) = T(A x B). (2.3)
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Remark 2.1. Condition (2.3) is equivalent to the following (seemingly stronger) condition:
forany f, g € L*(y),
lim f(@)g(@") dTy (o', ") = /
RZ

k—00 JRZ RZ %

f@)g@") dT (o', ).
RZ

Consider now the projections X, X,/ RZ x RZ — R, n € Z, defined by
X, (0, ®") = ' (n) and X, (o', &") = &" (n)

for each (o', 0”) € RZ x RZ Forany I' € J(y), we will let H { and H{" denote the closed
real subspaces of LZ(F) spanned by (X])nez and (X)), ez, respectively. Note that both H 1’
and H{’ depend only on the topology of L?(y) and not on the specific choice of T'.

Given I' € J(y), we say that I is a Gaussian self-joining (of (RZ, A,y,T)) if
H{ + H] is a Gaussian subspace in L?(I"), meaning that for any f € H| + H/', f has a
Gaussian distribution. Denote the set of all Gaussian self-joinings of y by Jg(y). One can
show that for any I' € Jg(y), I is completely determined by the values of the correlations

/Rz . X, X, dl', n,meZ.
X

The following are important examples of Gaussian self-joinings of (RZ, A, y, T).
e The product measure y ® y. This measure is characterized by the correlations

AZ i, X' X!"dl' =0, n,meZ (2.4)
X

e The measure Ay, a € Z, defined by A,(A x B) = y(ANT“B) forany A, B € A.
This measure is characterized by the correlations

/ X, X! dT = / Xy Xmiady, n,mcZ. (2.5)
RZ xRZ RZ

The next proposition was mentioned as a consequence of Theorem 1 in [10, p. 267].
PROPOSITION 2.2. Jg(v) is a closed (and hence compact) subspace of J (y).

Proof. Let (I't)keny be a sequence in Jg(y) such that limg_o [y = for some
I' e J(y). Since the limit of Gaussian distributions is again a Gaussian distribution,
it suffices to show that for any f; € H and f> € H, the probability measure
I'o(fi+ f2)~' has a Gaussian distribution. To prove this, we will compute the
characteristic function ¢ of I" o (f] + fz)_l. Foreacht e R,

o) = / eit[fl(w/)'i'fz(w”)] dl (o, &) = / et (w’)eiffz(w”) dT (&', &)
RZ xRZ RZ x RZ

= lim P11 it fa (@) AT (@, &)
k—o0 JRZ R ’

= lim 1@+ L@ g1y (W, o). (2.6)
k—o00 RZXRZ ’

For each ke N, I'ro(f1+ fz)_1 has a Gaussian distribution. Thus, by (2.6),
' o (fi + f>)~! has also a Gaussian distribution. O
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2.3. Connections between the mixing properties of (RZ, A, y,T) and its spectral
measure. Before stating the results in this subsection, we need some definitions.

Let (X, F, v, S) be an invertible probability measure-preserving system. We say that S
has the mixing property along the sequence (ny)en in Z if for any A, B € F,

Jim (AN STB) = v(A)v(B).

We say that a system (X, F, v, S) is rigid along the sequence (ny)xeN in Z (or equivalently,
(nr)ken 1s a rigidity sequence for (X, F, v, S)) if forany A, B € F,

lim v(ANS™™ B) =v(AN B).
k— 00

Now let p be a positive finite Borel measure on T and let (nx)xen be a sequence in Z.
We say that p has the mixing property along the sequence (ny)ien in Z if for every m € 7Z,

kll)n;o i e271i(n1<+m)x dp(x) = 0.

We say that p is rigid along the sequence (ny)ien in Z if for every m € Z,

lim eZTri(nk-i-m)X dp(x) — f eznimx dp(x)
k—o0 JT T
The following result exhibits the close connection between the ‘dynamical’ properties
of a spectral measure p defined on T and the Gaussian system associated with p.

THEOREM 2.3. Let p be a symmetric positive finite Borel measure on T and let
(RZ, A, y, T) be the Gaussian system associated with it. Given a sequence (ny)ienN in 7,
the following statements hold.
(i) T has the mixing property along (ny)ren if and only if p has the mixing property
along (ng)en.
(i1) Tisrigid along (ny)ken if and only if p is rigid along (ny)reN-
(iii)) Leta € Z. The following are equivalent:
(1) forevery A, B € A,

Jim y(ANT™B) = y(ANT*B); 2.7)
(2) foreverym € Z,
llm eZni(nk+m)x dp(x) — / e2m‘(a+m)x dp(x) (28)
k—oo JT T

Proof. The proofs of statements (i), (ii), and (iii) are similar. We will only prove
statement (i).
Suppose first that 7" has the mixing property along (nx)reN. Then, for any m € Z,

lim [ &MY g5 = lim XoT™X,, dy = / Xody f X dy =0.
k—o00 JRZ RZ RZ

k—o0 JT

Thus, p has the mixing property along (nj)reN.
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Suppose now that o has the mixing property along (ni)ren. Let (k;)jen be an
increasing sequence in N such that lim; Ankj =T for some I' € J5(y). For any
n, m € 7Z, we have

/ X/ X" dl = lim X' X! dA,, = lim X, T" X,y dy
RZ xRZ J—0 JRZ xRZ I j—ooo JRZ
= lim | X,Xu 4m dy = lim [ 7O g, g,
j—o00 RZ J j—o00 T

Thus, by (2.4), ' =y ® y. It now follows from the compactness of Jg(y) that
limg— 00 Ay, = ¥y ® y. In other words, for any A, B € A,

klim y(ANT % B) = klim Ay (AX B)=y®y(Ax B)=y(A)y(B).
—00 —00
We are done. O]

We now record for future use the following classical result (see [5, p. 191] and
Theorem 1 in [S, p. 368], for example).

PROPOSITION 2.4. Let (R%, A, y, T) be a Gaussian system and let p be the spectral
measure associated with it. The following are equivalent: (i) p is continuous; (ii) T is
weakly mixing; (iii) T is ergodic.

We conclude this section with an easy consequence of Theorem 2.3 which illustrates
the connection between non-trivial Gaussian systems and Aut([0, 1], B, u).

PROPOSITION 2.5. Let (nx)ken be a sequence in 7, let & € {0, 1}, and let a € Z. The
following are equivalent.

(i) There exists a non-trivial Gaussian system (R%, A,y,T) such that for any
A, Be A

klim y(ANTT"B)Y=(1-&y(ANT *B)+ &y (A)y(B). 2.9)
— 00
(ii) There exists an S € Aut([0, 1], B, u) such that for any A, B € B,

klim WANST*B)y=(1—-&Eu(ANS™B) + Eu(A)u(B). (2.10)

—00

Proof. (i) = (ii): Note that any non-trivial Gaussian system is measure theoretically
isomorphic to ([0, 1], B, u, S) for some S € Aut([0, 1], 8, u) (see [12, Theorem 2.1], for
example).

(i) = ():Let f € L?(w) be a non-zero real-valued function such that f[o 1 fdu=0
and let p be the positive finite Borel measure satisfying

/ fSkf dl'L :/ e27Tikx d,o(x)
[0,1] T

for each k € Z. Since fT e2™ikx dp(x) is a real number for each k € Z, we have that p is
symmetric.
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By (2.10), for any g € L?(n),

k—o00

lim gS”kfdu=(1—$)/ gS“fdM+§/ gdu/ fdu.
[0,1] [0,1] [0,1] [0,1]

Thus, for any m € Z,

lim [ XY gp(x) = lim FSWFM £ dy = lim / STMFS™ f dp
k—o0 JT k—00 [0,1] k—o00 [0,1]
=(1-& | s™fsey du+€/ ST f du/ fdu
[0,1] [0,1] [0,1]

e f FSUFdu = (1—8) f PTI@EmT 1o ().
[0,1] T

Taking (RZ, A, y, T) to be the non-trivial Gaussian system associated with p in (i), we
see that (2.9) holds. O]

3. A version of Theorem 1.6 for polynomials having zero constant term

In this section, we prove a special case of Theorem 1.6 which deals with polynomials
Vi, ...,vy in Z[x] satisfying v;(0) =0 for each j e {l,..., N}. It will be stated
in the language of Gaussian systems (see Theorem 3.1 below). Unlike the proof of
Theorem 1.6 in its full generality, the proof of this special case uses a simple and explicit
construction for the spectral measures associated with each of the Gaussian systems
guaranteed to exist in Theorem 3.1. As demonstrated in [4, Proposition 7.1] and in §6
of this paper, this method can be used to provide examples of measure-preserving systems
with various kinds of asymptotic behavior. We remark that while Theorem 1.6 deals with
automorphisms of [0, 1], the formulation of Theorem 3.1 deals with non-trivial Gaussian
systems (R%, A, y, T). This distinction is immaterial due to a slight modification of
Proposition 2.5.

THEOREM 3.1. (Cf. Theorem 1.6) Let N € N, let (my)ren be an increasing sequence in N
with klmy for each k € N, and let the non-constant polynomials v1, . . ., vy € Z[x] be
Q-linearly independent and such that for each j € {1, ..., N}, v;(0) = 0. Then there
exists a subsequence (ny)xeN of (my)keN Such that for any 5 =(&,...,&v) € {0, l}N,
there exists a non-trivial weakly mixing Gaussian system (R%, A, Ve Tg) with the property

that for each j € {1,..., N}and any A, B € A,
lim y(ANT, 7" B) = (1= &)ye(ANB) +&ve(AyeB). (D)
k— 00 §

Proof. By Theorem 2.3 and Proposition 2.4, it suffices to show that there exist a
subsequence (ni)xen Of (mp)reny and continuous Borel probability measures oz on

T =10, 1), & € {0, 1}V, such that for each & = (&, . . ., &y) € {0, 1}V, the sequence

al® = [ e dog(x), kel
T
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is a real-valued sequence with a((f) = 1 (which implies that oz is symmetric and non-zero),

and foreach j € {l,..., N}andanym € Z,
lim [ eZ7i@itw)+mx doz(x) = (1 —&j) / e>mimx do (x). (3.2)
k—oo JT T

We now proceed to construct the probability measures oz, 5 € {0, 1}V, with the desired
properties. Let

d = max degv;

1<j<N
andfor j € {1,..., N}, leta;,...,ajq € Z be such that
d
vj(x) = Z ajx’. (3.3)
We define the N x d matrix D by
(D)j,s =djs (34
for je{l,...,N} and s€{l,...,d}. For each je{l,...,N} and each §=
&1, ..., En) € {0, 11V, let bj?> =1 —&;/2 and set
b = B, b)) (3.5)
Since vy, . . . , vy are linearly independent, the rank of D is N. Hence, for each§ e {0, 1}V,
there exists a non-zero x = (x, (E) (S)) € Q7 satisfying

D)_ég = bg. (3.6)
Let ngp € N be such that ng > 1. Choose a subsequence (nj)xeN Of (mp)reny With the
property that for any & = (51, . EN)€{0, )N any je{l,...,d}, and any k € N:
(a) dn0|x<f)| <ny; (b)x 'ny € Z; and (c) (2dn@*hng.

Let {0, 1} be endowed with the product topology and let P be the (2 2) probability
measure on {0, 1}, For eaché € {0, 1}V, we define fé 0, 1N x {0, 1}V —> T by

fi@r,m) = Z Z xn

=1 s=1 !

3.7

Since for any wy, w; € {0, 13N and any k € N, |w1 (k) — wa(k)| < 1, item (a) implies that

foranyr e Nandany s € {1,...,d},
®
‘—(wl(r Sl oom
n; dnon;
By item (c),
oo d oo oo )
ni dn 1 ny 1 1 1 m
;;dnonf_gdnon, 0; t_nogntl nony—1 "~ (3-8)
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Thus, by Weierstrass M-test, the function g {0, 3N x {0, 13N — R given by

d
gg(wl wy) = Z Z

t=1 s=1

«®
w2(1))

is well defined and continuous.
Let ¢ be the canonical map from R to [0, 1) = R/Z (so ¢(x) = x mod 1 and ¢ is
continuous). Since fg =¢o gz» we have that fg is continuous and hence measurable. For

each & € {0, 1}V, we will let

*:(IP’XIE”)ofg_l
Fix now § = (&1,...,&y) € {0, 1}V. Clearly oz is a Borel probability measure on T
(and so, agé) =1). All it remains to show is that: (i) oz is continuous; (ii) (a,ﬁg) Ykez, 18

real-valued; and (iii) oz satisfies (3.2). For this, let f : {0, 1}N - R be defined by
@)

© 4 Xy a)(t)
fl@y=) > = n

=1 s=1

(Note that by an inequality similar to (3.8), one can show that f is well defined and
continuous).
(i) We will now show that oz is continuous, but first we need some estimates.
Combining items (b) and (c), we obtain that foreach £ € {1, ..., d}, each w € {0, LN,
and each k > 1,

o 4 x(S) w(t) > n x(é) a)(t)
s s
nif(a))modlzn£<zzn¥ )EZZ mks
=1 s=1 ! 1=1 s=1
k=1 d &) d
_ nkxgg) a)(t) nkxgg) a)(k) s a)(k) nka@) a)(t)
=2 N -y = 53y
r=1 s=I ! s=1 k s=t Mk t=k+1 s=1 n
This is an integer This is an integer
- d (E) d ®
_ ®wk) Xs w(k) nkxY w(t)
= x} T+Z - +ZZ . mod 1. (3.9)
s=0+1 k t=k+1 s=1

By items (a) and (c), we have

d (E) d 0 14
Z Xg a)(k) Z anxs a)(t) Z ,:il‘f‘ Z nyng

n
s=0+1 ”k =kl =1 s=t+1 "k r=k+1 !
d
ni ad ni 21 2n
I N S T ao
=1 "k t=1 "k =1 "k k

(Note that when £ = d, | Y0, .| Y°4_ l(nkxf)/nS)w(t)/m < 2n1/(ng — 1) also holds.)
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Denote the distance to the closest integer by || - || (so for any r € R, ||r|| = inf,cz

|r —n| and, in particular, |r|| < |r|). Consider a polynomial with integer coefficients
v(n) = 221:1 aen®. By (3.9) and (3.10), for any k > 1 and any w € {0, 1},

d
Z ag |:nkf(a)) (E) ;k)] H
=1

d 2 w(k)
V) f(@) =) asz—H =
=1

=

jal|n f @) — x @2 H

d ® d ®
el Z Xg a)(k) Z Z:nkxY a)(t)

Il
M~ I D=

s=0+1 ”k t=k+1 s
d @) d @)
X w(k) ntx a)(t) 2n1
=D lad| X0 = ZZ“ Zlel
=1 s=0+1 ”k =kl s=1

Thus, for any € > 0, there exists k. € N such that for any k > k. and any w € {0, I}N,

L pok
() f@) =) azxf)TH <e G.11)

=1

Pick now o € R and suppose that there exists an w, € {0, 13N such that f(we) = «
mod 1. By (3.11), there exists ki/g € N such that for any k > kg and any o € {0, i
with f(w) = o mod 1,

-5) 5]

d

Howk) — wy(k
3 20—
¢

b(g) w(k) — wa (k) H

d
Byw(k) — wy(k
3 al,zxf)w — v () (f (@) —f(wa>>H+ o1 (1) (f (@) = f (@a)
=1
d & @ (k) ‘ @) wy (k)
< || D anex — - T Ui f(w) H + arexy —— = Vi) f(@a)
=1

+ o1 () (f (@) = f (@)

1 1 1 1
<5t g HIMEU© — f@)ll = +0= .

Note that if @(k) # wq (k), then [(1 — & /2)(@ (k) — wq(k)/2] € (%, L}. Since for any

k>k1/8,
‘(1 El)w(k)—wa(k)‘ H( El)w(k) wa(k)H
2

https://doi.org/10.1017/etds.2022.71 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.71

3520 R. Zelada
we have |(1 — &1/2)(w (k) — wy (k))/2| & {}t, %} and hence w (k) = wy (k). It follows that
f~'{a +n | n € 7)) is a subset of

{w € {0, 1} |Vk > kijs, o(k) = wa(k)},

which has at most 2¥1/8 elements.
Let g : {0, 1}N — T be defined by

o d @
'xS
=2 dl = —w(t d 1
g)=2f(@modl=>"%" @) mo

t=1 s=1

and set
p=Po g_l.
Take o € [0, 1) and let x = /2. Regarding « as an element of T = R/Z, we have
g'a)=fx+nineZhU s (fx+5+n|nez}).
It follows that g~' ({«}) is finite and hence
pa)) =P(g~ () = 0.

Noting that fg (w1, w2) = g(w1) — g(w2), we have
oz({a}) = / Ly (x) dog (x) = / / Lo} (fz (@1, @2)) dP(w1) dP(w2)
T (0." J{o,yN
= f / L (g(@1) — g(w2)) dP(w) dP(w2)
(0,08 Jyo,)N

=/f]l{a}(x—y)dp(x) dp(y) =0.
TJT

So, oz is continuous.
(i1) For each m € Z,

/ p2mimx dag(x) :/ / p2mimx—y) dp(x) dp(y) = ‘ / p2mimx dp(x)
T T JT T

Thus, the sequence (a,g‘f))kez is real valued.

(iii) Finally, we show that oz satisfies (3.2). By (3.11) and the definitions of g, D, Xz,

2
. (312

and Eg, each j € {1,..., N}and each m € Z satisfies
lim eZni(vj(nk)+m)x d,O (x) = lim e27‘[i(vj (ng)+m)g(w) d]P’(a))
k—o0 JT k— o0 1NN
{0,1}
— lim eZni(vj (ng)+m)2 f(w) dIF)((,())
k—o00 {O,I}N
— lim eZni[ZUj (nk)f(w)]eZni[me(a))] dH‘D(Cl))

k—o00 {0,1}N
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— lim 27i20=8}/D®)/2) 2mi2mf @)] Gy
k— 00 {0,1}N

— lim eQJTi(]—;,'/z)a)(k)eZJTi[me(a))] dIP(a)), (313)

k—o00 {0,1}N

whenever any (and hence each) of the limits in (3.13) exist.
Since the shift map on {0, DN s P-mixing, the last expression in (3.13) can be
rewritten as

/ HH1=5i/DeM) gp(g) A (@] g (). (3.14)
0. 0.

Since w(1) equals each of 1 and 0 with probability %, we get that (3.14) equals

1 eZJTl(Sjr/Z) 2mimx _ if Sj =1,

Z ¢ d,o(x) B 2mwimx .

r=0 T Jpemmdp ifg; =0.
So, by (3.12),

klggo ] 27 () +m)x dUg(x) llm ‘ / 271 (v (ng)+m)x d,o(x)
= ‘(l — E/)/ eZTnmx dp(x) = (1 — ;;:j) / emex d,O()C)
T T

= (1 _gj)f]re%[imx dag(x),

proving that (3.2) holds. .

4. The proof of Theorem 1.6
In this section, we prove Theorem 1.6 (=Theorem 4.2 below) on its full generality. First,
we need a technical lemma.

Given any sequences ¢y, . . ., ¢n : N — Z, we say that the sequences ¢1, . . ., py are
strongly asymptotically independent if forany a = (ay, . . ., ay) € ZN \ {6}, the sequence

arpi(k) +---+angn(k), keN
is eventually a strictly monotone sequence (so, in particular, limg_, oo |Z;V=1 as¢s (k)|= 00).

LEMMA 4.1. (Cf. Theorem 21 in [13]) Let ¢y, ..., ¢n : N — Z be strongly asymptoti-
cally independent sequences. For any t € N, the set

ml((pl? e 9¢N) = {(ala LR 7af) € Rt | (¢](k)(¥1, L] ¢N(k)0[1, e 9¢1(k)al7
, ON (K)ot ren is uniformly distributed mod 1}

has full Lebesgue measure on R'. Furthermore, for any (a1, . . ., ;) € My (1, . . ., dN),
the set

M(D1, ..., ON, A1, ... o) ={ad eR | (ay,...,q,a) € My1(P1,...,0n8)) 4.1)

has full measure on R.
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Proof. To prove the first claim, we will use induction on t € N. When ¢ = 1, the proof is
the same as that of Theorem 4.1 in [9]. By Weyl’s criterion for uniform distribution mod 1,
it suffices to show that for any (ay, . . ., ay) € Z" \ {0}, the set

M N
{04 €[0,1) ‘ Mlgnoo % Z exp [Zni Z aj¢>j(r)a] = 0}
=1 =1

has Lebesgue measure 1.
For each M € N and each « € [0, 1), define

1 M N
SM)(@) = - > exp |:2m' > aje; (r)ot:|.
r=1 j=1

Observe that

1 M N
IS Gaery =577 D /T exp [2ni2aj<¢,(r>—¢j<s>)x} dx.  (42)
r.s=1 j=1

The right-hand side of (4.2) can be written as
1 - N
TR D; 2Re< fT exp [27” ; aj(pj(s) —; (r))x} dx). 4.3)

So, since @1, . . ., ¢y are strongly asymptotically independent, it follows from (4.3) that
for M € N large enough,
2 2
It follows that
2 _ 2
/ Z SO dx = 3 IS gy <
M=1

and hence, for almost every o € T, Zi,,ozl |S(M?) ()| < o0.
So, in particular, for almost every o € T,

lim S(M?)(x) = 0. (4.4)
M—o0
We will now show that (4.4) implies that for almost every o € T,

lim S(M)(a) = 0.
M—o00

Indeed, let @ € T be such that limy_ oo S(M?)(a) =0 and let M, My € N satisfy
M} <M < (Mp+ 1)2. Since

M

1
SOD@) — SMD @) < — Z( _ﬁo)+ﬁ o

Mg n=1 n=M2+1

https://doi.org/10.1017/etds.2022.71 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.71

Mixing and rigidity along asymptotically independent sequences 3523

we have that

M?  2Mp+1 M? 2Mp + 1
S(M)(a) = SMD (@) < 1— -2 4 20T < __"0
Thus,

lim S(M)(a) =0,
M—o00

proving that 911 (¢1, . . ., ¢n) has full Lebesgue measure in R.

Now let + € N and suppose that for any #' <t and any strongly asymptotically
independent g1, ..., gy : N— Z, My (g1, ..., gn) has full measure in R, We want
to show that 9%, ( (@1, . . . , ¢n) has full measure in R+

For each ReN and each F=(ri1,. ., N1s--->Flgs--->Tnyg) €10, ...,
R — 1}V, we define the set

rig ori+1 g ryg+ 1 ry rig+1
Ory=|—, X o X | —=—, X x| =2,
’ R R R R R R

rNg g+ 1
XX | ==, =)
R R

Observe that for each R € N, {Qr7 |7 €{0,..., R — 1}"} is a partition of TV =
[0, HN'.
Fix (a1, ..., o) € My(¢1, ..., ¢n). Foreach R € Nandeach7 € {0, ..., R — 1}V,
(RF) . . . e
let (n;, " ")ren be the unique increasing sequence satisfying

B ke Ny
=neN|(@ima,...,onMWay, ..., o1, . ..,¢xM)a) mod 1 € Qpr}.

Foreach j € {1,..., N}, let ¢§.R’;) : N — Z be defined by
¢\ (k) = ;™).

(Observe that since qbl(R’r),. . .,d)l(f’;) are ‘simultaneous’ subsequences of ¢, . . . , Py, the
sequences qbl(R’r),. . .,¢>1(f’r) are strongly asymptotically independent.)

Let
M (1, ..., On, Ly ey 0) = m ﬂ ml(qS](R,r),'”,(ﬁ](\;?,r))'

ReN 7efo,..,R—1}N!

Note that by the inductive hypothesis, 0 (¢1, . . . , N, @1, . . . , &) has full measure in R.
Pick a € Dﬁ/(qﬁl, ey ¢N, oLy e v vy Ol[). For any (al,l, e AN T e s ALy e e ey aN,,) €
ZN' and any (ay, . . ., ay) € ZN \ {0},

| M N N
lim i ,; exp |:2ni< Z Z ajs@j(n)os + Z aj¢j(n)a)}

M— o0 .
j=1 s=1 j=1

M N N
= lim lim % ; exp |:2ni< Z Z ajs¢j(n)og + Z aj¢j(ﬂ)(¥)i|

R—00 M—o00 -
j=1 s=1 j=1
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N
RLIVLUN YD DR DR RO
n=1 7e{0,...,R—1}N?

N N
X exp [2711'( Z Z ajsdj(n)as + Z ajp; (n)a>:|
j=1 s=I j=1
= Rli_)moo Z A,,h_ﬂnoo Z 1 n®D | keNy ()
7€{0,....R— 1)1
N ¢
X exp [27”( Z ajs¢;(mas + Z ajp; (n)a)D (4.5)
j=1 s=1
Fix Re Nand7 €{0,...,R — 1}V, By our choice of (a7, . . . , &) and the definition of
(n,(cR’r))keN,
B " <y
lim = .
M—00 M RNt
So,
| M N ¢ N
Mh_r)nOO i Z ]l{n]({R,F) ‘keN}(n) exp [2711'( Z ajspj(n)as + Z ajp; (n)oz)]
n=1 j=1 s=1 j=1
D 1 < my)
= lim

M=0 M|(n{* |n<R 7 < My

(R | RO <py

N ¢ N
X Z exp |:2m'< Z Z aj,x(;&;.R’;) n)ay + Z aj¢§-R’F) (n)a)i|

n=1 j=1 s=1 j=1

1
= 1
Ml—r>noo RN|{n (RV)| (R.F) < M)

R, R,
Hn(R7 | nRD <y

X Z exp [27‘[1(2261]@( )(n)ozb +Za1¢(m)(n)a>:|

n=1 j=1 s=1
1 d ; ;
- (o B P St
j=1s=1 j=1

Observe that for any € > 0, there exists an Ry € N such that for any R > Ry, any
7ef0,...,R—1}" andanyn € N,

N ot N ot
exp [2711 Z Z a“¢(R )(n)ad} — exp [an Z aj,s%s:|

= Jj=1 s=1
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It follows from (4.5) that

Y RN -
lim i ’; exp [an ( Z Z ajsejn)os + Z ajd; (”)“>j|

M— o0 ‘
j=1 s=1 j=1
1 | M N 1
. . . R
=Jim w2 (g e [2ri( 2 anel e
7el0,...,R—1}N1 n=1 j=1s=1
N
RF
+> ajo) ’)(n)a)D
j=1
li L
- RLmOO RN? Z
7el0,...,R—1}N1
: N t Tjs M N
~oexpl2mi ) i 1 ais%] -
(yim, SR B G E) § ot 37 08 7m]) =
n=1 j=1

So (at,...,0,a) € My (d1, ..., DN).

Since M, (¢1, . . . , ¢n) has full measure and for any («, . .., a;) € M (1, ..., dN),
M (1, ...,0N,01,...,0) also has full measure, Fubini’s theorem implies that
M +1(@1, - - -, dn) has full measure. This completes the induction.

To see that for any («y, . .., o) € M (D1, ..., dN), M(D1, ..., dN, 1, ..., 0) has
full measure, simply note that

m/(¢1,...,¢]v,0l1,...,0lt)ggﬁ(qh,...,(ﬁ]v,a],...,a[). |

THEOREM 4.2. Let N € N and let ¢, . .., ¢n : N — Z be asymptotically independent
sequences. Then there exists an increasing sequence (np)ren in N such that for any
5 = (&,...,&n) € {0, 1}V, there exists a non-trivial weakly mixing Gaussian system
(RZ, A, Y Tg) with the property that for each j € {1,..., N}and any A, B € A,

. —¢j(ng)
Jim ye(ANT ™ "'B) = (1 —£)yz(ANB) + &y (A)yg(B). (4.6)
Proof. As in the proof of Theorem 3.1, we will construct spectral measures oz,
§ € {0, 1}V, which have associated Gaussian systems with the desired properties. For
each € = (€1, ..., &) € {0, 1}V, let by = B, ... bY) € QY be defined as in (3.5)

(sob¥) =1—¢;/2foreach j € {1,..., N}) and for each k € N, let

k) = i (k 1.
(k) jomax 1o (k)| +

.....

We claim that there e)gist: (a) an increasing sequence (ny)xen in N and (b) sequences of
irrational numbers (@\")xen, & € {0, 1}V, which satisfy the following conditions.
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(1) For each k € N and each £ € {0, 1}V, o} € ¢ (0, 1/[2¢® (ng_1)], where ng = 1. So,
in particular,

[e¢]

Tim gon) Y |2

s=t+1

(E)

foreach € {1,..., N}.
(2) Foreachk € N, each &€ € {0, 1}V, andeach £ € {1, ..., N},

ag) bf) |
¢£(”k)7 - TH < %
which implies
@) (E)
11m ‘d)g(n,)— — —H =0.

(3) For each k € N, each 5 € {0, l}N, each £ € {1,..., N}, and each kg € N with

ko < k,
(S)
‘ ol (nk)— H
This means that
(E )
lim ‘ =0
k— 00
fast enough to ensure that
&)
¢z(nk+1)—H =0.

Indeed, we define the sequences (ny)ren and (a(s))keN, § € {0, 1}, inductively on
k € N. First, note that there exists an increasing sequence (m)ienN in N for which the
sequences

Yik)y=¢;(my), jel{l,...,N}
are strongly asymptotically independent. Let 51, ces §2N be an enumeration of {0, 1}V.

To construct the desired sequences, we will need to show that the sequences (a,(f))keN,
£ € {0, 1}V, satisfy the following additional property.
(4) For any k € N, the sequence

@m0, gwma®, g1 ma ™. pnmpa™,

p1ma®. . onma, . eima . enmpaY), 1 e N

is uniformly distributed mod 1.
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By Lemma 4.1, we can pick

En) IR E
(a@'),...,alzN)e 0, ——
20(1)

such that the sequence

En)

@1, . onma®, . g1ma ™, gnmpa™

), teN

is uniformly distributed mod 1 (and so, a(sl), . (SZN) satisfy 4)). Pick t; e N

arbitrarily. Setting ny = m;, , one can check that ny and 05(51), . iszN satisfy conditions

(1), (2), and (3) (note that for k = 1, condition (2) is trivial and condltlon 3)is vacuous)

Fix now k € N and suppose we have chosen ais),..., (E) g'e 0,1}V, a

ny < - - < ng satisfying conditions (1)—(4). Note that (0, 1/[2k+1<1>(nk)] has posmve
measure. By repeatedly applying (4.1) in Lemma 4.1, we can find

) En) 1
e €0, /——/————
Yrt1 Frt1 ( 2k+1®(nk)
such that for each s € {1, . .., 2V}, the sequence

Grma, o ma®, L grmal™, g mpa ™,

E En)
¢1(mt)a@“,. ¢N<mt>a@”,. L pma ™ e maY,
p10m)a), L onmal), i maal), . enmpa®)), 1 eN

is uniformly distributed mod 1. It follows that a@),. a,ii)l, E € {0, 1}V, satisfy

condition (4) and hence one can find #.4; € N for which conditions (1)—(3) hold for
Mkl =My, and ny < ng41, completing the induction.

Fix E = (&,...,&y) € {0, 1}". By conditions (1)~(3), for any € > 0, there exists
ke € N such that for any k > k¢, any £ € {1,..., N}, and any w € {0, I}N,

o (é) 00 (E) 00 (S)
‘qse(nk) > T“’“) < Igpe(m) Y 7w(t>|<|¢e<nk>| Y % <e
t=k+1 t=k+1 t=k+1
“4.7)
a(é) <s> (é) p®
¢z(nk)—w(k) -~ —w(k) H P (np) —~— — 37 <e, 4.8)
and
k—1 a(é) k=1 (E)

‘(bfé(nk) ; —o0| < ; <e. (4.9)
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Let f : {0, 1}V — R be defined by

© @
flw) =3 -0,

=1

Combining (4.7), (4.8), and (4.9), one has that for any € > 0, there exists a k. € N such
that for any k > ke, any € € {1, ..., N}, and any w € {0, I}N,

Let now fg {0, )N x {0, 1}N — T be defined by

®

b
de(ni) f (@) — ‘?w(k) <e (4.10)

fr@1.@2) = 2(f (@) — fl@n)mod 1= a1 () — w2(1)) mod 1.

t=1

Setting o; = PxP)o fg_1 and imitating the proof of Theorem 3.1, we obtain the desired

result. O
COROLLARY 4.3. Let N €N and let t € {0,...,N}. For any ay,...,ay € Z and
any linearly independent polynomials vy, ..., vn € Z[x] with v;j(0) =0 for each
jel{l,..., N}, there exists a weakly mixing Gaussian system (RZ, A,y,T) and an

increasing sequence (ny)ien in N such that for any A, B € A,

y(ANT™B) ifj=t,

lim y(ANT %"0R) = ’
k=00 y(A)y(B) ifjef{l,....NI\{0,... 1}

Proof. For each j € {0,...,t}\ {0}, let (¢;(k))ren = (vj(k) —aj)ren and for each
Je{l, ..., NI\{O0,...,1}, let (¢j(k))ken = (vj(k))ren. The result now follows by
applying Theorem 4.2 to the asymptotically independent sequences ¢y, . . ., dn. O

5. Interpolating between rigidity and mixing

Our goal in this section is to prove Theorem 1.3 and obtain Theorem 1.2 as a corollary. We
now restate Theorem 1.3. (Recall that we denote by NEQ the set of all (strictly) increasing
sequences (ny)ken in N.)

THEOREM 5.1. Let N €N, let \,...,\y €1[0,1], and let ¢1,...,¢n : N — Z.
Suppose that ¢1, . . ., ¢y satisfy the following condition.

Condition C: There exists an (ny)geN € NEIO such that for anyg =(&,...,&n) €{0, l}N,
there exists an aperiodic Tg € Aut([0, 1], B, n) with the property that for each j €
{1,...,N}andany A, B € B5,

lim (AN T, 7" B) = (1 - £)u(A N B) + & u(A)u(B).

§
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Then the set
O@1,....¢n) ={T € Aut([0, 1], B, j1) |3(ke)¢en € N,
Vje{l,...,N}VA,BeB,
(lim HANT %) By = (1 — % j)p(A N B) + hju(A)u(B))
— 00

is a dense Gy set.

Before proving Theorem 5.1, we will review the necessary background material on
Aut([0, 11, B, w).

5.1. Background on Aut([0, 1], B, u). We will follow the material and the terminology
in [7]. For each £ € N, let E; denote the family of the half-open intervals

k k+1

207 2t
We call each element of E; a dyadic interval of rank £. Define the metric d on
Aut([0, 11, B, 12) by

), kelo,...,25=1}.

T, S) = Z 2% Z w(TEASE), (5.1)
£eN EcE,
where TEASE denotes the symmetric difference between the sets TE and SE. The
topology induced by 9 is called the weak topology of Aut([0, 1], B, w).

With this topology, a sequence (Tix)ken in Aut([0, 1], B, u) converges to T €
Aut([0, 1], B, ) if and only if (Ty)ren converges to T with respect to the weak operator
topology on L%(w) if and only if (T})ren converges to T in the strong operator topology
on L?(uw). Furthermore, (Aut([0, 11, B, w), 8) is a topological group.

We remark that while Aut([0, 1], B, i) with the weak topology is completely metriz-
able, the metric space (Aut([0, 1], B, i), d) is not complete (that is, not every Cauchy
sequence needs to be convergent).

We now turn our attention to some of the dense subsets of (Aut([0, 1], B, i), 9).
Given £ € N, a transformation 7' € Aut([0, 1], B, w) is a cyclic permutation of the dyadic
intervals of rank £ if forany E € Ey: (a) TE € Ey; (b) there exists an « € R such that for
anyx € E,Tx=x+a;and(c) E, ={E,TE, ..., Tzz_lE}. The following result states
that the cyclic permutations of dyadic intervals are dense in Aut([0, 1], B, w) [7, p. 65].

LEMMA 5.2. Let T € Aut([0, 1], B, &) and let € > 0. Then there exists an £, € N such
that for any £ > L., there exists a cyclic permutation S of the dyadic intervals of rank £
such that 0(T, S) < e.

Recall that a transformation 7' € Aut([0, 1], B, ) is called aperiodic if the set of x €
[0, 1] for which there exists an n € N with 7" x = x has measure zero. Lemma 5.3 below
asserts that the conjugacy class of any aperiodic T € Aut([0, 1], B, w) is dense [7, p. 77].

LEMMA 5.3. Let Tp € Aut([0, 1], B, u) and let € >0. For any aperiodic T €
Aut([0, 11, B, ), there exists an S € Aut([0, 11, B, ) such that 3(Ty, S~'TS) < e.
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5.2. The proof of Theorems 1.2 and 1.3.

Proof of Theorem 5.1. Let the sequence (ny)ien in N be as in the statement of
Theorem 5.1. Recall that for each £ € N, E,; denotes the family of all dyadic intervals
of rank £ and let E(£) = Ule E,. For each ¢, £ € N, define O(q, £) to be the set

S N
U ﬂ ﬂ{T e Aut([0, 11, B, ) | |w(E N %) )

k=t E,FEE() j=1 1
— (1 =M)HU(ENF) = Nju(E)yn(F)| < Z]}'

Our first claim is that O(¢1,...,¢N) = mq,ZeN O(g,t). Clearly, if
T €O@1,...,¢n), then T € (), ey O(g, £). Now suppose that T € [, sy O(g, O).
It follows that, for each £ € N, we can find a k; > £ such that

N
T € m m{S e Aut([0, 11, B, ) | |w(E N S*(ﬁj(nkz)F)
E.FeE(l) j=1 1
-1 - )\,])M(E NF)— )\]M(E)M(F)I < Z}

By passing to a subsequence, if needed, we can assume that (k¢)¢ecn 1S increasing.

Furthermore, for any m € N,any j € {l,..., N},and any E, F € E(m),
(lim WENT M) Fy = (1 = % j))u(E N F) + A ju(E)u(F). (5.2)
— 00

Note that for a fixed F' € B, the set £ of those E € I for which (5.2) holds is a A-system
and that for a fixed E € B, the set @ of those F' € 3 for which (5.2) holds is a A-system
as well. (Let D be a family of subsets of a non-empty set X. D is a \-system if: (1)
X eD;(2)if A,Be Dand A C B, then B\ A € D; and (3) for any collection of sets
{A,|neN}C D with A C A, C..., one has UneN A, € D.) Also note that
Uren Ee U {0} is a m-system with |,y E¢ U {0} € EF for each F € | J,cry Ee. (Let
P be a family of subsets of a non-empty set X. P is a w-system if P is non-empty and
for any A, B € P, AN B € P.) By applying the w—\ theorem (see, for example, [6,
Theorem 2.1.6]) to each £, F € |, E¢, We see that (5.2) holds for any E € B and any
F € U,en E¢. Applying the r—)\ theorem again but now to each ®g, E € BB, we obtain
that (5.2) holds for arbitrary E, F € B and hence T € O(¢y, . . ., dn)-
We now show that O(¢q, ..., ¢y) is Gs. Forany E, F € UeeN Ey, define the map

Ig F @ Aut([0, 1], B, u) — [0, 1]

by Ig.p(T) = W(ENTF).

Note that for any given E, F € | Jyey E¢, [1E,F(T) — Igp(S)| < wn(TFASF) and
hence /g r is continuous (with respect to the weak topology). Recall that Aut([0, 1], B, u)
is a topological group and so, for any n € Z, the map T +— T" is continuous. Thus, for
eachn € Zandany E, F € UZeN E¢,themap T — w(E NT"F) from Aut([0, 1], B, w)
to [0, 1] is continuous as well. It now follows that for any ¢, £ € N, O(g, £) is open and
hence O(¢y, . .., ¢n) is Gs.

https://doi.org/10.1017/etds.2022.71 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.71

Mixing and rigidity along asymptotically independent sequences 3531

To prove that O(¢y, . . ., ¢n) is dense, it suffices to show that for any ¢, £ € N, any
Ty € Aut([0, 1], B, ), and any € > 0, there exists a T € O(q, £) such that 3(Tp, T) < e.
In what follows, we will construct a transformation 7' € Aut([0, 1], B, ) with these
properties.

Fix ¢, ¢ € N, Ty € Aut([0, 1], B, u), and € > 0. By Lemma 5.2, there exists a cyclic
permutation R of the dyadic intervals of rank ¢’ for some ¢’ > £ such that

< an 1o, < —-. 5.3
2t 4 0 2
By reindexing ¢y, . . . , ¢n, if needed, we assume without loss of generality that

(we will actually assume that 0 < Aj < --- < hy < 1, the general case is handled
similarly).

By assumption, there exist aperiodic 71, . . ., Ty4+1 € Aut([0, 1], B, i) such that for
eachre{l,...,N+1},eachj €{l,..., N},andeach A, B € B,

e Au(B) ifj>rt,
lim WANT, i) gy _ u(Au(B) if j >
k— 00 u(ANB) ifj<t.
By Lemma 5.3, we can assume that foreacht € {1,..., N + 1},

I(R.T) < Z. (5.4)

Furthermore, since the set {71 | n € Z} has measure zero, we assume without loss of
generality that 7;(1) = 1. Thus, foreach t € {1, ..., N + 1}, T; ([0, 1)) = [0, 1).

Leth\o=0and A\y4+; = 1. Foreachr € {1,..., N + 1}, let§; = N, — N\;—1 and let

21 r+ X r+ A

. t—1 t

S0, - [T - )
r=0
be defined by
r r 4+ h—1
Si(x) = at(x - 27) T

for any x € [r/2£/, r+ 1)/2[). We remark that S; is a bijection and both S; and S,_1 are
measurable.
We now define T : [0, 1] — [0, 1] by

S, 0T, 08 '(x) ifthereexistsz € {1,..., N+ 1},
0 ’ ’
T(x) = x e U5+ nen/28 (r 40 /2) = Si(10, 1),
1 ifx=1.
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It now remains to show that: (i) T € Aut([0, 1], B, n); (i) T € O(q, £); and (iii)
0Ty, T) < e.
(i) We will now show that T € Aut([0, 1], B, u). Foreachr € {1,..., N + 1},

/

2 -1 21
-1, r+)\.t_1 r—i—)\, r+)\.t_1 r+)\.t
StoTroS, U [T’T - U TT (5.5)
r=0 r=0

is an invertible measurable function with measurable inverse S; o Tfl oS, I Note
that for any measurable A C [0, 1), ©(S;(A)) = §;u(A) and, consequently, for any
measurable A C §,([0, 1)), M(S,_IA) = (1/6;)(A). It follows that for any measurable
A < S([0, 1)),

1
w(Sio T o STH(A) = 8ipu(Ty 0 57 (A)) = 8 (ST (A)) =8 - Su(A) = p(4) (5.6)
t

and similarly 1(S; o 7,7! 0 §71(A)) = n(A).
Let A C [0, 1] be measurable and foreacht € {1,..., N + 1},let A, = A N S,([0, 1)).

Since A = vaz'ql A; up to a set of measure zero and Ay, ..., Ay are disjoint, (5.6)
implies
N+1 N+1 N+1 N+1
u(TA)=u< U TAT) =Y u(SioTioS (A)) =) u(A) = u( U A,) = j(A)
=1 =1 =1 =1

and w(T~'A) = u(A). Thus, T € Aut([0, 1], B, ).

(ii) To prove that T € O(q, £), we will first note that for each E € E(¢’) and
eachte{l,...,N+1}, ENS(0, 1)) = S;(E). We also note that, by (5.5), for any
te{l,..., N+ 1}, T(S(O0, 1)) = S5O0, 1)). Thus, for any j € {1,..., N} and any
E,FcE({) CEW),

N+1
lim wW(ENT %" F) = lim Z w(ENT %0 F NS0, 1))
k— o0 k— o0 1
N+1
= lim Y u(EN S0, 1IN T~ IF 05,0, 1))
k—00 =
N+1

= i EYNnT %0 (s F
Jim ;u[s,( ) (S F)]

N+1
= lim Y uIS(E)N (S o T, "™ 0 871 (S,F)]
k—o00 =1
N+1
050

— 1 S(ENT
kggo;u[ (ENT,
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N+1 N+1
. —¢j(n )
= lim Yo swENT, ™ E) = Y SuENF) + Z 8L (E) i (F)
=1 t=j+1 =1
N+1
= > Ou—N_DWENF) + Z(xt — M- D (E)u(F)
t=j+1 t=1

=0 =A)uENF) +Nju(E)n(F).

SoT € O(q, t).
(iii) By (5.3), to prove that d(7p, T) < €, all we need to show is that d(R, T) < €/2.
Note that forany E € Eyr, RE € Ep. So, forany E € E(¢/) andanyt € {1,..., N + 1},

RE N S,([0, 1)) = S, (R(E)). It follows that

N+1

1
Z o Z W(REATE) = Z T Z Zu((REATE)ﬂS,([O 1))
E€Ey (=1 EcE; t=1
1 N+1
—Z o 2 D MURE NS0, IAITE N S0, D))
=1 EcE; t=1
A 1 N+1
=D 5w 2 D MUSREIAITSED
=1 EcE; t=1

4 N+1
= Z Y > HUSIREIA(S o Ty 0 S7)(S E))
=1 EcEy

t=1

N+1
1
37 D 2 M(S(REATE))
EcEy

, t=1

~
I

1

Il
TMN\

N+l
Z Y S(REAT,E)
€Ey

~

A N+1

N+1
=Y s Z 0 > WREATE) < Z 8:9(R, Ty).
=1 = E€Ey

By (6.4),0(R, T;) < €/4, so

N+1

Z 2213 Z MREATE) =< Z 8O(R T) < 7.

EcEy
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Finally, since by our choice of ¢/, 1/ 2¢ <€ /4, we obtain

IR, T) = Z 2% Z W(REATE)

teN Ec€Ey
4 1 0 1
=D 5w D WREATE)+ 3 o5 3 w(REATE)
=1 EcE, 0=0'+1 EcEy
v 1 1 € € €
5227 > WREATE) + o5 < 7+ 7 =5
(=1 EcE,

We are done. O]

We now obtain Theorem 1.2 as a corollary of Theorems 4.2 and 5.1.

THEOREM 5.4. Let N € Nand let '\1, ..., \y € [0, 1]. For any asymptotically indepen-
dent sequences @1, . . ., oy : N — Z, the set
O = (T € Au([0, 1], B, n) |13(ng)keN € NIO\IO Vjiell,...,N}

VA, B € B, klim PANT 9By = (1 — A )u(A N B) + hju(A)u(B))
—00
is a dense Gy set.

Proof. By an argument similar to the one used in the proof of Theorem 5.1, O is a G; set.
Combining Theorems 4.2 and 5.1, we see that O contains a dense Gs set. Hence, it is a
dense Gj set. O]

6. Families of non-asymptotically independent sequences for which Condition C holds
In this section, we will show that, as mentioned in §1, Condition C in Theorem 1.3 is
satisfied by families of sequences which are not asymptotically independent. The following
result, which also follows from [3, Theorem 3.11], provides some examples of such families
of sequences. (Our proof is different from that of [3, Theorem 3.11].)

THEOREM 6.1. Let N > 2,let Ay, . .., Ayn_, be an enumeration of the non-empty proper
subsets of {1, ..., N}, and let py, ..., pon_o € N be distinct prime numbers. For each
jel{l,..., N}, set

qj = I1 Pn 6.1)

(ne(l,...2N 2} | jeAn)

and put ¢ (k) = q;k, k € N. Then there exists an increasing sequence (ny)ren in N such

that forany & = (&1, . . ., Ex) € {0, 1}V, there exists a non-trivial weakly mixing Gaussian

system (RZ, A, Ve Tg) with the property that for each j € {1, ..., N}andany A, B € A,
—¢j(ng)

Jim yzANT; B) = (1—&)yz(ANB) + &y (A)yz(B). (6.2)
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Proof. Let Ag ={1,..., N}, let A,n_; =0, and let M be the least prime number with
the property that for each n € {1,...,2¥ —2}, M > p,. Put p,n_; = M and define the
sequence (1 )reN by

P

n=(T1

r=1

2k
p,) k!, keN.
Foreachn € {0, ..., 2N — 1}, define &, = (¢, ..., &) € {0, 1}V by

g}”:l—hn(]’), jefl,...,N}.

(Observe that {£, | n € {0, ...,2Y —1}} = {0, 1}V)
Fixne{0,1,..., 2N 1}, put po =1, and let ¢, = max{p, — 1, 1}. Consider the
product space

XnZ{O,u-,Cn}N

and let PP, be the Borel probability measure on X, defined by the infinite product of the
normalized counting measure on {0, . . ., ¢,}. Let f, : X,, x X,, — T be defined by

i 1 wi(t) — o (0)
ny Pn

Su(wr, w2) = mod 1.

t=1

Clearly, f, is continuous.
Set the probability measure oz, on T to equal (P, x P,,) o fn_l. Note that for each
keZ,

/ IR o (x) = / / 2T ()@ =020/ P1) g, (101) dPP, (e2)
T " Xp I X,

z‘f ezmk(z;’;l(l/n,)w(t)/pn
X

It follows that oz, is a (non-zero, positive) symmetric probability measure. We claim that
the non-trivial Gaussian system (RZ, A, Y, T§n) associated with g, is weakly mixing
and satisfies (6.2). By Proposition 2.4 and Theorem 2.3, it suffices to show that: (i) og, is

continuous and (ii) that for each j € {1,..., N} and any m € Z,
lim [ ¥i(@jmo+mx dog (x) = (1 ) / eFrimx dog (x). (6.3)
k— 00 T n J T n
(i) We will now show that o is continuous. For this, let j € {1, ..., N} and note that
o
L w@ g, w(k) ngqjo) g w(k)
Jim foym0 3o > mued o

ny pnM k—>oo ny paM

= lim
k—o00

sz (Lo %w(r) q1w<k> H_o (64)

pnM
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uniformly in € X,,. Thus,

o o
1 wl(l) 1w () qjwy (k) q]wz(k)
llm ¢j(ni) —¢(k — ‘—‘ =0
‘ / Z P oy oM M
(6.5)
uniformly in (w1, @2) € X, X X,,.
By (6.1), g; and M are relatively prime and hence for any a, b € {0, . . ., c,},
. b
4% _ 4i% 1od 1 if and only if a = b. (6.6)
M DnM

The continuity of oz, now follows from (6.5) and (6.6) by noting that IP,, is an atomless
measure and arguing as in the proof of Theorem 3.1.
(i) By (6.4), forany j € {1,..., N},

]

d)](nk)z Lo® %(]()H lm |M|‘
=1 "

[e¢]

1 k
¢,(nk)Z w(7) q](w()”

l1m ’

ny Pn ny pnM

uniformly on w € X,,. So for each m € Z,

lim 2P MY g (x)
k—o0 JT En

— lim ’/ ezﬂi(¢j(nk)‘i‘m)(Z?il(l/nt)w([)/pn

k—o00

2
— lim ‘ / 271 @0 ) o) 2mim( (1 /n)o O/ p) gp, (4)

k—o00

1 2

Cn
2mi(qjr/pn)
e
2eape

1 5": 2mi
- ((Ijr/Pn)
e
n 1 r=0

By (6.1), foreach j € {1, ..., N},

/eznim(zfil(l/n[)w(w/pn
Xn

2
/ e27timx dag (x).
T n

Cn

1 27Tl(q) P
E e J / n)
Cn 1 r=0

2
=14,()) =1-&",

which implies that (6.3) holds. O
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