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QUASI-REGULAR DIRICHLET FORMS: 
EXAMPLES AND COUNTEREXAMPLES 

MICHAEL RÔCKNER AND BYRON SCHMULAND 

ABSTRACT. We prove some new results on quasi-regular Dirichlet forms. These 
include results on perturbations of Dirichlet forms, change of speed measure, and tight­
ness. The tightness implies the existence of an associated right continuous strong 
Markov process. We also discuss applications to a number of examples including cases 
with possibly degenerate (sub)-elliptic part, diffusions on loop spaces, and certain Fleming-
Viot processes. 

0. Introduction. The purpose of this paper is to bring together some new results 
on quasi-regular Dirichlet forms that were obtained recently. In Section 1 we start with 
some examples of semi-Dirichlet forms on an open subset of Rd with possibly degenerate 
(sub)-elliptic part. Our treatment of these forms extends some of the results in [Str 88]. 
Subsequently, we consider perturbations of Dirichlet forms by smooth measures, along 
the lines of [AM 91b], and also look at the effect of changing the underlying speed mea­
sure (cf. Section 2). In Section 3 we extend our earlier results on tightness to a more 
general class of Dirichlet forms which consist of a "square field operator"-type form 
perturbed by a jump and killing term. As a consequence one can construct an associ­
ated (special) standard process on the basis of the general theory in [MR 92]. We give 
several applications in Section 4, i.e., construct diffusions on Banach spaces and loop 
spaces, and also construct certain Fleming-Viot processes (which are measure-valued). 
We note that in the Section 1 we look at semi-Dirichlet forms, but afterwards we restrict 
ourselves to Dirichlet forms (see Définition 0.3 below for the difference). The reason is 
that we will sometimes use Ancona's result (see Remark 0.4) and it is not known if this 
result extends to semi-Dirichlet forms. Many of the results for Dirichlet forms do carry 
over to semi-Dirichlet forms, we refer the interested reader to [MOR 93]. 

Until recently, the general theory of Dirichlet forms had been restricted to the case 
where the underlying space is locally compact. In M. Fukushima's book [F 80], which is 
the standard reference in the area, the local compactness is used throughout and is crucial 
in the construction of the associated Markov processes. Fukushima assumes that E is a 
locally compact, separable metric space and that m is a positive Radon measure on *B(E) 
with full support. He then constructs a Markov process, indeed a Hunt process, associated 
to any regular Dirichlet form (*E,/)(*£)) on L2(E;m) {cf. below for definitions) where 
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regularity means 

(0. 1) D(£ ) H Cb(£) is £J / 2-dense in D(£) , and is uniformly dense in C0(£). 

Here C()(F) is the space of continuous real-valued functions with compact support. 

Now the local compactness assumption, of course, eliminates the possibility of using 

Fukushima's theory in the study of infinite-dimensional processes. Nevertheless, in the 

years since the publication of [F 80] several authors {cf. e.g. [AH-K 75, 77a,b], [Ku 82], 

[AR 89, 91], [S 90] and see also the reference list in [MR 92]) have been able to modify 

Fukushima's construction in special cases and obtain processes in infinite-dimensional 

state spaces. Recently a more general framework in which such constructions are possible 

has been developed. This is the theory of (non-symmetric) quas i-regular D'mch\et forms, 

which are defined below. The fundamental existence result in this framework is found in 

[MR 92; Chapter IV, Theorem 6.7] and it says the following: 

THEOREM 0.1. Let E be a metrizable Lusin space. Then a Dirichlet form (*E, /)(*£)) 

on L2{E\m) is quasi-regular if and only if there exists a pair (M, M) of normal, right 

continuous, strong Markov processes associated with rE, D{E)). 

This says that the class of quasi-regular Dirichlet forms is the correct setting for the 

study of those forms associated with nice Markov processes. Z. M. Ma, L. Overbeck, and 

M. Rockner [MOR 93] have recently proved a one-sided version of the existence result 

for quasi-regular semi-D'mchlet forms; see Definition 0.3 below. In this case we do not 

get a pair of processes but only the process M. 

In order to explain what a quasi-regular Dirichlet form is we first need some prepa­

ration. For a detailed exposition we refer the reader to [AMR 93a] and, in particular, to 

the monograph [MR 92]. 

Let E be a Hausdorff topological space, and *B{E) be the Borel sets in E. Fix a positive, 

(T-finite measure m on $ (£ ) . 

DEFINITION 0.2. A pair (*£, D(£) ) is called a coercive closed form on (real) L2(E\ m) 

if D{CE) is a dense linear subspace of L2{E\ m) and if Ts. D{E) x D(£ ) —> R is a bilinear 

form such that the following conditions hold: 

(i) £(w, u) > 0 for all u G D(£) . 

(ii) D{E) is a Hilbert space when equipped with the inner product *£i(w, v) := 

(1 / 2 ) { £ ( K , v) + £(v, «)} + (II, v)L2{Evn). 

(hi) ( E , , D ( E ) ) satisfies the sector condition, i.e., there exists a constant K > 0 such 

that |£i(H,v) | <K(El{u,u)]/2<El{v,v)l/2Jorci\\u,veD('E). 

Here and henceforth, *Ea{u, v) := E{u, v) + a{u, v)L2{E.m) for a > 0, and E{u) := £(w, u). 

For the one-to-one correspondence between coercive closed forms, their generators, re­

solvents, and semigroups we refer to [MR 92; Chapter I]. 

DEFINITION 0.3. A coercive closed form ( E , D ( E ) ) on L2{E;m) is called a semi-

Dirichletform {cf. [CaMe 75], [MOR 93]) if it has the following (unit) contraction prop­
erty: for all u e DCE), we have u+ A \ G D(£) and 

(0.2) <E{u + u+ A \,u-u+ A 1) > 0 . 
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If, in addition, E(u - u+ A 1, u + u+ A 1) > 0, then (*£, £>(£)) is called a Dirichlet form. 

REMARK 0.4. If-0: IR —> R satisfies rp(0) = 0 and 1 ^ ( 0 - ^ ) 1 < \t-s\ for all t, s G R, 

then ijj is called a normal contraction. Ancona [An 76] has shown that if (E,D(E)) is 

a Dirichlet form and ^ is a normal contraction, then the mapping u —> I/;(M) is strongly 

continuous on the Hilbert space (D(E), E I ) . It follows easily that this conclusion also 

holds if -0 is a function with a bounded first derivative and ip(0) = 0. 

DEFINITION 0.5. Let (*£, £>(£)) be a semi-Dirichlet form on L2(E; m). 

(i) For a closed subset F C £ w e define 

(0. 3) DC£)F := {w G D(E) \ u = 0 m-a.e. on £ \ F} . 

Note that D(E)F is a closed subspace of D(E). 

(ii) An increasing sequence (Fk)keM °f closed subsets of F is called an E-nest if 

U*>i £>C£)FA is £j / 2-dense in £>(£). 

(iii) A subset N C F i s called TL-exceptional if Af Ç f\>iF£ for some *E-nest (Fk)keN. 

A property of points in F holds E-quasi-every where (abbreviated E-q.e.), if the 

property holds outside some 'E-exceptional set. It can be seen that every E-

exceptional set has m-measure zero, 

(iv) An 'E-q.e. defined function/: F —> R is called E-quasi-continuous if there exists 

an 'E-nest (Fk)keN so thatf\Fk is continuous for each k G N. 

(v) Let / , /„ , ft G N, be *£-q.e. defined functions on F. We say that (fn)nen converges 

E-quasi-uniformly to f if there exists an Ernest (Fk)keN such that/,, —> / uni­

formly on each F*. 

We shall use the following result throughout this paper (cf. [MR 92; Chapter III, Propo­

sition 3.5] and [MOR; Proposition 2.18]). 

LEMMA 0.6. Let ( £ , D ( £ ) ) be a semi-Dirichlet form on L?(E\m). Let un G D(E), 

which have E-quasi-continuous m-versions ûn,n G N, such that un —> u G D(E) with 
~ 1 / 2 

respect to Ex' . Then there exists a subsequence (unk)ke^ and an E-quasi-continuous 

m-version u ofu so that (unk)keM converges E-quasi-uniformly to u. 

We are now able to define a quasi-regular semi-Dirichlet form. 

DEFINITION 0.7. A semi-Dirichlet form (E,D{E)} on L2(E\m) is called quasi-

regular if: 

(QR1) There exists an 'E-nest (Fk)ke^ consisting of compact sets. 
~ 1 /2 

(QR2) There exists an Ex' -dense subset of D(E) whose elements have 'E-quasi-
continuous m-versions. 

(QR3) There exist un G D(E),n G N, having E-quasi-continuous m-versions ûn,n G N, 
and an 'E-exceptional set N C F such that {un \ n G N} separates the points of 
E\N. 

REMARK 0.8. Let (E, £>(*£)) be a quasi-regular semi-Dirichlet form. 
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(i) By [MOR 93; Proposition 3.6] (cf. [MR 92; Chapter IV, Remark 3.2(iii)J) the 
compact sets Fk in (QR1) can always be chosen to be metrizable. 

(ii) (QR2) implies that every u G £>(£) has an 'E-quasi-continuous ra-version u. 

Henceforth, for any subset D of D(%) we will use D to denote the set of all *£-
quasi-continuous m-versions of elements of D. That is, D = {u | u G D}. 

(iii) By [MOR 93; Proposition 2.18(H)] (cf. [MR 92; Chapter III, Proposition 3.6]) 
there exists an *£-nest (Fk)keN such that m(Fk) < oo for each k. Using this and 
[Bou 74; Chapter IX, Section 6, Définition 9, Théorème 6 and Proposition 10] 
we can prove that m is inner regular on (B(E), i.e., m(E) = sup{m(Ar) | K Ç B 

and K is compact} for all B G *B(E). 

(iv) We define the symmetric part of (*£,D(<E)\ by setting *L(u,v) := 
£{£(«, v) + £(v,«)} for M,v G D(£). If (£,D(£)) is a Dirichlet form, then 
(*£,D(fE)\ is also a Dirichlet form. We notice that the definitions of *£-nest, £-
quasi-continuity and quasi-regularity only depend on *£ through its symmetric 
part (L. 

(v) The property (QR1) is equivalent (see [MR92; Chapter III, Theorem 2.11] and 
[MOR 93; Theorem 2.14]) to the tightness of an associated capacity and is ab­
solutely vital in the construction of an associated Markov process (see [LR 92], 
[RS 92], [MOR 93]). In this paper we will not use the notion of capacity, instead 
we will stick with the equivalent "nest" formulation. 

The new concept of a quasi-regular semi-Dirichlet form includes the classical concept 
of a regular semi-Dirichlet form, this follows from the next proposition (cf. [MR 92; 
Chapter IV, Example 4a]). We repeat the proof here for the convenience of the reader. 

PROPOSITION 0.9. Assume E is a locally compact, separable, metric space and m 
is a positive Radon measure on 'B(E). If (*£, £)(£)) is a regular semi-Dirichlet form on 
L2(E;m) (see (0.1)), then (*£,£>(£)) is quasi-regular. 

PROOF. We only show (QR1), as (QR2) and (QR3) are easy exercises. By the topo­
logical assumptions on E, we may write E — (Jj£i Ek, where (Fk)keM is an increasing 
sequence of compact sets in E so that Fk is contained in the interior of Fk+\ for all k > 1. 
It is then easy to see that 

oo 

(0.4) C0(E)nD(<E)C \jD(<E)Fk, 
k=\ 

which concludes the proof. • 

REMARK 0.10. The first example in Section 5 is a Dirichlet form that satisfies (0.1), 
but is not quasi-regular. The space E is this example is a separable, compact, non-metriz-
able Hausdorff space. 
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1. Degenerate semi-Dirichlet forms in finite dimensions. The purpose of this sec­
tion is to generalize the standard class of examples of semi-Dirichlet forms on an open 
(not necessarily bounded) set U C Rd, d > 3 (cf. [MR 92; Chapter II, Subsection 2d)]). 
In particular, we want to allow sub-elliptic, possibly degenerate diffusion parts. We need 
some preparations. We adopt the terminology of Chapters I and II from [MR 92]. 

Let cr, p G L\oc(U\dx), a, p > Odx-a.e. where dx denotes Lebesgue measure. The 
following symmetric form will serve as a "reference form". Set for u, v G C™(U) (:= all 
infinitely differentiable functions with compact support in U) 

(1.1) Ç,(n,v)=f f^^Pdx. 

Assume that 

(1.2) (£p , C^(U)) is closable on L2(U\ adx). 

REMARK 1.1. A sufficient condition for (1.2) to hold is that p, a satisfy Hamza s 
condition (see [MR 92; Chapter II, Subsection 2a)]). We recall that a $(^-measurable 
function/: U —>• [0, oo) satisfies Hamza 's condition if for dx-a.e. x G U,f(x) > 0 implies 
that for some e > 0 

where we set ^ := +oo and || • || denotes Euclidean distance in Rd. In particular, cr, p may 
have zeros, and (1.2) holds if, for example, a, p are lower semi-continuous. However, 
there is also a generalized version, a kind of "Hamza condition on rays", which, if it is 
fulfilled for cr,p, also implies (1.2) (cf. [AR 90; (5.7)] and [AR 91; Theorem 2.4]). In 
particular, if a, p are weakly differentiable then (1.2) holds. 

Now let ay, bi, dt, c G L\0C(U\ dx), 1 < /, j < d, and define for w, v G C^(U) 

<E(u, v) = f ] / — —ay dx + J2 T~vhi dx 

(1.4) J 

^ r dv r 
+ 2 / w TT— dt dx+ I uvc dx. 

~f J ÔX; J 
i '= l " 

Then (*£, CQ°(L0) is a densely defined bilinear form on L2(U\ adx). Set ây := \(ciij• + «//), 
(a// — ay/), £ := (/?i,..., Z )̂, and d := (di , . . . , dj). We define F to be the set of 1 

V - — 2 
all functions g G L\0C(U\ dx) such that the distributional derivatives ^ , 1 < / < J, are in 
L\0C(U\dx) such that \\Vg\\(gaTxl2 G L°°(U',dx) or W^gfig^cf^)-1!1 G Ld(U;dx) 
for some/?, g G [1, oo] with - + - = 1,/? < oo. We say that a $(^-measurable function 
/ has property (APt(T) if one of the following conditions holds: 

(i)f(paTl/2eL°°(U;dx) 
(ii) fP^aP/v)-1/2 £ Ld(U;dx) for some p,q£ [l,oo] with i + x- = l , /?<oo,and 
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THEOREM 1.2. Suppose that 

(L5) U\\l := Ttj^âijtâj > pU\\2dx-a.e.foralli=(tu---,t<i) G M. 
(1.6) âljp-

x eL°°(U;dx). 

(1.7) For ail K C U, K compact, \i(\\k + d\\ and 1/^c1/2 have property (Ap^a), and 

(c + otQ(j)dx — XZ/Li 37 is a positive measure on 15(1]) for some (XQ G (0, oo). 

(1.8) \\b — d\\ has property (Ap?a). 

(1.9) b = f3_ + l_ such that \\f3\\, \\l_\\ ëL\0C(U\dx), (c + a0(j)dx - £f=1 §7 is a positive 

measure on (BiU) and \\/3\\ has property (Ap^). 

Then: 

(i) There exists a G (0,00) such that (<Ea, C™(U)) is closable on I?(V\ odx) and its 

closure (iEa,D(rEa)) is a regular semi-Dirichlet form. In particular, the corre­

sponding semigroup (Tt)t>o is sub-Markovian and there exists a diffusion process 

M properly associated with (<£a ,D( r£a)) (cf. [MR 92; Chapter IV]). 

(ii) If fi = 0 in (1.9) then a can be taken to be OCQ as given in (1.7), and vEa, DCEa)) 

is a regular Dirichlet form. In particular, both corresponding semigroups (Tt)t>o, 

(Tt)t>o are sub-Markovian and there exists a pair (M, M) of diffusion processes 

properly associated with ( E ^ D ^ ) ) (cf. [MR 92; Chapter IV]). 

REMARK 1.3. (i) Theorem 1.2 extends a result obtained by different techniques by 

D. W. Stroock (cf. [Str 88, Theorem II 3.8]) in the strictly elliptic case (p = const) with 

a = 1, atj• e L°°(U\dx), âij = 0 for 1 < ij < d, 7, d = 0, and ||^|| E L°°(U\dx). 

We emphasize, however, that Stroock's result in this particular case is stronger than ours 

since he even proves the corresponding semigroup to be strongly Feller and to have a 

density with respect to Lebesgue measure. 

(ii) The analytic part of the proof of Theorem 1.2 is quite elementary. One of the 

main ingredients is the classical Sobolev Lemma (cf. [Da 89; Theorem 1.7.1 ]), i.e., if 
\ . _ 2{d-\) f h 

(1.10) \\u\\q < X\\\\Vu\\ ||2 for all u G CfîiU), 

where - + ^ = ^ and for/7 > 1, || \\p denotes the usual norm in LP(U; dx). A part of the 

proof of Theorem 1.2 is close to the classical one in [St 651 where p = a = 1. However 

even in this case our proof of the Dirichlet property is quite different and shorter (cf. 

[Bl 71, (10.7)] for the classical proof), and we need less restrictive assumptions on the 

coefficients (namely, e.g. merely \\b\\, \\d\\ G U(oc(U;dx), c G Lx^(U\dx) instead of 

the global integrability conditions in [St 65]). This is mainly due to our more refined 

techniques to prove closability which also permit us to take so general o and p. 

(iii) We stress that in the situation of Theorem 1.2 we can replace U by a Riemannian 

manifold M as long as condition (1.10) or more generally the following inequality holds 

for some a > 0 

(1.11) I M I ^ < const \\(-A + a)l/2u\\2 for all u G C^(M\ 

where À is the Laplacian on M. We refer e.g. to [VSC 92] for examples. 
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Before we prove Theorem 1.2 we discuss some examples for the function p in (1.1), 
(1.5). 

EXAMPLES 1.4. (i) In the case a = 1 it is easy to check that our conditions allow p 
to have zeros of order \\x\\a, a > 2. 

(ii) Suppose that U — Rd and that for every K C Rd, K compact, there exists CK G 
(0, oo) such that 

(1.12) £,âijtiSj>cK\\t\\2dx-&.t. 

for all £ = (£i , . . . , £j) G Rd (i.e., we have local strict ellipticity). Then there exists a 
strictly positive C1-function p satisfying (1.5). 

(iii) Suppose dU is smooth and let g be a smooth distance function in the sense of 
[LM 72]. Define 

(1.13) p:=ga, a>2. 

Then it is easy to check that \\Vp\\p-{l2 G L°°{U;dx). 
For the proof of Theorem 1.2 we need two lemmas. 

LEMMA 1.5. Letf be a Œ>(U)-measurable function having property (Ap^). Then there 
existé, T] G (0, oo), with 6 arbitrarily small, such that for all u G CQ°(£/), 

(1.14) ffp-lu2dx<8 J\\Vu\\2pdx + T] ju2crdx. 

PROOF. The assertion is obviously true in case (Ap^)(i). In case (Ap^){ii) with p, q G 
(1, oo) we have for all 6\ G (0,1) and u G Q?(U) that 

r èp/q 1 r 
(1.15) f2p~xu2dx< -*—A + — u2adx, 

J p qb\ J 

where 

(1.16) A:= jf2pp~p(j-plqu2dx 

and where we used that axlpbx'q < a/p + b/q for a, b G (0, oo). Setting 

(1.17) fo: = fp(ff+l<f^r]/2 

we obtain by Holder's inequality with q G (2, oo), - + 1 = 5, and (1.10) that q d 

WdW"U\\q 
A < HfJI2lln1/27y||2 

(1.18) ^^llfoll^/llp'^vii + i - ip- 1 /^! ! 2 ^ 

<\2\M2d(2[\\Vu\\2pdx+^ 
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where 

(1.19) B:= J\\Vp\\2p-lu2dx. 

If ||Vp||(p<r)~l//2 is bounded, the assertion obviously follows. If 

(1.20) p() := \\Vp\\P](ffl+l(fl/qTl/2 eLd(U;dx), 

applying what we have proved so far with/ := ||Vp|| we obtain for all £2 G (0, 1) and 
u G q?(U) that 

(1.21) B< -2 po 5(2 / \\Vu\\2pdx+-) + —- u2adx. 
P\ V J 2 / q\bi J 

Solving for B we get for 62 small enough that 

(1.22) Z? < 1 - -*— po 3) M — Po 5 / \\Vufpdx+— / i i W ) , 

and resubstitution in (1.15) and (1.18) yields the assertion. The case where ||Vp||p_1 G 
Ld{U\ dx) is similar. If/ has property (Ap^)(ii) with p — 1, (7 = 00, we have as in ( 1.18), 
since 

d-23) / = W ' / W ^ / A 

w i t h A := l ^ - , ^ * / , * GN, that 

(1.24) | / V l " 2 ^ < 2 ^ 2 / ^ ^ + 2|^p-1||2||p1/2w||2_ 

Noting that by assumption \\fkp~x \\d -—> 0 as /: —> 00, we obtain the assertion also in this 
case by the same arguments as before. • 

Let (, ) denote the Euclidean inner product on Rd. 

LEMMA 1.6. Consider the situation of Theorem 1.2. Then for any e G (0, 1) there 
exists a G fao, 00) such that for all u G C^(U), 

(1.25) J\(Vu^)u\dx<e((Ea(u,u)- j(Vu,jl)udx 

PROOF. We first note that for all u G Çg°(l[/), 
(1.26) 

£a()(w, u) - J (Vu, 0)u dx = J \\Vu\\2 dx+- J [(Vu2,7 + d) + 2(c + a{)a)u2] dx 

> J\\Vu\\ldx. 
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Furthermore, by (1.5) and Lemma 1.5 for all S',5 G (0,1) and u G C^(U), 

(1.27) J ~ V s
 6 ~ 

<\{V + j) j\\V4Ux+^ j u^odx, 

for some 77 G (0,00). Now the assertion follows by (1.26). • 

PROOF OF THEOREM 1.2. Let e, a be as in Lemma 1.6. Since e < 1 the positive def-
initeness of (/Ea, C™(U)) is obvious by Claim 1.7. To prove closability of (/Ea, C™(U)\ 
on L2(U; adx) first note that by Lemma 1.6 for all u G C™(U) 

(1.28) (1 +eyl(Ea(u,u) < %x(u,u)- J(Vu,f3)udx<(\ - eyl<Ea(u, u). 

Hence it suffices to consider the case (3 = 0. By [MR 92; Chapter II, Subsection 2b)] we 
know that if for w,vE CffW), 

(1.29) £*(!<, v):= f f^^àijdx, 

then (TLa, Cg°(£/)) is closable on L2{U\adx). Let \i be the positive Radon measure on 
<B(U) defined by 

(1. 30) // := 2(c + aa)dx — 2^ — 
/=i <**/ 

(c/ (1.7), (1.9) and recall that £ = 0). 

CLAIM 1.7. Let u„ G CfîiU), n G N, with un —> 0 m L2(U;adx) as n —• 00, arcd 
||Vw„|| —• 0 m L (U;pdx) as n —> 00. T/ien /7z£re exists a subsequence {unk)keN with 
unk —> 0 p-a.e. ask —> 00. 

Before we prove the claim, for the convenience of the reader we repeat the (modified) 
argument from [MR 92; p. 51] that it implies closability. So, let un G C™{U),n G N such 
that un —• 0 in L2(U; adx) as n —> 00, and %x(un — um, un — um) —> 0 as n, m —> 00. 
Then by (1.26), !Efl(ww — um, un — um) —• 0 as n, m —» 00, and, since (*£a, Cg°(£/)) is 
closable in L2(£/; crdx), we therefore obtain that £fl(ww, wn) —» 0 as « —» 00 and by (1.5) 
that || VMW|| —• 0 as n —> 00 in L2(U; pdx). If (MW/t)*eN is a s in the claim, Fatou's lemma 
implies that for all n G N 

1 r 2 

(1.31) Traiun,un) <'Ea(un,un)+-hmmf (un-unk) dp 
Z k—>oo J 
2T-

(cf. (1.26)). Hence 

(1. 32) Œ^aiUn.Un) < lim inf 'Eai^n — Unk,Un — Unk) 
/c—>oo 

which can be made arbitrarily small for large enough n. Hence (£«, Cg°(L0) is closable 
on L2(U\ adx). To prove the claim, replacing un by unv for any v G Cg°(£/), v > 0 we 
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may assume that supp[w„] C K for some compact set K C U and a\\ n G N. By the 

Cauchy-Schwarz inequality we obtain that 

- / u2
ndp = / \i<(d + b,Vun)undx + I un(c + aa)dx 

< \\K\\d + b\\p~xl2un\^ | |Vw| |p1 / 2 |2 + \\\K(c + aa)ul\\{. 

Using Lemma 1.5 we see that for some <5, r/ G (0, oo) 

(1.34) pK\\d + b\\p-^2un\\l <6 j\\Vun\\
2pdx + r) Juladx. 

and 

(1.35) ||1A-(C + ûror)M |̂ < <5 / | |V^ | | 2pJjc + (r\ + a) i?nodx. 

Now the claim follows. 

To prove the sector condition of (*Ea, D(%a)\ on L2(U\ adx) we recall that by [MR 92; 

Chapter I, 2. l(iv)] it suffices to show that there exists K G (0, oo) such that for all u, v G 

(1.36) |£a(w,v)| <K(Ea(u,u)l/2(Ea(v,v)l/2. 

where ^ ( w , v) := \(T,a(u, v) — iEa(v,ufj is the anti-symmetric part of (<Ea,D((Ea)y 

But for all w,v G C£°(L0 

| ^ (« ,v ) | < £ [^-^-âijdx+[\(d-b,Vu)v\dx 

(L37) < supi^wp-'wi i iiv^iip'^yinvviip1/2^ 
x,'J 

+ | y - è | | p - | / 2 v | | 2 | l l V M l l ' 3 l / 2 | 2 -

By ( 1.8) and Lemma 1.5 the second summand is dominated by 

(1.38) (sJ\\Vv\\2pdx + r] jv2Gdx\ 2(J\\Vu\\2pdx)1 \ 

Hence by (1.5) and (1.6) we can find a constant K' such that for all u, v G C™(U) 

(1.39) | £ « ( M , V ) | <KfU\\Vu\\2dx+ j'u2(jdx] (j\\Vv\\2dx+jv2odx\ \ 

which by ( 1.26) and ( 1.28) implies ( 1.36). From the proof we see that a = oro if /3 = 0. 

The semi-Dirichlet property (resp. the Dirichlet property if j3 = 0), is proved by exactly 

the same arguments as those on pages 48 and 49 in [MR 92]. The form (*£a, D(%x)) is 

by definition regular (i.e., satisfies (0.1 )). The semi-Dirichlet property (resp. the Dirichlet 

property if (3 = 0), is proved similarly to [MR 92; Chapter I, Proposition 4.7]. We need 

that for every e > 0 there exists </>e: —> [—e, oo[ such that <j>((f) = t for all t G [0, oo[, 

0 < </>f (t\ ) — 4>e(h) <h~t\ if t\ < h, (j>( o u G £)(£), sup f > 0 £(</>f o u, <f>€ o w) < oo and 
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lim sup e^0 E(u + (j)e o u, u — 4>e o u) > 0. The boundedness supf>() E{(j)e o w, </>6 o w) < oo is 

proved by using inequality (1.28) and reducing to the case (3 = 0. The limsup statement 

follows from arguing directly as in [MR 92; Chapter I, Proposition 4.7]. 

The existence of the corresponding diffusions now follows from [MOR 93; Theo­

rem 3.8] (see also [CaMe 75]) resp. [MR 92; Chapter IV, Theorem 3.5] and [MR 92; 

Chapter V, Theorem 1.5] (see also [O 88] and the references quoted in [MR 92; Chap­

ter IV, Section 7 and Chapter V, Section 3] as well as [AMR 93a,b].) Note that the proof 

of Theorem 1.5 in [MR 92; Chapter V] can be carried over to the case of semi-Dirichlet 

forms. Now the proof is complete. • 

2. Perturbations of a quasi-regular Dirichlet form. We begin with the result 

which says that the notion of quasi-regularity is equivalent for two equivalent Dirich­

let forms E! and E. 

PROPOSITION 2.1. Suppose (*£, D(£)) is a Dirichlet form on L2{E\ m) and D is an 
~ 1/2 

£j -dense linear subspace of D(E). Let E be a positive definite, bilinear form on D 

such that for some c > 0 

(2. 1) (\/c)E\(u) < E[(u) < cE\(u), for all u e D. 

Then the form (E'', D) is closable in L2(E; m) and the closure (E\ D(E')\ satisfies (2.1) 

on all ofD(El) = D(E). If for some constant K > 0, we have 

(2.2) |£((«,v) | < K £ 1
1 / \ W ) ' £ |

1 / 2 ( V ) , forallu,v€D, 

then (EWE1)) is a coercive closed form on L2(E\m). Furthermore, if (iE\D(<E')) is 

a Dirichlet form, then [Tl\D(Er)) is quasi-regular if and only if(<E,D{cE)\ is quasi-

regular. 

PROOF. The proof of all but the final sentence can be found in [MR 92; Chapter I, 

Proposition 3.5]. To prove the final sentence, we note that for any closed set F, the spaces 

D(E')F and D(E)F coincide, as both are simply the set of u G D(E) which vanish ra-a.e. 

outside of the set F. From (2.1) we see that the norms !É,/ and ( £ ' ) / are equivalent 

on DCE), so for any increasing sequence (Fk)keH of closed sets, the subspace Uj<D(E)fk 

is Ex' -dense if and only if it is ( E 7 ) / -dense. In other words, (Fk)keN is an E-nest if 

and only if it is an îZ-nest. Therefore the notions of quasi-continuity and exceptional set 

are also equivalent for the two forms E and E!. Since D(E) = D(E'), it follows that 

(E\D(Ef)) is quasi-regular if and only if (*E, D(E)^ is quasi-regular. • 

In the rest of this section we let (£,£>(£)) be a fixed quasi-regular Dirichlet form 

on L2(E\ m), and we consider a number of methods for getting a new quasi-regular form 

from the given one. 

One way to get a new Dirichlet form is to perturb E by adding a killing term. This 

idea was used by, for instance, S. Albeverio and Z. M. Ma [AM 91a] to obtain a quasi-

regular Dirichlet form whose domain contains no non-zero continuous function and is 
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therefore far from being regular. This example can also be found in [MR 92; Chapter II, 
Example 2(e)]. In Proposition 2.3 below, we show that adding a reasonable killing term 
does not affect the quasi-regularity of £. 

DEFINITION 2.2. A positive measure /i on (E, $(£)) is said to be ^-smooth if /J(A) = 
0 for all £-exceptional sets A G *B(E), and there exists an £-nest (Fk)keN of compact 
sets such that ^(Fk) < oo for all k G N. 

The relation between smooth measures and Radon measures has recently been clari­
fied in [AMR 93c]. 

Since (£ , D(£)) is quasi-regular, every u G £>(£) has an ^-quasi-continuous m-
version u of u [MR 92; Chapter IV, Proposition 3.3(h)]. If u and u' are two £-quasi-
continuous m-versions of u, then u = u! £-q.e. [MR 92; Chapter IV, Proposition 3.3(iii)] 
and, since /x is smooth, û — u' ^x-a.e. Thus, it makes sense to define DCZ7) in the follow­
ing way: D(£M) consists of all m-classes in D(£) whose £-quasi-continuous m-versions 
are //-square integrable. Set 

(2.3) E'i(ii,v) = E(ii,v) + (u,v)L2(£;/i) 

for ti,vG DifD1). The following generalizes [MR 92; Chapter IV, Theorem 4.6] (which 
was taken from [AM 91b] and only proved for (£,£)(£)) regular). 

PROPOSITION 2.3. If [i is an rE-smooth measure, then (£M, D(E^)J is a quasi-regular 
Dirichlet form on L?(E\ ni). 

PROOF. We begin by showing that £>(£?) is Ê}/2-dense in £>(£). Let (Fk)keM be an 
£-nest that corresponds to the measure /x, as in the definition of a smooth measure. Since 

~ 1 /2 

(Fjt)jteN is a n 'E-nest we know that Uj£i D(!E)Fk is E j ; -dense in D(£), and furthermore, 
by truncation {cf. [MR 92; Chapter I, Proposition 4.17(i)]) we see that (Jj£i (L°°(E; m) H 
DC£)F A ) is £,1/2-dense in D(£). Now, for any u G L°°(E;m) H D(rE)Fk we have w = 0 
*£-q.e. on E \ Fk and \u\ < \\u\\Loo(E.m) E-q.e. on £. Since //(F*) < oo we find that û is 
//-square integrable and so w G D(EM). 

In particular D(E^) is also L2-dense in L2(E;m) and so E^ is densely defined. By 
[MR 92; Chapter I, Exercise 2. l(iv)] and [MR 92; Chapter III, Proposition 3.5] it is easy 
to see that (£*\ D(£M)) is a closed coercive form with the Markov property, and so is a 
Dirichlet form. 

Now we show that any £-nest (Fk)ke^ is also an E^-nest. Let u G D(E^) and suppose 
thatw > Ora-a.e. so that w > 0 £-q.e.Letw„ G \JkD((E)Fk be a sequence which converges 

~1 /2 ~ 1/2 

to u in £ / -norm. We can replace wn by vn := (u A un) V 0 without affecting £ / -
convergence (c/ the proof of 4.17 in [MR 92; Chapter I]), and by taking a subsequence 
we may assume that vn —* û £-q.e. Thus vn —» ù /i-a.e. and also 0 < vn < û /i-a.e. 

9 ~ 1 /2 

so that v„ —* w in Lz(£; [i). Since v„ already converges to u in £j 7 we have v„ —> w in 
1 /2 

(E^)/ -norm. Also vw = 0 wherever un — 0 and so vn G D(<E^i)Fk for some /: G N. For 
an arbitrary element u G D(E/Z), we apply this argument separately to the positive and 
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negative parts, u+ and u~, and conclude that \Jk D(rE^)fk is dense in D(E?). Thus (Fk)k^H 

is an 2?-nest. 
Since an £-nest is also an E^-nest, the properties (QR1) and (QR2) for (E7\ DCE'2)) 

follow immediately from (QR1) and (QR2) for (E,D(£)). By [MR 92; Chapter IV, 
Proposition 3.4(i)] there is a countable collection {ûn \ n G N} of 'E-quasi-continuous 
functions in D(E?) that separates the points oîE\N, where N is 'E-exceptional. But then 
{un | n G N} are also E?-quasi-continuous and TV is also E?-exceptional so (QR3) holds 
for(E?,D(E?)). • 

The following definition extends one given in [RW 851 (cf. also [FST 91]). 

DEFINITION 2.4. Let D Ç DCE). A positive measure p on *B(E) is called a D-proper 
speed measure for (*£, £)(£)), if it does not charge any Borel 'E-exceptional set, and for 
all 'E-quasi-continuous m-versions v of v G D, 

(2.4) v = 0 /i-a.e. implies v = 0 'E-q.e. 

Note that because [i does not charge any ^-exceptional set, the implication in (2.4) is 
independent of which E-quasi-continuous m-version of v is chosen. Let 9Kps(D) denote 
the set of all D-proper speed measures. 

The next result shows that, if D is large enough, replacing m by a D-proper speed 
measure does not affect the quasi-regularity of (*E, D(ET)j. 

PROPOSITION 2.5. Let p G Mps(D) and assume, for simplicity, that £ is symmetric. 
1 /2 

Suppose D Ç DCE) is an *£/ -dense Stone lattice such that D consists of fi-square 
integrable functions, and that CE,D) is closable on L2(E\p) with closure ((Ef,D(<Efy). 
Then 

(i) yEJ, DCE')) is a symmetric Dirichlet form on L2(E\ /i). 
(ii) Every ŒL-nest is an T! -nest. 

(Hi) (<E/,D('E/)) is quasi-regular. 

PROOF. First we note that condition (2.4) guarantees that *E is well defined on D 
regarded as a subspace of L2(E\ p). We want to show that it is also densely defined. By 
[MR 92; Chapter IV, Proposition 3.3(i)], the space DCE) is separable with respect to the 

1/2 1/2 

£j -norm. Therefore we can find a sequence (un)ne^ in D which is an !Ej -dense set. 
By [MR 92; Chapter IV, Proposition 3.4(i)] if we fix a sequence of 'E-quasi-continuous 
m-versions un, then we have 
(2.5) 

{iln | n G N} separates the points in E \ N, where N is an ^-exceptional set in (B(E). 

Also, there exists an h G DCE) with an 'E-quasi-continuous m-version h which is strictly 
positive 'E-quasi-everywhere and a sequence (hn)ne^ in D which converges 'E-quasi-
uniformly to h. Let (Fk)k^N be an Ernest so that, on each Fk, hn is continuous, h is strictly 
positive, and hn^h uniformly. By taking an even smaller nest we may also assume that 
un is continuous on Fk for every n,k > 1, and that {ûn \ n G N} separates the points in 
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Define for each k > 1, 
(2.6) 
J?L(Fk) '•= {f G C(Fk) \f = u\pk for some E-quasi-continuous m-version wofw G D}. 

From what we have proved so far, we know that J%(Fk) separates points and contains a 
strictly positive function. Since J%(Fk) is a subspace lattice, the Stone-Weierstrass the­
orem tells us that it is uniformly dense in C(Fk). We conclude that D\fk is L2-dense in 
L?(Fk;n\Fk) for every k, and hence D is L2-dense in L2(E\ //). 

Now we prove the Markov property. For « G D w e have u+ A 1 in D, so 

(2. 7) £;(w+ A 1) = E(w+ A 1) < E(w) = T!{u). 

This proves (0.2) for u G Z) and now we apply [MR 92; Chapter I, Proposition 4.10] to 
get the Markov property for E/ on all of DCE7)-

In order to prove (ii) we need a preliminary result which says that if u G D with u > 0 
m-a.e., and if v G £>(£) with v > 0 m-a.e., then w A v G D(E'). Suppose we are given 
such u and v and let vn G D so that v„ —> v in E, ' -norm, and v„ —» v *£-q.e. By replacing 

1 /2 

vn with v+ we may suppose vn > 0. Now u A vn —> u A v in E, -norm, in particular 
(wAvw),jê j is E^-Cauchy. Also uAvn —> uAv jU-a.e. and hence, by dominated convergence, 
the convergence also holds in the L2(fi) sense. Since (E',D(£')) is a closed form, we 
conclude that I I A V G D(E/) and w A v„ -^ M A v in (E'), -norm. This result can be 
localized by noting that for any closed set F Ç E, 

D(£)F = {v G D(E) | v = 0 m-a.e. on F } 

(2. 8) = {v G D(£) | v = 0 E-q.e. on F } 

Ç {v G D(E) | v = 0 M-a.e. on F }. 

Therefore, ifw G D with w > 0 m-a.e., and if v G D(rE)f with v > 0 m-a.e., then 

wAvG D ( E ' ) F . 

Now let (Fk)keN be an Ernest of compact sets in E. For w G D let un G (J* F>{rE)fk so 
1 /2 

that MW —-> « in £,7 -norm and, without loss of generality, un —> w E-q.e. Set 

(2.9) V „ : = ( W ; A M
+ ) - ( W 7 A O 

Then vw G U/t D(*E')fk and, arguing as above we have vn -^ urn ( I / ) , -norm. Since D 
i ii 

is already CE7)/ -dense in £>(E/), this shows that (Fk)keN is also an E'-nest, and (ii) is 
proven. 

By (ii) any E-quasi-continuous function is E'-quasi-continuous, hence (QR2) holds 
for (£ ' ,D(£ ' ) ) . Since (QR 1,3) hold by (ii) and (2.5) respectively, ({E',D(<Er)) is quasi-
regular. • 

REMARK 2.6. (i) If (£ , D(£)) is transient in the sense of [F 80] it can be proved as in 
[RW 85] that (£, D) is always closable on E2(E\ /i). For a nice necessary and sufficient 
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condition on \i for the closability of (E,D) on l}{E\\x) in the locally compact regular 

case provided /x is a Radon measure of full support we refer to [FST 91]. 

(ii) The condition that D is a Stone lattice may be replaced by the condition that D is 

closed under composition with smooth maps on R which vanish at the origin. 

Since ( £ , D ( £ ) ) is a quasi-regular Dirichlet form, we may as in Definition 0.5(i), 

define a subspace of (*E, D(E)j by setting, for any Borel set B, 

(2. 10) D(E)B := {u e D(E) \û = 0 £-q.e. on Bc}. 

This is more general than Definition 0.5(i) in that the set B need not be closed. It follows 

from [MR 92; Chapter IV, Proposition 3.3(iii)] that these two definitions are consistent. 

Now D{E)B is a closed subspace of (E, D(E)) and it is closed under normal contractions. 

Also, D(E)B is a subspace of {u E L2(£; ni) \ u = 0 ra-a.e. on Bc} which can be identified 

with L2(B; m\s) in the obvious way. Therefore, if 

(2. 11) D(E)B is L2-dense in L2{B\m\B\ 

then [EB-, D{EB)) is a Dirichlet form on L2{B\ m|#), where we define 2# as the restriction 

of £ t o D(E)B. We shall prove that if (2.11) holds, then (EB,D(EB)) is a quasi-regular 

Dirichlet form, but first we need a few lemmas. 

LEMMA 2.7. 77iere aw/5 an increasing sequence (£*)*GN of compact subsets of B, 

so that \JkD(E)Ek is È\/2-dense in D{E)B. 

PROOF. Fix u e D(E)B and for every e > 0, let u(() := u - ( ( - e ) V uj A e. Let w 

be an 'E-quasi-continuous ra-version of u. By definition, u = u\B £-q.e. so wl# is also 

'E-quasi-continuous. So, without loss of generality, we will assume that w(z) = 0 for all 

z G Bc. Let (FjOjteN be a nest of compacts so that u\Fk is a continuous function for each k 

as in Definition 0.5(iv). Then 

(2.12) F\ :={ZeE\\u(z)\>e}nEk 

is a compact subset of B. 

For a n y / G / ) (£ ) consider the function fF< £ 7)CE) as defined in [MR 92; Chap­

ter III, Proposition 1.5]. Then fp > 0 ra-a.e,//r< >f ra-a.e. on Fc
k, and /^ —• 0 weakly 

in (D(E), E\ ) as k —> oo (c/ [MR 92, p. 79]). Therefore it is possible to extract a subse­

quence (kn)neM so that 

(2. 13) wf,N := i £ > ^ 

converges strongly to zero as N —> oo (c/ [MR 92; Chapter I, Lemma 2.12]). Once again 

we have vty^ > 0 ra-a.e. and vty^ > / m-a.e. on F£ . 
Now let {&„} be a common subsequence so that, as above, 

(2. 14) H>> ̂  —> 0 and W(_M(O)>A, —• ° 
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strongly as TV —> oo. Let gN := (w(e) — w^^T- Since wu(t)fN > u{e) m-a.e. on F£ we 

see that gN vanishes m-a.e. on Fc
k . Also, wu(t)fN > 0 m-a.e. and u(e) = 0 m-a.e. on 

{z E £ I |w(z)| < e} so gyv also vanishes m-a.e. there. This means that gN — 0 m-a.e. on 

the set 

(2.15) {zeE\\u(z)\<e}UFlN=(FkNy. 

Thus gN E DCE)Fe . Similarly /*# := (—u{e) — w(_u(c))N)+ E D(E)Fe . Thus g^ — 

/iyv £ E>(E)F^ and using the strong convergence in (2.14) we conclude that gN — h^ —+ 
kN 

u{e)+ -u(e)~ = u{e) as N —• oo. 

The above argument demonstrates the existence of a sequence (Fk)keN of compact 

subsets of 5 depending on u and e, so that u(e) belongs to the closure of \Jk D{E)Fk. We 

need to find a single sequence of compacts that works simultaneously for all u E D(E)B. 

Now the metric space D(E) is separable and hence so is the subspace D(E)B. Let 
~ 1 /2 

(«;)/eN be E t ' -dense in D(E)B, and let (V;),-GN be an enumeration of the double sequence 

(ui )/j£N which is again dense because uf} —-> w/ as e —* 0. For each / > 1, let (EJ-)^N 

be an increasing sequence of compact subsets of B so that v, belongs to the closure of 

UjDCE)F{, and define Ek = \Jij<kF
1-. This new (Ek)ke^ is an increasing sequence of 

compact subsets of B. For any u E D(E)B and any ë > 0, let v; so ||v,- — w|| < 8/2 and 

take y > 1 and w E D(E)F so that || v* — w|| < 5/2. Then w E D(E)ENJ
 a n d ||M — w|| < 8. 

This shows that (J* F>{<E)Ek is dense in D(E)B- • 

REMARK 2.8. For future reference we note that each of the Ek sets defined above is 

the finite union of sets of the type shown in (2.12). It follows that for each /c, there exists 

u E D(E)B with 'E-quasi-continuous m-version û so that for all z E Ek we have u{z) > 

e > 0. By truncating from above with e, and from below with 0, and then multiplying by 

1 / e , we may even assume that 0 < U(z) < 1 everywhere on E, and iï(z) = 1 identically 

onE^. 

LEMMA 2.9. If(Fk)ke^ is an E-nest, then \JkD(E)BnFk is dense in D{(E)B-

PROOF. L e t / E D(E)B and choose sequences (un)ne^, (vn)neN £ U ^ ^ C ^ M so that 

w„ —+f+ and v„ —>/~. Then 

(2. 16) w„ := ( r A (un)
+) - ( T A (v„)+) E U ^ ^ H F , 

it 

and wn—>fasn—> oo. • 

COROLLARY 2.10. If (Fk)ke^ is an E-nest and (Ek)ke^ is an Es-nest, then (Ek Pi 

Fk)ke^ is also an Es-nest. Therefore, an E-quasi-continuous m-version û of u E D(E)B 

is also EB-quasi-continuous. 

PROOF. Fix k and let u E D(E)Er Applying the previous lemma with B — Ek, we 

can find k' > k and g E D(E)EknFk, Q D(E)Ek,nFk, so \\u — g|| < e. This gives the first 

part of the result, because we already know that \Jk D(E)Ek is dense in D(E)B-

For u E D(E)B choose an 'E-quasi-continuous m-version û and an Ernest (Fk)keN so 

that u\fk is continuous for each k > 1. Then (Ek D Fk)keN is an E#-nest and iï\EknFk is 

continuous for all k > 1. So û is E^-quasi-continuous. 
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PROPOSITION 2.11. If (2.11) holds, then the Dirichlet form (£#,£(£#)) is quasi-
regular. 

PROOF. Lemma 2.7 tells us that (QR1) holds, and Corollary 2.10 shows that (QR2) 
holds for (/EB, £>(£#)). SO it only remains to show (QR3). 

Let (Wn)rcGN be a sequence in DCE) with 'E-quasi-continuous m-versions (un)nE^, a nd 
an Ernest (Fk)ke^ so that {un \ n G N} separates points in \Jk Fk. Now let (Ek)keH be 
an E^-nest as constructed in Lemma 2.7, and for each k let vk G £>(£)# with an E#-
quasi-continuous m-version v* so that 0 < vk(z) < 1 for all z G B, and vk(z) = 1 for all 
z G Ek (see Remark 2.8). Then the sequence (Fk P\ Ek)keN is an E#-nest, and the doubly 
indexed sequence (unvk)n^ke^ in D{CE^)B has E#-quasi-continuous m-versions (ûnVk)n,keN 
which separate points in U*(^* n£*). Since B\ \Jk(FkP\Ek) is £#-exceptional, this gives 
us (QR3). • 

By Theorem 0.1, Proposition 2.11 has a corresponding probabilistic counterpart, i.e., 
it means that the restriction of an m-sectorial standard process to a Borel subset is again 
an m-sectorial standard process. For the definition of m-sectorial for standard processes 
we refer to [MR 92; Chapter IV, Section 6]. 

We have proved the quasi-regularity of the form (££,£)(£)#) provided that it is a 
Dirichlet form, that is, provided (2.11) holds. The following lemma gives conditions 
under which (2.11) will hold, in particular, it holds for every non-empty open set in E 
(cf. [F 80]). 

LEMMA 2.12. Suppose that U is a Borel subset ofE with m(U) > 0, and so that for 
some Tr-nest (Fk)ke^ we have U D Fk is open in Fkfor all k. Then (2.11) holds so that 
('£(/,/)('£)(/] is a quasi-regular Dirichlet form. 

PROOF. Applying Remark 2.8 to B = E, we see that there exists an 'E-nest (Fk)keN 

so that for each /c, the space 

(2. 17) Rifk) •= {f £ C(Fk) \f = U\FU for some 'E-quasi-continuous m-
version u of u G £>(£)} 

separates points and contains the function 1. Since J%(Fk) is a subspace lattice, the Stone-
Weierstrass theorem tells us that it is uniformly dense in C(Fk). Using the hypothesis on 
U, by taking the nest even smaller we may assume that UDFk is open in Fk for every k. 

Let K\ and Ki be any two disjoint closed subsets of Fk and, let/ G C(Fk) s o / = 2 
on K\ and/ = — 1 on K^. Choose u G £)(£) with an 'E-quasi-continuous m-version u so 
that u\fk is continuous and \u(z) —f(z)\ < \ for all z G Fk. Then v = (u A 0) V 1 has an 
'E-quasi-continuous m-version (w A 0) V 1 which is continuous on Fk, is equal to 1 on K\, 
and equal to 0 on K2. 

Fix e > 0 and let K be any compact subset of U with with m(K) < 00. Since m(K) = 
m(KP\(\Jk Fk)^j it follows that || 1^ — \Kc\Fk II ^ e f°r some ko. Here, and in the remainder 
of the proof, the norm || • || will refer to the norm in L2(U\ m\u). Since (Fk)keN is an *E-nest, 
we may choose k\ > ko, and u G D{(E)Fk so that \\u — l̂ nF* || < e. Setting K\ = KC\Fk() 

and K2 = UcP\Fk] we may use the result in the previous paragraph to find v G £)(£) with 
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E-quasi-continuous m-version v so that 0 < v(z) < 1 for all z E F, v = 1 on A' Pi Ek(), 
and v = 0 on Uc H F^. Finally set w = uv, so w E D{(E)u and 

/(w(z) - U,(z))2m(Jz) = j(uv(z) - lK](z))2m(dz) 

= J (uv(z)-\)2m{dz)+ f (uv(z))2m(dz) 
(2.18) JKi JK< 

< J (u(z) - \fm{dz) + j c(u(z))2m(dz) 

= II"-U,II < e -

Then ||w — 1^|| < \\w — \KX || + || 1^ — 1 ,̂ || < e + e = 2e, and since e is arbitrary, we 
conclude that 1# can be approximated from within D(rE)u to any degree of accuracy. 
Now DCE)u is a linear space, and the linear span of such \K is dense in L2(U\ m\u), so 
therefore we see that D(E)u is dense in L2(U\ m\ v). m 

We may now use Lemma 2.12 to prove a generalization of Proposition 2.3, where we 
do not assume that the measure p is smooth. In the classical case where (E,D(E)) is 
associated with Brownian motion, the set U in the statement of Proposition 2.13 below 
can be chosen in a canonical way. We refer to recent work [Stu 93] by K. T. Sturm. For 
a more functional analytic approach to the problem of perturbations of Dirichlet forms 
by not necessarily smooth measures, while addressing the problem of quasi-regularity, 
we refer to Theorem 4.1 in the paper by P. Stollmann and J. Voigt ([StoV 93], see also 
[Sto 93]). 

PROPOSITION 2.13. Suppose that [i is a positive measure on [E, $(F)J so that p(A) = 
0 for all E-exceptional sets A G (3(E). Define the form 2? as in (2.3). IfDCE^) contains 
at least one non-zero function, then ( 17\ D(E^)J is a quasi-regular form on some Bore I 
subset U ofE. 

PROOF. Recall that D(E^) = {u e D{%) \ Ju(z)2fi(dz) < oo}. Let (un)neN be a 
~ 1 / 2 9 

sequence in D(E^) which is E^ -dense in DiTI1), and so that (un)neN is FZ(F; /i)-dense 
in Z)(E^). Fix E-quasi-continuous Borel ra-versions (un)nE^ of (un)ne^, and define 

(2. 19) F := {z e E | un(z) = 0 for all n}. 

For every u G DCE*1) we can find a subsequence (uflk)ke^ so that uHk(z) —» w(z) E-quasi-
everywhere on E. Therefore u(z) = 0 E-q.e. on F, and since p does not charge the Borel 
E-exceptional set (u(z) ^ 0) Pi F, also w(z) = 0 /x-a.e. on F. Define U := E\ E. Then 
D(E^) can be identified with a subspace of L2(£/;ra|fy), and D^uY) = D(E^) with 
(E(/)/1 = E^. Since we assume that D(2?) is non-trivial, it follows that ra(£/) > 0. 

Now let (Fk)keH be an E-nest so that un is continuous on Ek for each n, k > 1. Then 
U H Ek — \Jn{un 7̂  0 } f l ^ is an open set in Ek so we may apply Lemma 2.12 and 
conclude that (E^, D(Ef/)) is a quasi-regular Dirichlet form on E2(U\ m\v). 

Using Proposition 2.3 we will be able to get the desired conclusion provided we can 
show that \i (more precisely \x\u) is Ef/-smooth. Let (Ek)keN be an E^-nest of compact 
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subsets of U, and without loss of generality assume that Ek Ç Fk for all k. By construc­
tion, at each point z G Ek, there exists u G DCE^) with an m-version û that is continuous 
on Ek and so that u(z) > 0. In fact, u is one of the members of the sequence (un)ne^. Now 
{z G Ek | w„(z) > \ /j}^;={ is an open cover of Ek and so has a finite subcover. That 
means there exist indices {ft/}^ and e > 0 so that v := wn, V w„2 V • • • V unN satisfies 
v > 6 on Ek. Since J v(z)2n(dz) < oo, this proves that n(Ek) < oo, which means that /i 
is ^-smooth. • 

3. Quasi-regularity of square field operator Dirichlet forms. In this section we 
prove a general quasi-regularity result for Dirichlet forms which are made up of a square 
field operator part plus a jump part and a killing part. Our proof of quasi-regularity, in 
particular of (QR1), will use the nest obtained using Lemma 0.6. 

Let (E, p) be a complete, separable metric space equipped with its Borel a-algebra 
*B(E). Let m, ̂ , and k be positive cr-finite measures on (E, $(£)) and J a symmetric 
finite positive measure ox\E x E. 

Now we start with a core D of functions. Suppose D is a linear space of bounded, 
continuous, real-valued functions on E, so that D separates points in E and D is closed 
under composition with smooth functions which vanish at the origin. We assume that 
each member u of D is square integrable with respect to the measures m, //, and k. We 
also assume that for u, v G D, if u = v ra-a.e., then u = v (which is the case, for example, 
if supp[m] = E). Thus D -̂> l?(E\ m) is a one-to-one map and so we may regard D as a 
subspace of L?(E\ m). Finally, we assume that D does not vanish identically at any point 
in E, and combined with the fact that D is a point separating algebra, this implies that D 
is in fact dense in L2(E\ ni). 

Next we assume that we are given a (generalized) square field operator V. This means 
that r : D x D —* L1 {E; \i) is a positive bilinear mapping, where positivity means that for 
each u G D we have T{u) := T(w, u) > 0 /x-a.e. 

We now define a bilinear form *£ on the core D by setting, for w, v G D, 

(3. 1) £(w, v) = /" H>, v)d/x+ /" (u(z\)-u(z2))(v(z\)-v(z2))j{dz\dz2)+ j uvdk. 

We assume that (£, D) is closable in L2(£; m) and that its closure (*£, /)(*£)) is a Dirich­
let form (see Section 4 below for examples). Then the map T:D x D —> Lx{E\\i) is 
continuous in the *£,/ -norm and so T extends to a continuous bilinear map on D(*E). 
For notational convenience we will continue to denote this map as T. 

We want to give conditions on T under which the form (*£, /)(*£)] is quasi-regular. 
Since the space D consists of continuous functions, the condition (QR2) is automatically 
fulfilled. Since E x E is a separable metric space, it is strongly Lindelof and since D 
separates points in £, we conclude that there is a countable set {un \ n G N } in D that 
separates points in E. Thus, (QR3) is also automatically fulfilled, so in order to prove the 
quasi-regularity of (<E,D(<E)) we only need to show (QR1), that is, we need to find an 
*£-nest (Fk)keM consisting of compact sets. 
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In proving the quasi-regularity of (£ ,D(£)) , it will be convenient for us to change 
the base measure. Consider (*£, D) as a bilinear form, not over L2(E\ m), but over L2(E; 
m + ji + k). This form is again closable and its closure (*£', £>(£')) is a Dirichlet form. 
If we could prove that (<£/,D(rE/)) is quasi-regular, then the measure m is certainly a 
D-proper speed measure for £' , and applying Proposition 2.5 we find that (*E, D(iE)) is 
also quasi-regular. Therefore, in proving quasi-regularity we could take the base measure 
to be m + [i + k. But for notational convenience we will relabel this new base measure as 
ra, and assume, without loss of generality, that [i + k<rn. 

In the next lemma we obtain a substitute for the representation (3.1), as this represen­
tation may not hold on the complete domain /)(*£). 

LEMMA 3.1. For u G D(%\ we have 

(3.2) £(w) < Jr(u)dii + 4J(ExE)\\u\\loo{E,m) + Ju2dk. 

PROOF. We begin by assuming that H^H^oo .̂̂  <C oo, since the inequality is trivial 
otherwise. From (3.1) we see that the inequality (3.2) is true for u G D. Now let un G D 
so that !Ei (u — un) —+ 0, and let ^ be a smooth function on R with bounded derivative so 
thatsup^m |V>(*)| < IM|L°°(£;m)+^ and^W = A:for \x\ < \\u\\L°o(E-m). Setting vn := ip(un) 
we see that vn G D and from Remark 0.4 we know that *E\(u — vn) —• 0. In particular, 
H>n) —> T(u) in Ll(E; /i) and vn —> u in L2(£; /c). Now plugging vn into (3.2) gives 

(3. 3) £(v„) < Jr(vn)dfi + 4J(E x £)(||«||Loo(£;m) +e)2 + J fidk, 

and letting n —> oo and then e —> 0 gives us the required result (3.2). • 
The fact that ra, /i, and & are not necessarily finite measures causes problems for our 

calculations. In order to overcome this difficulty we will use a scaling technique that 
was used in [ALR 93]. Since m is cr-finite we can find a function 0 < xjj < 1 so that 
Jip2 dm < oo. Let h — G\ip. It follows that 0 < h < 1 ra-a.e. and h is 1-excessive (cf 
[MR 92; Chapter III] for a discussion of excessive functions). Define T,\ on D((E!{) := 
{w G L2(E\h2m) : M/i G D(£)} by 

(3.4) £f(M, v) := £i (M/i, vft), w, v G D(£?), 

considered as a form over L2(E;h2m). Since h is 1-excessive, (<£(i,£)('£f)j is a Dirich­
let form, and the map u —> w/z defines a bijective isometry between (*£(*, £>(£?)) and 
(£i ,D(£)) . Since h > 0 ra-a.e., it follows that, for any closed set F Ç E, the sub-
spaces D(*E\)F and D((E)F correspond to each other under this isometry. Consequently, 
a sequence (Fk)ke^ is an C-nest if and only if it is an (E^-nest. So to prove (QR1) 
for (£,£>(£)), it suffices to prove it for (<£f,D(<£f)). For w, v G D(£f), let us define 
Th(u, v) := r(«/i, v/i). Notice that from Lemma 3.1, and the fact that h is bounded and 
belongs to both L2(E;m) and L2(E\k), we see that there exists c > 0 so that for every 
u G D(£f), 

(3.5) £f(w) <yr*(M)dfx+c||H||£o >(E;m)-
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There is one more condition that we must impose on the operator Th : we suppose that if 
M,VG £>(£f ), then 

(3.6) Th(u V v) < Th(u) V r*(v) /x-a.e. 

The following lemma gives a way in which to check condition (3.6). 

LEMMA 3.2. Suppose that ifu,v £ D, then 

(3.7) |r(M,<£(v))| < |r(w,v)| fi-a.e., 

whenever <j> is a smooth function on R with </>(0) = 0 and | </>'(*) | < 1. Then (3.6) holds 
for the operator F on D(*E), and hence also for Th on D(£f). 

PROOF. Let <j)n be a sequence of smooth functions on R satisfying </>w(0) = 0 and 
l̂ wWl < 1» a nd s u c n that <l>n(x) —> |x| as w —> oo. Just as in [MR 92; Chapter I, Propo-

1/2 

sition 4.17] we can show that for any u G D(£), </>«(«) —> |w| in *£/ -norm as n —> oo. 
For w, v E £>, we apply (3.7) to </>„ and then let « —• oo to obtain 

(3.8) |r(«,|v|)| < |r(«,v)| /i-a.e. 

But since 4>(x) = \x\ is a normal contraction, we can use Remark 0.4 to conclude that 
(3.8) can be extended to all of D(*E). Now we use the inequality (3.8), the fact that T is 
a bilinear form, and the equationx Vy = (1 /2){{x + y) + \x — y\} to obtain (3.6) for T on 

£>(£)• 
(3.9) 

T(u V v) = (l/4){r(M + v) + 2r(w + v > - v|) + r(|w - v|)} 

< (l/4){r(w + v) + 2|r(« + v > - v|)| + T(|w - v|)} 

< (l/4){T(u + v) + 2\T(u + v, u - v)| + T(w - v)} 

= (i/4){r(« + v) + 2 | i » - r(v)| + n« - v)} 
= (l/4){r(«) + 2T(u, v) + r(v) + 2\T(u) - T(v)| + T(u) - 2V(u, v) + T(v)} 

= (i/2){(r(M) + r(v)) + |r(M) - roo|} 
= r(M)vr(v). 

If w, v G D{1}[), then using the positivity of /z and applying inequality (3.6) for T on 
DCE) to w/z and vh, we obtain (3.6) for Th. m 

REMARK 3.3. For any w,vG £>( *£{*), applying (3.6) to the pair — u and —v gives us 

(3.10) Th{u A v) < Th(u) V r*(v) /x-a.e. 

We recall that a metric pi on £ is called uniformly equivalent to p if the identity from 
(E, p) to (E,p\) and its inverse are uniformly continuous. 
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THEOREM 3.4. Suppose that for some countable dense set {x, | / > 1} in (E, p), 

there exists a countable collection {fij | i > \J> 1} of functions in Z)(EJ?) satisfying 

(3.11) s u P r / 2 ( / ; y ) = : ^ G L l ( £ ; / i ) , 

and 

(3. 12) p\(z,Xi) = supfj(z) <E\-q.e. z G E for all i G N, 

where p\ is a bounded metric on E uniformly equivalent to p, and fj is an Ef-quasi-

continuous h2m-version off /. Then the Dirichletform (<£(7,D('£J/)) satisfies (QR1 ), which 

implies that (E , DCE)) also satisfies (QR1). We conclude that (E , D(E)j is quasi-

regular 

PROOF. Fix the index / and for each n > 1 define the function 

(3. 13) un(z) := supfij(z). 

Then un G £>(Ef) and un is Ef-quasi-continuous. Furthermore, from (3.5), (3.6), and 

(3.10) we see that the sequence (un)ne^ is bounded in D(£{1) in the (Ef) ' /2-norm, and 

even more, Th(un) is dominated by if G Lx (E; p). By the Banach-Saks theorem, there ex­

ists a subsequence unk whose averages jj E^Lj wWjt converge strongly in the Hilbert space 

(D(Ej), EM. From Lemma 0.6 we know that a further subsequence of these averages 

must converge Ej'-quasi-e very where to an E\ -quasi-continuous m-version of a function 

in D(Ef). But, on the other hand, the original sequence un already converges Ej'-q.e. 

to the limit p\(z,Xj). Thus the function z i—> p\(z,Xj) is E\-quasi-continuous, belongs to 

D{E\) and satisfies r / z (p , (•,*,)) < y G El(p). 

Now for each n > 1, define the function 

(3.14) w„(z) = infp,(z,x/). 

Arguing as above we find that the averages y^ of a subsequence of (wn)ne^ converge 

strongly in (D(Ef), Ef ) , that is, 

(3.15) y*=T;Y,nnk-+y inD(Ef). 
/ v £ = 1 

On the other hand, the sequence (wn)ne^ converges pointwise to zero on E and so the 

limit y in (3.15) is the zero function. 

By Lemma 0.6 we know that a subsequence of (j/v W N converges Ef-quasi-uniformly 

to zero on E. But since the sequence wn is decreasing, it follows that (ww)weN itself con­

verges Ef-quasi-uniformly to zero on E. This means that there is an Ef-nest (Ek)ke^ so 

that, for each k G N, wn converges to zero uniformly on Fk. Fix any k G N and S > 0, 

then choose N so w^ < <5 on Ek. Then inf"=1 p\ (z,x\) < 8 on Fk, or 

(3.16) Fk Ç \jB(xhë), 
i=\ 
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where B(8) — {y G E | p\(x,y) < 8} is the ball centered at x, with radius <5. Since this 

is possible for every 6 > 0, we conclude that Fk is totally bounded and so, since (£, pi ) 

is complete, Fk is compact. This gives (QR1) for (*£(*, £>(£?)) and hence for (*£, / ) ( £ ) ) , 

Since (QR2) and (QR3) already hold, we conclude that ( £ , / ) ( £ ) ) is a quasi-regular 

Dirichlet form. • 

Now that we know(£ ,DC£) ) is quasi-regular we may use the existence results [MR 

92; Chapter IV, Theorem 3.5] to construct an associated strong Markov process. 

DEFINITION 3.5. A right process M with state space E and transition semigroup 

(Pt)t>o is called properly assoc iated with (<£, £>(£)) if for a l l / G Bb(E) H E2(E\ m) and 

all t > 0 we have 

(3.17) ptf is an 'E-quasi-continuous m-version of T / , 

where (Tt)t>o is the semigroup on L2(E\ m) generated by (*£, £>(£)). 

COROLLARY 3.6. TTzere exists a rightprocessM properly associatedwith yE, D(E)). 

REMARK 3.7. The process M can, in fact, be taken to be an m-tight special standard 

process. We refer the reader to [MR 92; Chapter IV] for definitions and more details. 

4. Applications, (a) Quasi-regular gradient-type Dirichlet forms on Banach space. 

Let E be a (real) separable Banach space, and ji a finite measure on *B(E) which 

charges every weakly open set. Define a linear space of functions on E by 

(4. l) <FC£ = {/(/,,... , U \meKfe Cj?(Rm)Ju. . . , / f f le E?}. 

Here C™(Rm) denotes the space of all infinitely differentiable functions on Rm with all 

partial derivatives bounded. By the Hahn-Banach theorem, fCf separates the points of 

E. The support condition on \i means that we can regard JC^ as a subspace of E2(E\ /x), 

and a monotone class argument shows that it is dense in L2(E; fi). Define for u G J-C™ 

and k G E, 

(4.2) -jjj-iz) : = -u(z + sk)\s=o, z G E. 

Observe that if u =f(l\,..., lm), then 

du ™ df , 
(4.3) — = £ / " ( / i , . . . , lm)E>(lhk)E9 

ok / = 1 dxi 

which shows us that du/dk is again a member of J-C™. Also let us assume that there 

is a separable real Hilbert space (//, (, )//) densely and continuously embedded into £. 

Identifying H with its dual H' we have that 

(4.4) Ef C H C E densely and continuously, 
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and £/(, )E restricted to E' x H coincides with (, )#. Observe that by (4.3) and (4.4), for 
u G 7C£ and fixed z G £ , the map k —> (du/dk)(z) is a continuous linear functional on 
//. Define Vw(z) G // by 

(4.5) (V«(zU)/ /= ^ ( z ) , *E/f. 

Define a bilinear form on fC™ by 

(4.6) 2^(M, v) = / ( Vw(z), Vv(z))///x(&). 

ASSUMPTION 4.1. We assume that the form ^ in (4.6) is closable in L2(E; /i). 
Let LooiH) denote the set of all bounded linear operators on H with operator norm 

|| ||oo. Suppose z —* A(z), z G E is a map from E to L^H) such that z —-> (A(z)h\,h2)H 
is 'B^-measurable for all /zi,/z2 G //. Furthermore, assume that 

(4.7) there exists a G (0, oo) such that (A(z)h, h)H > a\\h\\2
H for all h G H, 

and that I |À I loo G L'(£;/z) and Ĥ Hoo G L°°(£;^), whereÀ := ±(A+>4),A := ±(A - A ) 
and A(z) denotes the adjoint of A(z), z G E. Let c G L°°(£; /i) and /?, d G L°°(£ —> //; /i) 
such that for all u G JCg with M > 0, 

(4.8) [((d,Vu}H + cu)dii>0 and A(Z?, Vw)// + CM) d/i > 0. 

Define the constant & = ||b + dWi^f-^. For u, v G fC™ let, 

(4.9) <£^ , v) = j(A{z)Vu(z\ Vv(z))//M(*), 

and 

(4. 10) £(M, V) = £i4(M,v)+ J u(d,Vv)HdiJ,+ A(fc, Vw)//vd/i + Juvcd[i. 

Then Example 3e of [MR 92; Chapter II] shows us that the forms CEA^C™) and 
(£, !FCp are closable and that their closures ((EA,D{(LA)) and (£ , £>(£)) are Dirichlet 
forms. 

We would like to show that these two forms are equivalent in the sense of Proposi­
tion 2.1. To begin with we note that for u G 7C£ we have, for ^-almost every z G E, 

\{(b + d)(zXVu(z))Hu(z)\ < \\(b + d)(z)\\H\\Vu(z)\\H\u(z)\ 

(4.11) <2k(\\Vu(z)\\2
H+\ii(z)\2) 

< 2k((\/a){A(z)Vu(zlVu(z))H + kz) | 2 ) 

and 

(4.12) \c(z)u(z)2\ <\\c\\L^E^u{z)2. 

Therefore, using (4.10) and integrating with respect to fi we see that for u G 7Cf \ 

(4.13) EA{u) <E{a) <kx{EA)x{u\ 
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where the constant k\ can be taken to be max{(2/a)& + 1,2& + ||C||L°°(E;/Z)}. By Proposi­
tion 2.1, the domains D(£) and D^EA) coincide and the form (% DCE)) is quasi-regular 
if and only if the form (T,A, DCEA)) is. 

In order to prove quasi-regularity of ( Î ^ , D ( £ A ) ) (cf. [RS 92]), we shall use The­
orem 3.4, and since the measure p is already finite we do not require the re-scaling, 
that is, we take h = 1. The square field operator is given on ^FCg° by T(u, v)(z) = 
(A(z)Vu(z), Vv(z))//, which clearly satisfies (3.7), and by Lemma 3.2, also condition 
(3.6). Now since E is a separable Banach space, there exists a countable set (//)yeN m 

Ë such that \\lj\\E> < 1 for ally G N, and ||z||£ = supy/;(z) for all z G E. Let <p be a 
bounded, smooth function on IR such that (p(0) = 0, <p is strictly increasing, and <p' is 
decreasing and bounded by 1. Then p\(z,x) := ip(\\z — X\\E) is a bounded metric on E 
that is uniformly equivalent with the usual metric p(z,x) :— \\z — X\\E. Let (JC/)/GN be a 
countable dense subset of E, and define for every ij G N, 

(4.14) ^(z):=^(/yfe-^-)). 

Then fj G ̂ FC£° for every ij G N, and 

(4.15) Vfj(z) = pf(lj(z-xi))lp 

and so for /i-a.e. z G £, 

suPr(4)(z) = suP(A(z)V/î/(z),y/;7(z)>// 

= sup(^(/7(z-^)))2(A(z)/7 , / i} / / 

(4.16) ^ 

= mVU\lj(z-xi)))\A(z)ljJj)H 

< \\Mz)\\oo. 

Since ||Â||oo belongs to Ll(E;p) we see that (3.11) is satisfied. On the other hand, for 
every fixed / G N, we have 

supfj(z) = sup (p(lj(z - xtj) = (f (sup lj(z - *,-)) 
(4.17) J J J 

= ^(\\z-Xi\\E) = p\(z,Xf), 

for every z G £ and so (3.12) is also fulfilled. Therefore Theorem 3.4 applies and we 
conclude that (<EA,D('EA)\ and hence (*£, £>(*£)) is quasi-regular. 

(b) An intrinsic quasi-regular Dirichlet form on the free loop space. 
The results of this subsection have been first proved in [ALR 93]. Our purpose here 

is to show that they also be obtained from the general Theorem 3.4. 
Let g := (gij) be a uniformly elliptic Riemannian metric with bounded derivatives 

over Rd and Ag := (detg)-1/2 £ ^[ (detg) 1 / 2 ^^-] the corresponding Laplacian. Let 

pt(x,y), x,y G Rd, t > 0, be the associated heat kernel with respect to the Riemannian 
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volume element. Let W(IRJ) denote the set of all continuous paths UJ: [0, 11 —> Rd and let 

L(Rd) := {UJ G W(Rd) \ UJ(0) = w(l)}, i.e., L(Rd) is the free loop space over Rd. Let P\ 

be the law of the bridge defined on {UJ G L(Rd) \ UJ(0) — UJ(\) — x} coming from the 

diffusion on Rd generated by Ag and let 

(4.18) [i := J P\px(x,x)dx 

be the Bismut measure on L(Rd) which is a-finite but not finite. We consider L(Rd) 

equipped with the Borel cr-algebra coming from the uniform norm || ||oo on L(Rd) which 

makes it a Banach space. The tangent space T^Li^) at a loop UJ G L(Rd) was intro­

duced in [JL 91] as the space of periodical vector fields Xt(uj) = rt(uj)h(t),t G [0, 1], 

along UJ. Here r denotes the stochastic parallel transport associated with the Levi-Civita 

connection of (Rd, g) and h belongs to the linear space HQ consisting of all absolutely 

continuous maps h: [0, 1] —• T^Q^ = Rd such that 

(4. 19) {Kh)H() := f \ti(s)\2ds + J \h(s)\2ds < oo 

(where |v|2 := guj(Q)(v, v)) and r\(uj)h(\) — h(0) with T\(UJ) = holonomy along UJ (cf. 

[JL 91] for details). Note that if we consider L(Rd) as continuous maps from S1 to Rd 

this notion is invariant by rotations of S{ and that (4.19) induces an inner product on 

T^LiR11) which turns it into a Hilbert space. Below we shall also need the Hilbert space 

HuL{Rd) (p TuL{Rd)) with inner product (, )H which is constructed analogously but 

without the holonomy condition, i.e., HQ is replaced by H which denotes the linear space 

of all absolutely continuous maps h: [0, 1] —• T^o^ = Rd satisfying (4.19). Let JC™ 

denote the linear span of the set of all functions u: L(Rd) —-* IR such that there exists 

£ G N , / G C™((Rdf), t\,...,tk£ [0,1] with 

(4.20) u(uj)=f(uj(tl\...,uj(tk)), ue L(Rd). 

Note that <JC™ is dense in L2(/x) := (real) L2{L(Rd)\fi). Let fC00, <JC^ be defined 

correspondingly with C°°((Rd)k) resp. Cf((Rd)k) replacing Cff((Rd)k). We define the 

directional derivative of u G ^FC°°, u as in (4.20), at UJ G L(Rd) with respect to X(UJ) G 

Huim
d) by 

k 
(4.21) dhu(tj) := dxu{uj) := £ J / ( W , ) , . . . ,uj{tk))xu(uj) 

i=\ 
k ( \ 

= £ Sco(tl) Vif{u{t\ ) , . . . , Uj(tk)) , Tti(uj)h(ti) 
i=\ V y 

where h G H with X(uj) — \Tt(uj)h{tyj and V/ resp. d{ denotes the gradient (with 

respect to g) resp. the differential relative to the i-th coordinate off. We extend 3/, to all 

of fC00 by linearity. Note that if we consider u as a function on W([RJ) then 

(4. 22) dxu(uj) = —U{UJ + SX(LJ))\S=09 UJ G L(Rd). 
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Hence dxu is well-defined by (4.21) (i.e., independent of the special representation of w). 
Let for u 6 ^FC°° and LU G L(Rd), Du(w) be the unique element in H such that 

(pu(u)), hj = dhu(uj) for all h G H and let DU(LO) be its projection onto HQ. Define for 

(4.23) Ku,v) = J (Du,Dv)HBd». 

(cf. [AR 89, 90, 91] for the flat case). By our assumptions on g and (4.29) below it 
follows that £(w, w) < OO for all u G JCg°. By [L 92, 93], [ALR 93] the densely defined 
quadratic form (£, J-Cff) is closable on L2(/i). Clearly, the closure (*£,/)(£)) is of the 
type discussed in the preceding section (see (3.1)) with core J-C™ and 

(4.24) T(u, v) = (Du, Dv)Ho, u,veD(<E) 

where we denote the closure of D with domain Z)(£) also by D. We note that D satisfies 
the chain rule, in particular, 

(4. 25) D(j)(u) = </>'(u)D(u) for all u G D(T) 

" and consequently also Th satisfy (; 
and D(T!\) are defined as in Section 3. It is easy to see that 
Hence by Lemma 3.2, T and consequently also Th satisfy (3.6). Here and below Th, *£(', 

(4.26) JC£° C D(£f) and Th(u) < l{h2T(u) + u2T(h)). 

Let (f G C£°([R) be an odd and increasing function such that \<p\ < 2, <p' < 1, ip" < 0 
on [0, oo), and <̂ (JC) = xforx G [—1,1]. Let {sk\k G N} be a dense set of [0, 1] and fix 
UJQ G L(Rd). LQIX1: Rd —>R,\ < I < d, be the standard linear coordinates and define for 

(4.27) Uj(ùj) sup sup 
k<j /<</' 

(f(xl[cj(sk)-LJo(sk)) u G L(Rd). 

Applying first (3.6) and then (4.26) and the chain rule for D we obtain that for /i-a.e. 
u) G L(Rd) 

(4.28) Tn(uj)(uj) < 4 sup sup ^ 
k<j i<d Ho 

+ II^MII«„ W[xl(^uj(sk) - uj0(sk))j\ 

For u G ^FC00 we have that ||Dw||//0 < ||Ôw||// and if U(UJ) =f(u(s\),... ,u(siS) then 

(4. 29) Du(u)(s) = £ G(s,*,K M ~ ' V / / ( * i ) , • • •,"(**)) 

where G is the Green function of — ̂  + 1 with Neumann boundary conditions on [0,1], 

i.e., 

(4.30) G(s, u) — 
2(e2-\) 

(e
u+s-] + e

] - < l l + J > + e\"-s\~i
 +É,|-I«~,1 "). 
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Hence by our assumptions on g and by (4.29) there exists c G]0, oo[ such that for all 
UJO G L(Rd) 

(4. 31) Th{uj)(uj) < c(h2 + \\Dh\\2
Ho) /i-a.e. 

But the function on the right hand side of (4.31) is in Lx(E;p). Let now {UJI \ i G N} 
be a dense subset of L(Rd) and define fj : = Uy A 1 where u^ is equal to Uj with LÛQ 
replaced by cjf, ij G N. Then all assumptions of Theorem 3.4 are fulfilled with the 
metric p(uû,uj') := 1 A \\uo — k/||oo» a;, a;7 G L(Rd). Hence (£,D(£)) is quasi-regular. 
The corresponding Markov process is in fact a diffusion which is invariant by rotation 
of the loops, (cf. [ALR 93] for more details). Similarly, the tightness results in [DR 921 
can be also derived from the general Theorem 3.4. 

(c) Fleming-Viot processes. 
Let E := 0\{(S) be the space of probability measures on a Polish space S with Borel 

cr-algebra *B(S). Let E be equipped with the topology of weak convergence. There exist 
uniformly continuous functions (</>/)/£ N on S, such that ||</>/||oo < 1, and the topology on 
E is generated by the metric 

(4. 32) p(p, v) = sup / </>/ dp — <j>i dv 
• I j j 

p,v G E, 

and (E, p) is complete. Set (/i, </>) := J </> dp for <j> G Cb(S) and p a finite positive measure 
on <B(S) and let 
(4.33) 

W : = { f ( ( - , W ( • , i » | / n G N , ^ € C f t ( 5 ) , l < i < m,f G C?(Rm)}. 

Forw=/ ( ( - , ^ i ) , . . . , ( - , ^m) ) € ̂ Cg° and* G S define 

(4. 34) -^-(/x) := - W ( / i + j€j|J=o, M e M(S\ 
oex ds 

and 

(4.35) Vu(p):=(^(p)) . 

For /x G M (S) and/, g G L2(S; p) we also set 

(4.36) (f,g),:= ffgdp-jfdpjgdp. 

Note that for w G 7C£, p G fAf(S) the map x i—> du/dex(p) belongs to the space 
E2(S\ p), i.e., Vu(p) G E2(S\ p), hence if m is a finite positive measure on the Borel sets 
*B(E) of E we can define 

(4. 37) £(n, v) := J{Vu(p), Vv(p))^m(dp)- u, v G JC£. 

Clearly, JC£ separates the points of E and therefore if supp[m] = S, then (£, J-Cjf) is 
a densely defined positive definite symmetric bilinear form on L2(E\ m). If it is closable, 
then its closure (*E, £>(*£)) is clearly of the type studied in Section 3 with core fC™, and 

(4. 38) r(n, v)(/i) := ( V«(/z), V V ^ ) ) ^ M G £. 
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It is easy to check that (% D(<E)\ is a Dirichlet form and by Lemma 3.2, T satisfies (3.6). 
Since (M(S), p) is separable we can find z/, G 9A(S), / G N, which are dense in !M(S). 
Defining for ij G N 

(4.39) fijfji) := J<t>jdv- j <t>j dvu V E E, 

we see that/y G 7Cf, that for /x G E 

(4.40) IX/^Ox) = ( ^ ^ <Jtfdii<le L\E-m\ 

and that 

(4.41) p(/i, z/f) = sup^(/x) for all /x G £, / G N. 
i 

Thus, Theorem 3.4 applies and (iE,D(iE)) is a quasi-regular Dirichlet form. The corre­
sponding process is in fact a diffusion. 

If m is the reversible invariant measure of the Fleming-Viot process on 9vi(S) (cf. e.g. 
[EK 93]), then (*£, jCf) is closable and the corresponding process is just the Fleming-
Viot process. For more details on this, a more general set-up including non-symmetric 
Dirichlet forms with state space !M(S) (i.e., Fleming-Viot process with generalized se­
lection), and a thorough study of the associated generating operators as well as the cor­
responding martingale problems we refer to [ORS 93]. 

5. Counterexamples, (a) A Dirichlet form (*E, £>(*£)) that satisfies (QR1) and 
(QR2), but not (QR3). 

Our first example is a regular Dirichlet form that is not quasi-regular. This form is 
defined over a separable, compact space E, so this example shows that the assumption 
of metrizability in Proposition 0.9 cannot be dropped. All that this example requires is a 
pathological measure space. It really has very little to do with the Dirichlet form, in fact, 
we will take (£, £>(£)) to be the "zero" form. Let X = [0, Q] be the first uncountable 
ordinal space with the order topology. Then X is a compact, Hausdorff space and *B(X) 
consists of all subsets that are countable or have countable complement. We define a 
Borel measure fi by 

,e 1X f 0, if Bis countable; 
(5.1) u(B) — { 1 
v ^ I l, otherwise. 
A function M on I is measurable only if it is eventually constant on [0, Q), that is, it is 
constant on an open set of the form (A, Q) for some A G X. We denote this left limit 
as u(£l—). The space L2(X; fi) identifies those measurable functions with the same left 
limit at £1. Everything is fine, except for the fact that X is not separable. So now we 
use the fact that X is completely regular and embed it into the separable, compact space 
E — [0,1][01]. Let /i* be the image measure under this embedding and let (z/)/eN be a 
countable dense set in E. Define a Borel measure m on $(£) by setting 

oo 

(5.2) m = , / + £ ( £ , / 2 0 . 
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Now let (£ , £>(£)) be the zero form on L2(£; m\ that is, D(E) = L2(E; m) and £(w, v) = 
0 for all u, v G D(£). We now show that this Dirichlet form satisfies (QR1) and (QR2) 
but not (QR3). Since E is compact, (QR1) is trivially satisfied. We will prove (QR2) by 
showing that every measurable function u on E has an ^-quasi-continuous ra-version. 
Let u be measurable and set 

(5.3) u(z) — { , , 
I u(z), otherwise. 

Here [0, Q] is regarded as a subset of E. Since m({Q}) = 0, we see that u is an m-version 
of u. Also, the sequence of closed sets 

(5.4) F ^ [ 0 , Q ] U U f c } 

is an £-nest, and, since u is constant on a set of the form (A, Q) Ç E, u\rk is continuous 
for each k. This means that û is 'E-quasi-continuous and so (QR2) holds. Now we show 
that (QR3) fails. An exceptional set /V must always be contained in a Borel set of measure 
zero, so N Ç (A, Q)r for some A G [0, £2). This means that any sequence of functions 
(M„)weN satisfying (QR3) must separate points in (A, Q), for some A. Since each un is 
measurable, there exists An G (A, £1) so that un is constant on (Aw, Q). Let A* = sup,z A„. 
Because Q. is the first uncountable ordinal, A* < Q. and so the sequence (un)neN fails to 
separate the points of (A*, £1). Thus no countable collection {un \ n G N} can satisfy the 
conditions of (QR3). 

(b) A Dirichlet form (<£, D(£)) that satisfies (QR2) and (QR3), but not (QR1 ). 
For our next example we take E = [0, 1 ) equipped with m— Lebesgue measure dz, 

and let ((E,D(rE)) be the Dirichlet form associated with reflecting Brownian motion on 
[0,1]. That is, 

(5.5) D(!£) = [u | u is absolutely continuous on (0, 1) and u G L2((0, l);cfc)} 

<E(u,v) = (\/2)Juf(z)v,(z)dz. 

In order to explain this example we need the following result. 

LEMMA 5.1. If u^ —> u in *£, -norm and mtzlu^z) = 0J > 0 for all k, then there 
exists z* G [0, 11 so that the continuous version ofu has a limit of zero at z*. 

PROOF. Since m(z\uk(z) — 0) > 0, the continuous version iïk of uk must vanish at 
some point zk in [0, 1). Therefore, for all z G [0, 1), 

(5.6) uk(z,)= / V ' (s) ds. 

Now by taking subsequences we may assume that zk ^ z* G [0,1]. Since uk —•» u in 
!Ej -norm, the derivatives w/ converge in L2((0,1); dz) to w7 so 

(5.7) u~k(z) = y uk'(s)ds —> y_# «'(.s) J5 . 
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The right hand side of (5.7) is the continuous version of u and it clearly has limit zero at 
z*. • 

One consequence of this lemma is that an increasing sequence of sets (Ek)keN is an 
*£-nest only if m{Fk) — 1 for some k. That is because the constant function 1 cannot be 
approximated from within (jkD(rE)fk otherwise. Since no compact subset of [0, 1) has 
full measure we see that (QR1) fails for (<£,£>(£)). The conditions (QR2) and (QR3) 
are easily seen to be satisfied. 

(c) A Dirichlet form (£,£>(£)) that satisfies (QR1) and (QR3), but not (QR2). 

In this example we take the same Dirichlet form (*£, £>(*£)) as in Example (b), except 
we give E — [0,1) the topology of the circle. Then E is compact so that (QR1) trivially 
holds. It is again quite easy to show that (QR3) holds, so we will only show that (QR2) 
fails. In fact, using Lemma 5.1 as before, we see that an increasing sequence (Fk)k^ can 
only be an *£-nest if Fk — E for some k. Thus an 'E-quasi-continuous function must be 
continuous everywhere on E. But D(E) contains a lot of functions that do not have a 
version that is continuous on the circle, for example, u{z) = z. Therefore (QR2) fails. 

In example (b), we saw a Dirichlet form which satisfies (QR2) and (QR3) but not 
(QR1) and so is not quasi-regular. In that example, the reason that quasi-regularity fails 
is that the space E — [0, 1) is adequate to define the form but not as a state space for 
reflecting Brownian motion. The boundary point {1} is missing from the space, and 
if we put it back, we get the usual quasi-regular form on E — [0, 1 ] corresponding to 
reflecting Brownian motion. The following example shows that the problem of "missing 
boundary points" can even occur when E is a complete metric space. It is an example of 
a classical Dirichlet form, i.e., a form of gradient type defined on a complete linear space 
E, which, nevertheless, is not quasi-regular. Once again, it would be possible to embed 
E into an even larger space so that yE, /)(£)) becomes quasi-regular, but we will not do 
it. 

(d) A classical Dirichlet form that is not quasi-regular. 
Let E be an infinite dimensional, separable Hilbert space and denote each point z E £ 

as 

(5.8) z = (zi,Z2,..-,z/,...), 

where fc)/GN are the coordinates of z with respect to some fixed orthonormal basis. We 
equip E with its Hilbert topology and its Borel cr-algebra *B(E). Let (of )/GN be a sequence 
of strictly positive numbers such that £/ of < oo, and let m be the Gaussian measure on 
(E, *B(E)) SO that (zi)ieN becomes a sequence of independent mean zero Gaussian random 
variables with E(zf) = of. 

Define a core of functions, dense in l}(E\ m), by 

(5.9) fC^ = {M | 3* > 1,/ 6 q°(R*) such that u(z) =f(z,\,..., zk)}. 

For / > 1 and u G fCf, with representation u(z) =f(z\, • • •, zk), we define the function 
du/dzi by 

(5.10) (du/dzi)(z)=l(?/dxi)izu-'Zkl fori < . / < * ; 
{0, otherwise. 
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Now let (7/)/GN be a sequence of strictly positive constants and define the form E by 

r oo 

(5.11) £(i<, v) = / Y,1i@ufàï)Qvfài)<lm> 
jEi=i 

for M,VG ^FCg0. It can be shown that this is a well-defined, symmetric, bilinear form with 
the Markov property and that (*£, fC™) is closable in L?{E\ m). We denote its closure by 
(E, D{E)\. The form (E, D(E)) is an example of a classical Dirichlet form of gradient 
type (cf. [AR 89] [AR 90] [S 90]), and because m is Gaussian, the form (<£, DUE)) cor­
responds to an Ornstein-Uhlenbeck process. To get the required counterexample we will 
show that for some choice of constants (of )/GN and (7;);eN> the form (*E, D(E)) fails to 
satisfy (QR1). What this means is that this Ornstein-Uhlenbeck process cannot live on 
the space E, but must be modelled on a larger space where (E, D(E)) is quasi-regular. 

Our analysis begins with the observation that because of the simple product structure 
of the measure space (E, $(£), m), certain calculations can be reduced to one-dimen­
sional problems. For a fixed index j , we let Zj'.E —> R denote the map which sends z to 
its 7-th coordinate. Let PjU — E(u\a(zj)) be the conditional expectation with respect to 
cr(zj). The operator Pj is a projection in L2(E\ m) and we claim that it is also a contraction 
in (Dec), EX' ). For u E EC™, with representation u(z) = f(z\,. • •, Zk), we have the 
explicit formula 

(5. 12) (Pju)(z) = J '" JRk _J(x\,... ,Xj-\,Zj,Xj+\,... ,xk)Y[mi(dxi), 

where ra, is the Gaussian measure on R with mean zero and variance of. We note that 
PjU is a function of Zj only. This formula (5.12) also holds when/ is not quite so smooth, 
for example when/ = g V h where g, h G Cj?(Rk). Using this explicit formula we find 
that for u G !FCg°, the function PjU is again in EC™ and 

(5.13) dPju/dzi = èijPj(du/dzi). 

Consequently, 

•E(PjU,PjU) = J2 / ~fi(dPju/dzù2dm 

f: fliSij(Pj(du/dzj))2dm 
1=1 J 

= /yjf(Pj@u/dzjj)2dm 

<lj jidu/dzjf dm 

< E(u, u). 

Therefore, also E\(PJU,PJU) < E\(u,u) on EC™ and by continuity this inequality ex­
tends to all of D(E). This shows that the image of D(E) under Pj is the closure of 

(5- 15) PtfC? = {f{zj) \fe C™(R)}. 

(5. 14) ' x 
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Thus PjD(T) consists of all functions of the type/(z7) where/ belongs to the closure 
of C^(R) with respect to the one-dimensional Dirichlet form 7/ jVv' drrij + Juvdnij. In 
particular,/ must be absolutely continuous. 

Now let A be the open set lz G E I \ZJ\ > 1} and define 

(5.16) LA = {u G D(<E) | M > 1 ra-a.e. on A}. 

1 /2 

The element in LA with the smallest £, ' -norm is written 1,4 and is called the réduite of 
the function 1 on the set A (cf. [MR 92; Chapter III, Section 1]). We would like to show 
that lA G PjD((E), and to do so, it suffices to show that Pj maps 1̂  back into LA. 

First we note that since the map u —> \u\ is norm-reducing in D(E), the function 
1,4 must be non-negative ra-a.e. Now let g G C£°(IR) be a function satisfying I(X>\+e) < 
g(x) < /(x>l>- Then the function v = g(zj) belongs to D(E) and v < \Am-a.e. Let un 

be a sequence in F̂C£° which converges to \A in îE(
 ; -norm. Then the sequence un V v 

1/2 

converges in £ / -norm to U V v = U. Using the fact that g(x) > I(X>\+e) and the 
formula (5.12), we see that Pj(un V v) > 1 on |z G E I |zy| > 1 + el. As « —> oo, the 
sequence P/(«w V v) converges to PjlA and so this limit also must be greater than or equal 
to 1 on the set |z G E \ \ZJ\ > 1 + e}. As this is true for every e > 0, we conclude that 
PJ^A > 1 on A, in other words, Pj\A G LA. 

Since HP/l^H^i^ < HUIL1/2 and lA is the unique norm-minimizing element in LA, 
we conclude that Pj\A = 1 .̂ Thus \A has an m- version which is of the form l^(z) = f(zj) 
for some absolutely continuous function/. Now this function/ is equal to 1 on the set 
Ix I |JC| > 1} and for any point x G (— 1,1 ) we have 

(5.17) 1 -f(x) = / ( l ) -f(x) = fxf'(y)dy. 

By Cauchy-Schwarz we get 

(5.18) (1 -f(x))2 < ([\(f'(y))\j(y)dy)(sup2/<pj(yj), 
|y|<i 

where (fj is the density of the Gaussian measure m7 on R with mean zero and variance 
cr2. By the norm minimizing property of 1̂  we obtain 

(5.19) ljf_x(f(y))\j(y)dy = £(U, \A) < Ei(U, U) < Ei(l, 1) = 1, 

and combined with the formula for ifj(y) this leads to the bound 

(5.20) sup|lA(z) — 1|2 < v/2^(2a7-/77)exp(l/2a2). 

PROPOSITION 5.2. //'(cr//7J)exp(l/2(j/
2) —-> 0 as j —> oo, then the Dirichlet form 

(/E, D(E)\ is not quasi-regular on L2(E; m). In fact, D(<E)K = {^}far any compact set 
K C E and so (QR1) must fail to hold. 

NOTE. Recalling that £ aj < oo, we see that choosing 7/ = exp( 1 /2cr2) will give us 
coefficients satisfying the hypothesis of the proposition above. It is typical that 7/ must 
go to infinity very quickly in order to force (*£, D(£)) not to be quasi-regular. 
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PROOF. For y > 1 define Ay = {z G E | \zj\ > 1} and set 0N = \J™NAJ- N O W i f K i s 

any compact subset of E, then Zj —* 0 uniformly on AT asy" —> oo so that K Ç <JN for some 
Af. This implies that DCE)^ Ç DC£)o and so it suffices to prove that the projection P in 
(£>(*£), £ j ' ) onto the space D(£)o<- is the zero projection. Now since A7 Ç O^ Ç E for 
7 > iV, we have Uy < loyv < 1 m-a.e. On the other hand, since (cr;-/7y)exp(l /2cry

2) —> 0 
we see from (5.20) that 1̂  —•» 1 uniformly on E. Therefore \QN = 1. 

Now for any other 1-excessive function h £ £>(*£) we have 

(5.21) fhdm = £i(/i, 1) = Ei (A, 10„) = £ i ( / ^ , 1) = fhoNdm. 

Noting that h > hoN m-a.e. we conclude that h = hoN in L2(E;m). Thus for every 1-
excessive function h we have Ph = h — hoN — 0. Therefore P is zero on the linear span 
of all 1-excessive functions, and since this linear span is dense, we conclude that P — 0 
on D(£) which proves that D(T)K = {0}. • 
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