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For the last two decades, high-dimensional data and methods have proliferated
throughout the literature. Yet, the classical technique of linear regression has not lost
its usefulness in applications. In fact, many high-dimensional estimation techniques
can be seen as variable selection that leads to a smaller set of variables (a “submodel”)
where classical linear regression applies. We analyze linear regression estimators
resulting from model selection by proving estimation error and linear representation
bounds uniformly over sets of submodels. Based on deterministic inequalities, our
results provide “good” rates when applied to both independent and dependent data.
These results are useful in meaningfully interpreting the linear regression estimator
obtained after exploring and reducing the variables and also in justifying post-model-
selection inference. All results are derived under no model assumptions and are
nonasymptotic in nature.

1. INTRODUCTION AND MOTIVATION

Least-squares linear regression is one of the most widely used prediction tools in
practical data analysis. With its simple form, linear regression leads to interpretable
results and in many cases has predictive performance on par with sophisti-
cated/complex models. It is, however, an open secret that in most cases the set of
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covariates used in the final linear regression model is rarely the same as the set of
covariates initially considered by the data analyst. This is typically a consequence
of the selection of a good predictive submodel based on an estimate of the out-of-
sample prediction risk. We use “submodel” here to denote a subset of the full set
of covariates.

Traditional analysis of the least-squares linear regression estimator restricts
attention to a single set of covariates to prove consistency as well as asymptotic nor-
mality; see White (1980a, 1980b) and Buja et al. (2019). In this case, it was proved
that the least-squares estimator is weakly and strongly consistent to the population
least-squares functional; see (10) below. Also, a properly normalized estimator
has an asymptotic normal distribution. However, the theoretical understanding
and practical usefulness of submodel least-squares estimators resulting from a
covariate selection procedure requires simultaneous consistency and (asymptotic)
normality of all the estimators under consideration. Such simultaneous consis-
tency and normality properties are the major focus of the current article. These
are what we call uniform-in-submodel results. To be more concrete, suppose
M = {M1,M2, . . . ,ML} denotes a collection of submodels, where Mj represents
a subset of covariates for 1 ≤ j ≤ L. Also, let β̂Mj represent the least-squares
estimator for the linear regression of the response on the covariates in Mj. By
simultaneous consistency, we mean the existence of target vectors {βMj : 1 ≤ j ≤ L}
such that

sup
M∈M

‖β̂M −βM‖ = op(1), as n → ∞, (1)

for some norm ‖·‖. To claim simultaneous asymptotic normality, we prove the
existence of functions {ψMj(·) : 1 ≤ j ≤ L} such that

sup
M∈M

∥∥∥∥∥√n
(
β̂M −βM

)
− 1√

n

n∑
i=1

ψM(Zi)

∥∥∥∥∥ = op(1), as n → ∞. (2)

Here, n represents the sample size and Zi = (Xi,Yi),1 ≤ i ≤ n, represent the
regression data, with detailed notation given in Section 2. Equation (2) provides the
well-known “asymptotic uniform linear representation” in the special case of the
least-squares linear regression estimator. This uniform linear representation is very
crucial in providing inference after variable selection via simultaneous inference
(Bachoc, Preinerstorfer, and Steinberger, 2019b). If M̂ is a selected model, then
one can perform inference on βM̂ by estimating the distribution of β̂M̂ . This can be
a tricky problem to deal with as shown in the works of Leeb and Pötscher (2005,
2006a, 2006b, 2008).

Although various model-selection criteria like Cp, Akaike information criterion
(AIC), Bayesian information criterion (BIC), and lasso have been recommended
for covariate selection in linear regression, results of the type (1) and (2) have
not been established in the literature (at least not in the full generality considered
here). Our method of attack is quite nonstandard. Instead of assuming that the
observations are independent and identically distributed (i.i.d.), we prove a purely
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deterministic inequality to bound the left-hand sides of (1) and (2) using maxima
of several averages. We then control these averages under both independence and
functional dependence to obtain explicit rates of convergence; cf. White (2001)
where a detailed classical analysis of the least-squares regression estimator is
provided. The functional dependence structure of data, introduced in Wu (2005),
is based on the idea of coupling and covers the setting of many linear and
nonlinear time series. This dependence concept is very closely related to the Lp-
approximability concept introduced in Pötscher and Prucha (1997).

Some noteworthy aspects of our results are as follows.

1. We provide a purely deterministic inequality for the least-squares linear regres-
sion estimator which does not require any stochasticity of the regression
data and holds for any sample size n. These deterministic results are sharp
and by nature more widely applicable than any asymptotic results. Some
deterministic inequalities for linear regression appeared in Kuchibhotla et al.
(2019). Although these inequalities led to suboptimal rates, the structures of
those deterministic inequalities were useful for the context in that paper.

2. All our results allow misspecification of the linear model. This means that the
classical Gauss–Markov linear model need not hold true for any of the sub-
models under consideration; see Chapter 4 of Monahan (2008). Two important
objections (for us) to the classical model are the impositions of fixed design and
linearity structure on the data generating distribution. Since our setting allows
for misspecification, we call our framework “model-free.” We note here that
our results do apply to the setting of fixed covariates.

3. When studied assuming a suitable randomness structure (such as independence
or functional dependence), our results are precise concentration inequali-
ties applicable in finite samples and apply to high-dimensional observations.
Another interesting facet of our results is that we do not assume the observations
are identically distributed. This is an important generalization needed to include
the case of fixed covariates.

4. For concreteness, we take the set of submodels M to be the set of all submodels
of size bounded by k (for some 1 ≤ k ≤ p). Here, p represents the total number
of available covariates. Under certain regularity conditions, the rates of con-
vergence we obtain in this case for simultaneous consistency (1) and normality
(2) with euclidean norm are

√
k log(ep/k)/n and k log(ep/k)/

√
n, respectively

(up to a lower-order additive term). Interestingly, the simultaneous consistency
rate matches the minimax optimal rate of a well-specified high-dimensional
sparse linear regression; see Raskutti, Wainwright, and Yu (2011). It should be
noted that even though the rates match with the setting of well-specified high-
dimensional linear regression, we do NOT require a well-specified model in
this article.

5. In the process of applying our results to functionally dependent observations,
we prove a tail bound for zero-mean-dependent sums, thereby extending the
results of Wu and Wu (2016). For independent observations, we use the precise
concentration inequality results of Kuchibhotla and Chakrabortty (2020).
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In addition to the important general model-selection problem above where the
results of the type (1) and (2) are required, our simultaneity results can be seen
to provide essential inferential validity guarantees for the following setting of
growing importance. In the vast literature on high-dimensional linear regression, it
has become customary to assume an underlying linear model along with a sparsity
constraint on the true regression parameter. But suppose statisticians are not willing
to assume sparsity of the parameter, and neither are they willing to assume a linear
model. Such unwillingness is not unreasonable in light of the fact that any model
is just an approximation, and sparsity is just an assumption of convenience. Now,
consider the following stylized description of approaches to high-dimensional data
as widely practiced in applied statistics and data science: High-dimensional data
are first explored either in a formal algorithmic way (e.g., using lasso or best subset
selection) or in an informal exploratory way (e.g., using residual and leverage
plots) to select a manageable small set of variables. Subsequently, the reduced
data are subjected to linear regression. The combination of variable selection
and linear regression is thought of as one procedure, a “high-dimensional linear
regression.” Even though the procedure uses only a reduced set of variables in the
final regression, it uses all the variables in the preceding selection phase. Suppose
M̂ ∈ M is the final selected submodel (from some collection of models M) and
β̂M̂ is the least-squares linear regression estimator thus obtained. The estimator
β̂M̂ is known as the postregularization estimator in the high-dimensional statistics
literature if M̂ is obtained from some regularized least-squares procedure. An
important question now is “what does β̂M̂ estimate (consistently)?” A simultaneous
result answers this question through the trivial bound

‖β̂M̂ −βM̂‖ ≤ sup
M∈M

‖β̂M −βM‖ = op(1).

Therefore, β̂M̂ is estimating the quantity βM̂ which is random through M̂. If the
model-selection procedure is such that M̂ does not stabilize as n → ∞, then β̂M̂ is
only consistent for the random quantity βM̂ and may not be consistent for any
nonrandom quantity. By comparison, if P(M̂ = M0) → 1 as n → ∞ for some
submodel M0, then with probability converging to one, βM̂ = βM0 and hence β̂M̂ is
consistent for the nonrandom quantity βM0 .

1.1. Literature Review

Results of the simultaneous type described in (1) and (2) are not readily available
in the literature. Some works that are closely related to ours are Belloni and
Chernozhukov (2013), Bachoc et al. (2018), and Chakrabortty, Nandy, and Li
(2021). Although some of these works consider a simultaneous problem, their
results are only restricted to certain special cases (e.g., independent observations
and/or fixed design) of our framework. Belloni and Chernozhukov (2013) prove
the rate of convergence of the least-squares linear regression estimator obtained
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after covariate selection using lasso. Bachoc et al. (2018) prove the rate of
convergence of

sup
M∈M

∥∥∥β̂M −βM

∥∥∥∞

under the restricted isometry property (RIP). (Here, ‖v‖∞ for a vector v denotes the
maximum absolute entry in the vector.) Also, they only consider fixed covariates.
We do not assume RIP, because it is not a practical assumption, and also we
prove the simultaneous convergence guarantee with the euclidean norm rather than
‖·‖∞. It should also be mentioned that Bachoc et al. (2018) appeared after the
initial version of the current work Kuchibhotla et al. (2018). Chakrabortty et al.
(2021) independently prove results very similar to ours in the case of independent
observations with sub-Gaussian tails. They consider a more general collection of
submodels M than the set of k-sparse submodels; see Section 5 of Chakrabortty
et al. (2021) for more details. Because our results are deterministic in nature,
they do apply for a general collection of submodels, but for concreteness, we fix
the choice of the collection. Under the assumptions of Chakrabortty et al. (2021,
Sect. 5), their results match ours exactly. We note, however, that their results are
only proved for i.i.d. observations, which is why they do not apply to the case
of fixed covariates. Furthermore, our results, including the case of independent
observations, are proved for a large class of tail assumptions that subsume their
assumptions.

Finally, we mention two recent works that discuss uniform-in-submodel-type
results. Rinaldo et al. (2018) in their Theorem 1, as well as Remark 4 that follows,
discuss uniform-in-submodel consistency for i.i.d. observations that are bounded.
Their rates, however, are suboptimal; for instance, their Theorem 1 only proves a
rate k

√
log(k)/n, while our results imply the optimal rate of

√
k/n. Giessing (2018,

Chap. 2), following the initial version of our work, proves uniform-in-submodel
consistency as well as linear representation results for quantile regression when
the observations are independent. The tail assumptions on the observations there
are weaker than ours, but this is expected, at least for the response, because the
loss is Lipschitz in the response.

1.2. Organization

The remainder of our paper is organized as follows. In Section 2, we introduce
our notation and general framework. In Section 3, we derive various deterministic
inequalities for linear regression that form the core of the paper. The application of
these results to the case of independent observations is considered in Section 4. The
application of the deterministic inequalities to the case of (functionally) dependent
observations is considered in Section 5. A discussion of our results along with
their implications for postselection inference is given in Section 6. Some auxiliary
probability results for sums of independent and functionally dependent random
variables are given in Appendixes A and B, respectively.
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2. NOTATION

Suppose (X1,Y1), . . . ,(Xn,Yn) are n random vectors in R
p ×R. Throughout the

paper, we implicitly think of p as a function of n, and so the sequence of random
vectors should be thought of as a triangular array. The term “submodel” is used
to specify the subset of covariates used in the regression and does not refer to
any probability model. We do not assume a linear model (in any sense) to be true
anywhere for any choice of covariates in any section of the paper. In this sense, all
our results are applicable in the case of misspecified linear regression models.

For any vector v ∈ R
q, for q ≥ 1 and 1 ≤ j ≤ q, let v(j) denote the jth coordinate

of v. For any nonempty submodel M given by a subset of {1,2, . . . ,q}, let v(M)

denote a subvector of v with indices in M. For instance, if M = {2,4} and q ≥ 4,
then v(M) = (v(2),v(4)). The notation |M| is used to denote the cardinality of M.
For any nonempty submodel M ⊆ {1,2, . . . ,q} and any symmetric matrix A ∈R

q×q,
let A(M) denote the submatrix of A with indices in M × M. For 1 ≤ j,k ≤ q, let
A(j,k) denote the value at the jth row and the kth column of A. Define the r-norm
of a vector v ∈ R

q, for 1 ≤ r ≤ ∞, as

‖v‖r
r :=

q∑
j=1

|v(j)|r, for 1 ≤ r < ∞, and ‖v‖∞ := max
1≤j≤q

|v(j)|.

Let ‖v‖0 denote the number of nonzero entries in v (note this is not a norm). For
any square matrix A, let λmin(A) denote the minimum eigenvalue of A. Also, let
the elementwise maximum and the operator norm be defined, respectively, as

|||A|||∞ := max
1≤j,k≤q

|A(j,k)|, and ‖A‖op := sup
‖δ‖2≤1

‖Aδ‖2 .

The following simple inequalities are useful. For any matrix A ∈ R
q×q and

v ∈ R
q,

‖v‖1 ≤ ‖v‖1/2
0 ‖v‖2 , ‖Av‖∞ ≤ |||A|||∞ ‖v‖1 , and |v
Av| ≤ |||A|||∞ ‖v‖2

1 . (3)

For any 1 ≤ k ≤ p, define the set of k-sparse submodels

M(k) := {M : M ⊆ {1,2, . . . ,p}, 1 ≤ |M| ≤ k},

so that M(p) is the power set of {1,2, . . . ,p} with the deletion of the empty set.
Thus, the set M(k) denotes the set of all nonempty submodels of size bounded by
k. The most important aspect of our results is the “uniform-in-submodel” feature.
These results are proved uniform over M ∈ M(k), for some k, that is allowed to
diverge with n.

When fitting a linear regression, it is common to include an intercept term. To
avoid extra notation, we assume that all covariates under consideration are included
in the vectors Xi. So, take the first coordinate of all Xi’s to be 1, that is, Xi(1) = 1,
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for all 1 ≤ i ≤ n, if an intercept is required. For any M ⊆ {1,2, . . . ,p}, define the
ordinary least-squares (OLS) empirical risk (or objective) function as

R̂n(θ;M) := 1

n

n∑
i=1

{
Yi −X


i (M)θ
}2

, for θ ∈ R
|M|.

Expanding the square function, it is clear that

R̂n(θ;M) = 1

n

n∑
i=1

Y2
i − 2

n

n∑
i=1

YiX


i (M)θ + θ


(
1

n

n∑
i=1

Xi(M)X

i (M)

)
θ . (4)

Only the second and third terms depend on θ . Because the quantities in these terms
play a significant role in our analysis, define

�̂n := 1

n

n∑
i=1

XiX


i ∈ R

p×p, and �̂n := 1

n

n∑
i=1

XiYi ∈ R
p. (5)

The least-squares linear regression estimator β̂n,M is defined as

β̂n,M := arg min
θ∈R|M|

R̂n(θ;M) = arg min
θ∈R|M|

{θ
�̂n(M)θ −2θ
�̂n(M)}. (6)

The notation arg minθ f (θ) denotes the minimizer of f (θ). Based on the quadratic
expansion (4) of the empirical objective R̂n(θ;M), the estimator β̂n,M is given by
the closed form expression

β̂n,M = [�̂n(M)]−1�̂n(M), (7)

assuming nonsingularity of �̂n(M). Note that [�̂n(M)]−1 is not equal to �̂−1
n (M).

The matrix �̂n(M) being the average of n rank-one matrices in R
|M|×|M|, its rank

is at most min{|M|,n}. This implies that the least-squares estimator β̂n,M is not
uniquely defined unless |M| ≤ n.

It is clear from (7) that β̂n,M is a smooth (nonlinear) function of two averages
�̂n(M) and �̂n(M). Assuming for a moment that the random vectors (Xi,Yi) are
i.i.d. with finite fourth moments, it follows that �̂n(M) and �̂n(M) converge in
probability to their expectations. The i.i.d. assumption here can be relaxed to weak
dependence and nonidentically distributed random vectors; see White (2001) for
more details.

Getting back to the general context, define the “expected” matrix and vector as

�n := 1

n

n∑
i=1

E
[
XiX



i

] ∈ R
p×p, and �n := 1

n

n∑
i=1

E [XiYi] ∈ R
p. (8)

Note that we write �n or �n (indexing by the sample size n) for two reasons.
First, we do not assume the random vectors are identically distributed, and hence,
the expected matrix changes with n even if the dimension is fixed. Second, the
dimension in our setting is allowed to change with n, and hence, even if the
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observations are identically distributed, the expectation matrix changes with the
sample size.

To define a target vector that is being consistently estimated by β̂n,M , consider
the following simple calculation in a simpler setting where |M| does not change
with n. As noted above β̂n,M = [�̂n(M)]−1�̂n(M), and if

(�̂n −�n, �̂n −�n)
P→ 0 as n → ∞,

then by a Slutsky-type argument, it follows that

β̂n,M −βn,M
P→ 0 as n → ∞, (9)

where

βn,M := [�n(M)]−1�n(M) = arg min
θ∈R|M|

{θ
�n(M)θ −2θ
�n(M)}. (10)

The convergence statement (9) only concerns a single submodel M and is not
uniform over M. By uniform-in-submodel ‖·‖2-norm consistency of β̂n,M to βn,M ,
for M ∈ M(k), we mean that

sup
M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2
= op(1) as n → ∞.

As shown above, convergence of β̂n,M to βn,M only requires convergence of
�̂n(M) to �n(M) and �̂n(M) to �n(M). It is not required that these matrices and
vectors are averages of random matrices and random vectors.

In the following section, in proving deterministic inequalities, we generalize the
linear regression estimator by the function βM : Rp×p ×R

p → R
|M| as

βM (�,�) = [�(M)]−1�(M), (11)

assuming the existence of the inverse of �(M). We call this βM(·,·) the linear
regression map. It is evident that

β̂n,M = βM(�̂n,�̂n) and βn,M = βM(�n,�n).

There are many potential applications that require replacing the sample average
matrices in the linear regression estimator by a suitable nonaverage version, e.g.,
shrinkage or robust estimators. Three of these applications are listed in Section 3.3.
To distinguish the estimator β̂n,M with sample averages from the linear regression
map, we call β̂n,M as the OLS estimator.

In the next section, we shall prove a bound of the type

‖βM (�1,�1)−βM (�2,�2)‖2 ≤ FM (�1 −�2, �1 −�2) for all M ∈ M(k)
(12)

and for some function FM(·,·). Taking (�1,�1) = (�̂n,�̂n) and (�2,�2) = (�n,�n),
inequality (12) is useful for the purpose of proving (1). In regard to (12), thinking
of βM as a function of (�,�), our results are essentially about studying Lipschitz
continuity properties and understanding what kind of norms are best suited for
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this purpose. Using the smoothness of the linear regression map, we also obtain a
bound on

sup
M∈M(k)

‖βM(�1,�1)−βM(�2,�2)−∇βM(�2,�2)(�1 −�2,�1 −�2)‖2 ,

where ∇βM(·,·) represents the gradient of the linear regression map. The following
error norms will be very useful for these results:

RIP(k,�1 −�2) := sup
M∈M(k)

‖�1(M)−�2(M)‖op ,

D (k,�1 −�2) = sup
M∈M(k)

‖�1(M)−�2(M)‖2 . (13)

The quantity RIP is a norm for any k ≥ 2 and is not a norm for k = 1. This
error norm is very closely related to the RIP used in the compressed sensing and
high-dimensional linear regression literature where �2 is the identity matrix. Also,
define the k-sparse minimum singular value of a matrix A ∈ R

p×p as

	(k;A) = inf
θ∈Rp,‖θ‖0≤k

‖Aθ‖2

‖θ‖2
. (14)

Even though all the results in the next section are written in terms of the linear
regression map (11), our main focus will still be the matrices and vectors defined
in (5) and (8).

3. DETERMINISTIC RESULTS FOR LINEAR REGRESSION

3.1. Can We Expect Deterministic Inequalities?

Classical asymptotic theory for linear regression or for that matter any estimation
problem usually starts with an assumption that the observations are independent
or otherwise follow a specific stochastic dependence. What we are aiming for is
a purely deterministic inequality that does not even assume randomness of the
observations.

To see whether we can at all expect a deterministic inequality, let us consider
a simple example with only one submodel M = {1}, that is, a simple regression
through the origin based on one regressor. For this case, let us write

σ̂ 2
n := �̂n(M), γ̂n := �̂n(M), σ 2

n := �n(M), and γn := �n(M).

Note that these are all scalar quantities. Now, the regression estimator and targets
become

β̂n,M = γ̂n

σ̂ 2
n

and βn,M = γn

σ 2
n

.
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Observe that∣∣∣β̂n,M −βn,M

∣∣∣= ∣∣∣∣ γ̂n

σ̂ 2
n

− γn

σ 2
n

∣∣∣∣
≤
∣∣∣∣ 1

σ̂ 2
n

− 1

σ 2
n

∣∣∣∣ γ̂n + 1

σ 2
n

∣∣γ̂n −γn

∣∣
≤ σ−2

n

∣∣σ̂ 2
n −σ 2

n

∣∣×|β̂n,M|+σ−2
n

∣∣γ̂n −γn

∣∣
≤ σ−2

n

∣∣σ̂ 2
n −σ 2

n

∣∣×|β̂n,M −βn,M|+σ−2
n

∣∣σ̂ 2
n −σ 2

n

∣∣
×|βn,M|+σ−2

n

∣∣γ̂n −γn

∣∣ .
Solving this inequality for |β̂n,M −βn,M|, we get∣∣∣β̂n,M −βn,M

∣∣∣≤ ∣∣σ̂ 2
n −σ 2

n

∣∣×|βn,M|+ ∣∣γ̂n −γn

∣∣
σ 2

n − ∣∣σ̂ 2
n −σ 2

n

∣∣ .

This is a deterministic inequality that does not require any probabilistic structure on
the data, and more importantly, the right-hand side tends to zero if σ̂ 2

n −σ 2
n = o(σ 2

n )

and γ̂n − γn= o(σ 2
n ). Because this bound is a deterministic inequality, taking a

supremum over a collection of submodels does not invalidate the inequality. This is
not the case if we only have an asymptotic result. All our deterministic inequalities
to be stated/proved in the forthcoming sections are variations of the calculation
above. One might suspect that the closed form expression of the linear regression
map made a deterministic inequality possible, but as shown in Kuchibhotla (2018),
most “smooth” M-estimators satisfy this type of result.

3.2. Main Results

All our results in this section depend on the error norms RIP(k,�1 − �2) and
D(k,�1 − �2) in (13). These are, respectively, the maximal k-sparse eigenvalue
of �1 −�2 and the maximal k-sparse euclidean norm of �1 −�2. At first glance, it
may not be clear how these quantities behave. We first present a simple inequality
for RIP and D in terms of |||·|||∞ and ‖·‖∞.

PROPOSITION 3.1. For any k ≥ 1,

sup
M∈M(k)

‖�1(M)−�2(M)‖op ≤ k|||�1 −�2|||∞,

sup
M∈M(k)

‖�1(M)−�2(M)‖2 ≤ k1/2 ‖�1 −�2‖∞ .

Proof. See Appendix C for a proof. �

In many cases, it is much easier to control the maximum elementwise norm
rather than the RIP error norm. However, the factor k on the right-hand side
often leads to suboptimal dependence in the dimension. For the special cases of
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independent and dependent random vectors (to be discussed in Sections 4 and 5),
we directly control RIP and D.

The sequence of results to follow are related to uniform consistency in ‖·‖2- and
‖·‖1-norms. To state these results, we require the following quantities representing
the strength of regression (or linear association). For r,k ≥ 1,

Sr,k(�,�) := sup
M∈M(k)

‖βM(�,�)‖r = sup
M∈M(k)

∥∥[�(M)]−1�(M)
∥∥

r . (15)

For the following theorem, recall the k-sparse minimum singular value 	(·;·)
defined in (14) and the error metrics defined in (13).

THEOREM 3.1 (Uniform L2-consistency). Let k ≥ 1 be any integer such that

RIP(k,�1 −�2) ≤ 	(k;�2). (16)

Then, simultaneously, for all M ∈ M(k),

‖βM(�1,�1)−βM(�2,�2)‖2 ≤ D(k,�1 −�2)+RIP(k,�1 −�2)‖βM(�2,�2)‖2

	(k;�2)−RIP(k,�1 −�2)
.

Proof. Recall from the linear regression map (11) that

βM(�1,�1) = [�1(M)]−1 �1(M) and βM(�2,�2) = [�2(M)]−1 �2(M).

Fix M ∈ M(k). Then,

‖βM(�1,�1)−βM(�2,�2)‖2 = ∥∥[�1(M)]−1 �1(M)− [�2(M)]−1 �2(M)
∥∥

2

≤ ∥∥([�1(M)]−1 − [�2(M)]−1)�1(M)
∥∥

2

+∥∥[�2(M)]−1 (�1(M)−�2(M))
∥∥

2

=: �1 +�2.

By definition of the operator norm,

�2 ≤ [	(k;�2)]
−1 ‖�1(M)−�2(M)‖2 ≤ [	(k;�2)]

−1D (k,�1 −�2) .

To control �1, note that

�1 ≤ ∥∥(IM − [�2(M)]−1 �1(M)
)

[�1(M)]−1 �1(M)
∥∥

2

≤ ∥∥(IM − [�2(M)]−1 �1(M)
)∥∥

op
‖βM(�1,�1)‖2

≤ [	(k;�2)]
−1 ‖�1(M)−�2(M)‖op ‖βM(�1,�1)‖2

≤ [	(k;�2)]
−1 RIP(k,�1 −�2)‖βM(�1,�1)‖2 ,

where IM represents the identity matrix of dimension |M|× |M|. Now, combining
bounds on �1,�2, we get

‖βM(�1,�1)−βM(�2,�2)‖2 ≤ D(k,�1 −�2)+RIP(k,�1 −�2)‖βM(�1,�1)‖2

	(k;�2)
.
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Subtracting and adding βM(�2,�2) from βM(�1,�1), we get

‖βM(�1,�1)−βM(�2,�2)‖2 ≤ D(k,�1 −�2)+RIP(k,�1 −�2)‖βM(�2,�2)‖2

	(k;�2)

+ RIP(k,�1 −�2)

	(k,�2)
‖βM(�1,�1)−βM(�2,�2)‖2.

Solving this inequality under assumption (16), it follows, for all M ∈ M(k), that

‖βM(�1,�1)−βM(�2,�2)‖2 ≤ D(k,�1 −�2)+RIP(k,�1 −�2)‖βM(�2,�2)‖2

	(k;�2)−RIP(k;�2)
.

This proves the result. �

As will be seen in the application of Theorem 3.1, the complicated looking
bound provided above gives the “optimal” bound. Combining Proposition 3.1 and
Theorem 3.1, we get the following simple corollary that gives suboptimal rates.

COROLLARY 3.1. Let k ≥ 1 be any integer such that

k|||�1 −�2|||∞ ≤ 	(k;�2).

Then,

sup
M∈M(k)

‖βM(�1,�1)−βM(�2,�2)‖2

≤ k1/2 ‖�1 −�2‖∞ + k|||�1 −�2|||∞S2,k(�2,�2)

	(k;�2)− k|||�1 −�2|||∞ .

Remark 3.1 (Bounding S2,k in (15)). The bound for uniform L2-consistency
requires a bound on ‖βM(�2,�2)‖2 in addition to bounds on the error norms related
to �-matrices and �-vectors. It is a priori not clear how this quantity might vary
as the dimension of the submodel M changes. In the classical analysis of linear
regression where a true linear model is assumed, the true parameter vector β is
seen as something chosen by nature, and hence, its norm is not under control of
the statistician. Hence, in the classical analysis, a growth rate on ‖β‖2 is imposed
as an assumption.

From the viewpoint taken in this paper, under misspecification nature picks the
whole distribution sequence of random vectors and hence the quantity βM(·,·) that
came up in the analysis. In the full generality of linear regression maps considered
here, we do not know of any techniques to bound the norm of this vector. It
is, however, possible to bound it if βM(·,·) is defined by a least-squares linear
regression problem. Recall the definition of �n,�n from (8) and βn,M from (10).
Observe that by definition of βn,M ,

0 ≤ 1

n

n∑
i=1

E

[{
Yi −X


i (M)βn,M
}2
]

≤ 1

n

n∑
i=1

E
[
Y2

i

]−β

n,M�n(M)βn,M .
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This holds because βn,M satisfies n−1∑n
i=1E[Xi(M)Yi] = n−1∑n

i=1E[Xi(M)X

i

(M)βn,M] = �n(M)βn,M . Hence, for every M ∈ M(p),∥∥βn,M

∥∥2
2 λmin (�n(M)) ≤ βn,M�n(M)βn,M ≤ 1

n

n∑
i=1

E
[
Y2

i

]
.

Therefore, using the definitions of 	(k;�n) and Sr,k in (14) and (15),

S2,k(�n,�n) ≤
(

1

n	(k;�n)

n∑
i=1

E
[
Y2

i

])1/2

,

S1,k(�n,�n) ≤
(

k

n	(k;�n)

n∑
i=1

E
[
Y2

i

])1/2

.

It is immediate from these results that if the second moment of the response is
uniformly bounded, then S2,k behaves like a constant when �n is well-conditioned.
See Foygel and Srebro (2011) for a similar calculation. ♦

Based on the uniform-in-submodel ‖·‖2-bound, the following result is trivially
proved.

THEOREM 3.2 (Uniform L1-consistency). Let k ≥ 1 be such that

RIP(k,�1 −�2) ≤ 	(k;�2).

Then, simultaneously, for all M ∈ M(k),

‖βM(�1,�1)−βM(�2,�2)‖1

≤ |M|1/2 D (k,�1 −�2)+RIP(k,�1 −�2)‖βM(�2,�2)‖2

	(k;�2)−RIP(k,�1 −�2)
.

Proof. The proof follows by using the first inequality in (3). �

The results above only prove a rate of convergence that gives uniform consis-
tency. They are therefore not readily applicable for (asymptotic) inference. For
inference about a parameter, an asymptotic distribution result is required, usually
asymptotic normality, which is typically proved by way of an asymptotic linear
representation. In what follows, we derive a uniform-in-submodel linear represen-
tation for the linear regression map. The result in terms of the regression map itself
is somewhat abstract; hence, it might be helpful to revisit the usual estimators β̂n,M

and βn,M from (6) and (10) to understand what kind of representation is possible.
From the definition of β̂n,M , we have

�̂n(M)β̂n,M = �̂n(M) ⇒ �̂n(M)
(
β̂n,M −βn,M

)
= �̂n(M)− �̂n(M)βn,M .

Assuming �̂n(M) and �n(M) are close, one would expect∥∥∥β̂n,M −βn,M − [�n(M)]−1
(
�̂n(M)− �̂n(M)βn,M

)∥∥∥
2
≈ 0. (17)
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Note, by substituting all the definitions, that

[�n(M)]−1
(
�̂n(M)− �̂n(M)βn,M

)
= 1

n

n∑
i=1

[�n(M)]−1 Xi(M)(Yi −X

i (M)βn,M).

This being an average (a linear functional), the left-hand side quantity in (17)
is called the linear representation error. Now, using the same argument and
substituting �1 and �2 for �̂n and �n, respectively, we get the following result.
Recall the notations S2,k(·,·) and 	(·,·) from equations (14) and (15).

THEOREM 3.3 (Uniform linear representation). Let k ≥ 1 be any integer such
that

RIP(k,�1 −�2) ≤ 	(k;�2).

Then, for all submodels M ∈ M(k),∥∥βM(�1,�1)−βM(�2,�2)− [�2(M)]−1 (�1(M)−�1(M)βM(�2,�2))
∥∥

2

≤ RIP(k,�1 −�2)

	(k;�2)
‖βM(�1,�1)−βM(�2,�2)‖2 . (18)

Furthermore, using Theorem 3.1, we get

sup
M∈M(k)

∥∥βM(�1,�1)−βM(�2,�2)− [�2(M)]−1 (�1(M)−�1(M)βM(�2,�2))
∥∥

2

≤ RIP(k,�1 −�2)

	(k;�2)

D (k,�1 −�2)+RIP(k,�1 −�2)S2,k(�2,�2)

	(k;�2)−RIP(k,�1 −�2)
.

(19)

Proof. From the definition (11) of βM(�,�), we have

�1(M)βM(�1,�1)−�1(M) = 0,

�2(M)βM(�2,�2)−�2(M) = 0. (20)

Adding and subtracting βM(�2,�2) from βM(�1,�1) in (20), it follows that

�1(M)(βM(�1,�1)−βM(�2,�2)) = �1(M)−�1(M)βM(�2,�2).

Now, adding and subtracting �2(M) from �1(M) in this equation, we get

(�2(M)−�1(M))(βM(�1,�1)−βM(�2,�2))

= �2(M)(βM(�1,�1)−βM(�2,�2))− [�1(M)−�1(M)βM(�2,�2)] .
(21)
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The right-hand side is almost the quantity we need to bound to establish the
result. Multiplying both sides of the equation by [�2(M)]−1 and then applying
the euclidean norm implies that, for M ∈ M(k),∥∥βM(�1,�1)−βM(�2,�2)− [�2(M)]−1 {�1(M)−�1(M)βM(�2,�2)}

∥∥
2

≤ ‖�1(M)−�2(M)‖op

	(k;�2)
‖βM(�1,�1)−βM(�2,�2)‖2 .

This proves the first part of the result. The second part of the result follows by the
application of Theorem 3.1. �

Remark 3.2 (Matching lower bounds). The bound (18) only proves an upper
bound. It can, however, be seen from equation (21) that, for any M ∈ M(k),∥∥βM(�1,�1)−βM(�2,�2)− [�2(M)]−1 (�1(M)−�1(M)βM(�2,�2))

∥∥
2

= ∥∥[�2(M)]−1 (�1(M)−�2(M))(βM(�1,�1)−βM(�2,�2))
∥∥

2

≥ C∗(k,�2)	(k,�1 −�2)‖βM(�1,�1)−βM(�2,�2)‖2 ,

where

C∗(k,�2) := min
M∈M(k)

λmin
(
[�2(M)]−1)= [RIP(k,�2)]

−1 .

Recall, from equations (13) and (14), that

RIP(k,�2) = sup
M∈M(k)

‖�2(M)‖op and

	(k,�1 −�2) = inf
θ∈Rp,‖θ‖0≤k

‖(�1 −�2)θ‖2

‖θ‖2
.

If the minimal and maximal k-sparse singular values of �1 −�2 are of the same
order, then the upper and lower bounds for the linear representation error match up
to the order under the additional assumption that the minimal and maximal sparse
eigenvalues of �2 are of the same order. ♦

Remark 3.3 (Improved ‖·‖2-error bounds). Uniform linear representation error
bounds (18) and (19) prove more than just a linear representation. These bounds
allow us to improve the bounds provided for uniform L2-consistency. Bound (18)
is of the form

‖u− v‖2 ≤ δ ‖u‖2 ⇒ (1− δ)‖u‖2 ≤ ‖v‖2 ≤ (1+ δ)‖u‖2 .

Therefore, assuming RIP(k,�1 − �2) ≤ 	(k;�2)/2, it follows that, for all M ∈
M(k),

1

2

∥∥[�2(M)]−1 (�1(M)−�1(M)βM(�2,�2))
∥∥

2

≤ ‖βM(�1,�1)−βM(�2,�2)‖2

≤ 2
∥∥[�2(M)]−1 (�1(M)−�1(M)βM(�2,�2))

∥∥
2 . (22)
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This is a more precise result than informed by Theorem 3.1, because here we
characterize the estimation error exactly up to a factor of 2. Also, note that in case
of the least-squares estimator and target, β̂n,M and βn,M , the upper and lower bounds
here are euclidean norms of averages of random vectors. Dealing with linear
functionals like averages is much simpler than dealing with nonlinear functionals
such as β̂n,M .

If RIP(k,�1 −�2) converges to zero, then the right-hand side of bound (18) is
of smaller order than both the terms appearing on the left-hand side (which are the
same as those appearing in (22)). This means that the linear representation error is
of strictly smaller order than the estimator error simultaneously over all M ∈M(k).

♦
Remark 3.4 (Alternative to RIP). A careful inspection of the proof of Theorems

3.1 and 3.3 reveals that the bounds can be written in terms of

sup
M∈M(k)

∥∥[�2(M)]−1/2 �1(M) [�2(M)]−1/2 − I|M|
∥∥

op
,

instead of RIP(k,�1 −�2). Here, I|M| is the identity matrix in R
|M|×|M|. Bounding

this quantity might not require a bounded condition number of �2; however, we
will only deal with RIP(k,�1 −�2) in the following sections for convenience. ♦

Summarizing all the results in this section, it is sufficient to control

RIP(k,�1 −�2) and D (k,�1 −�2)

to derive uniform-in-submodel results in any linear-regression-type problem. In
this respect, these are the norms in which one should measure the accuracy of the
Gram matrix and the inner product of covariates and response. Hence, if one wishes
to use shrinkage estimators, for example, because � and � are high-dimensional
“objects,” then the estimation accuracy should be measured with respect to RIP
and D for uniform-in-submodel-type results.

3.3. Applications of the Linear Regression Map

Before proceeding to the rates of convergence of these error norms for independent
and dependent data, we describe the importance of defining the linear regression
map with general matrices instead of just Gram matrices. The generality achieved
so far would be worthless if no interesting applications existed. The goal now is to
provide a few such interesting examples.

1. Heavy-Tailed Observations: The RIP(·,·)-norm is a supremum over all sub-
models of size k or less; hence, the supremum is over

k∑
s=1

(
p

s

)
≤

k∑
s=1

ps

s!
=

k∑
s=1

ks

s!

(p

k

)s ≤
(ep

k

)k
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number of submodels. This bound is polynomial in the total number of covari-
ates but is exponential in the size of the largest submodel under consideration.
Therefore, if the total number of covariates p is allowed to diverge, then the
question we are interested in is inherently high-dimensional. If the usual Gram
matrices are used, then

RIP(k,�̂n −�n) = sup
|M|≤k

∥∥∥�̂n(M)−�n(M)

∥∥∥
op

;

hence, RIP in this case is the supremum in the order of (ep/k)k many averages.
As is well-understood from the literature on concentration of measure or even
the union bound, one would require exponential tails on the initial random
vectors to allow a good control on RIP(·,·) if the usual Gram matrix is used.
Does this mean that the situation is hopeless if the initial random vectors do
not have exponential tails? The short answer is “not necessarily.” Viewing
the matrix �n (the “population” Gram matrix) as a target, there have been
many variations of sample mean Gram matrix estimators that are shown to
provide exponential tails even though the initial observations are heavy tailed.
See, for example, Catoni (2012), Wei and Minsker (2017), and Catoni and
Giulini (2017), along with the references therein, for more details on a specific
estimator and its properties. It should be noted that these authors do not study
the estimator accuracy with respect to the RIP-norm.

2. Outlier Contamination: Real data, more often than not, are contaminated with
outliers, and it is a difficult problem to remove or downweight observations
when contamination is present. Robust statistics provide estimators that can
ignore or downweight the observations suspected to be outliers and yet perform
comparably when there is no contamination present in the data. Some simple
examples include entrywise medians or trimmed means. See Minsker (2015)
and the references therein for some more examples. Almost none of these
estimators are simple averages but behave regularly in the sense that they can
be expressed as averages up to a negligible asymptotic remainder term. Chen,
Caramanis, and Mannor (2013) provide a simple estimator of the Gram matrix
under adversarial corruption and casewise contamination.

3. Indirect Observations: This example is taken from Loh and Wainwright (2012).
The setting is as follows. Instead of observing the real random vectors (X1,Y1),
. . ., (Xn,Yn), we observe a sequence (Z1,Y1), . . . ,(Zn,Yn) with Zi linked with Xi

via some conditional distribution, that is, for 1 ≤ i ≤ n,

Zi ∼ Q(·|Xi).

As discussed on page 4 of Loh and Wainwright (2012), this setting includes
some interesting cases such as missing data and noisy covariates. A brief hint
of the settings is given below:

– If Zi = Xi + Wi where Wi is independent of Xi and has mean zero with a
known covariance matrix.
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– For some fraction ρ ∈ [0,1), we observe a random vector Zi ∈ R
p such

that for each component j, we independently observe Zi(j) = Xi(j) with
probability 1 − ρ and Zi(j) = ∗ with probability ρ. (Here, ∗ means a
missing value.)

– If Zi = Xi �ui, where ui ∈ R
p is again a random vector independent of Xi

and � is the Hadamard (coordinatewise) product. The problem of missing
data is a special case.

On page 6, Loh and Wainwright (2012) provide various estimators in place of �̂n

in (5). The assumption in Lemma 12 of Loh and Wainwright (2012) is essentially
a bound on the RIP-norm in our notation, and they verify this assumption in all the
examples above. Hence, all our results in this section apply to these settings.

3.4. Application of Deterministic Inequalities to OLS

In the following two sections, we prove finite sample nonasymptotic bounds for
RIP(k,�1 −�2) and D(k,�1 −�2) when

�1 = �̂n, �2 = �n and �1 = �̂n, �2 = �n.

See equations (5) and (8). For convenience, we rewrite Theorem 3.3 for this setting.
Also, for notational simplicity, let

	n(k) := 	(k,�n), RIPn(k) := RIP(k,�̂n −�n) and Dn(k) := D(k,�̂n −�n).
(23)

Recall the definition of β̂n,M , βn,M , and S2,k from (7), (10), and (15).

THEOREM 3.4. Let k ≥ 1 be any integer such that RIPn(k) ≤ 	n(k). Then, for
all submodels M ∈ M(k),

sup
M∈M(k)

∥∥∥∥∥β̂n,M −βn,M − 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)∥∥∥∥∥

2

≤ RIPn(k)

	n(k)

(Dn(k)+RIPn(k)S2,k(�n,�n)

	n(k)−RIPn(k)

)
.

Recall here that �n and �n are nonrandom vectors/matrices given in (8). So,
Theorem 3.4 (which is still a deterministic inequality) can be used to prove an
asymptotic uniform linear representation.

Remark 3.5 (Nonuniform bounds). The bound above applies for any k satis-
fying the assumption RIPn(k) ≤ 	n(k). Noting that, for M ∈ M(k), RIPn(|M|) ≤
RIPn(k) as well as 	n(|M|) ≥ 	n(k), Theorem 3.4 implies that∥∥∥∥∥β̂n,M −βn,M − 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)∥∥∥∥∥

2
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≤ RIPn(|M|)
	n(|M|)

(Dn(|M|)+RIPn(|M|)S2,|M|(�n,�n)

	n(|M|)−RIPn(|M|)
)

.

The point made here is that even though the bound in Theorem 3.4 only uses the
maximal submodel size, it can recover submodel size-dependent bounds, because
the result is proved for every k. ♦

Remark 3.6 (Postselection consistency). One of the main aspects of our results
is in proving consistency of the least-squares linear regression estimator after
data exploration. Suppose a random submodel M̂ chosen based on data satisfies
|M̂| ≤ k with probability converging to one, that is, P(M̂ ∈ M(k)) → 1. Then,
with probability converging to one,∥∥∥β̂n,M̂ −βn,M̂

∥∥∥
2
≤ sup

M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2

.

A similar bound also holds for the linear representation error. Therefore, the
uniform-in-submodel results above allow us to prove consistency and asymptotic
normality of the least-squares linear regression estimator after data exploration.
See Belloni and Chernozhukov (2013) for related applications and methods of
choosing the random submodel M̂. ♦

Remark 3.7 (Bounding S2,k). As shown in Remark 3.1, for the setting of
averages,

S2,k(�n,�n) ≤
(

1

n	n(k)

n∑
i=1

E
[
Y2

i

])1/2

. (24)

The quantity on the right-hand side of (24) is of the order 	
−1/2
n (k) under the

assumption of bounded second moments of the Yi’s. Therefore, we will not further
write S2,k explicitly and just use 	

−1/2
n (k) instead. ♦

4. RATES FOR INDEPENDENT OBSERVATIONS

In this section, we derive bounds for RIPn(k) and Dn(k) defined in (23) under the
assumption of independence and weak exponential tails. The setting is as follows.
Suppose (X1,Y1), . . . ,(Xn,Yn) are a sequence of independent random vectors in
R

p ×R. Consider the following assumptions:

(MExp) Assume that there exist positive numbers α > 0, and Kn,p > 0, such
that

max
1≤j≤p

max
{‖Xi(j)‖ψα

, ‖Yi‖ψα

}≤ Kn,p for all 1 ≤ i ≤ n.

(JExp) Assume that there exist positive numbers α > 0, and Kn,p > 0, such that

max
{∥∥X


i θ
∥∥

ψα
, ‖Yi‖ψα

}
≤ Kn,p for all θ ∈ R

p, ‖θ‖2 ≤ 1, 1 ≤ i ≤ n.
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Recall that Xi(j) means the jth coordinate of Xi. The notation ‖·‖ψα
refers to a

quasinorm defined by

‖W‖ψα
:= inf

{
C > 0 : E

[
exp

( |W|α
Cα

)]
≤ 2

}
,

for any random variable W. Random variables W satisfying ‖W‖ψα
< ∞ are

referred to as sub-Weibull of order α, because ‖W‖ψα
< ∞ implies that, for all

t ≥ 0,

P(|W| ≥ t) ≤ 2exp

(
− tα

‖W‖α
ψα

)
,

where the right-hand side resembles the survival function of a Weibull random
variable of order α > 0 (see Kuchibhotla and Chakrabortty (2020) for more
details). The special cases α = 1,2 are very much used in the high-dimensional
literature as assumed tail behaviors. A random variable W satisfying ‖W‖ψα

< ∞
with α = 2 is called sub-Gaussian, and with α = 1 it is called subexponential (see
van der Vaart and Wellner (1996) for more details).

It is easy to see that Assumption (JExp) implies Assumption (MExp). We refer
to Assumption (MExp) as a marginal assumption and Assumption (JExp) as a
joint assumption. It should be noted that Assumption (JExp) is much stronger
than Assumption (MExp), because Assumption (JExp) implies that the coordinates
of Xi should be “almost” independent (see Chapter 3 of Vershynin (2018) and
Kuchibhotla and Chakrabortty (2020) for further discussion).

The following results bound Dn(k) and RIPn(k) based on Theorem A.1 in
Appendix A. Because RIPn(k) involves operator norms over k-sparse unit balls, we
will bound it using ε-nets for the union of these unit balls. This will also be useful
for bounding Dn(k). Before stating the results, we need the following preliminary
calculations and notations. For any set K with metric d(·,·), a set N is called a γ -
net of K with respect to d if N ⊂ K, and for any z ∈ K, there exists an x ∈ N such
that d(x,z) ≤ γ . Let ‖·‖2 denote the euclidean norm and define the d-dimensional
unit ball by

B2,d := {x ∈ R
d : ‖x‖2 ≤ 1

}
.

Let Nd(ε) represent an ε-net of B2,d with respect to the euclidean norm. Define
the k-sparse subset of the unit ball in R

p as

�k := {θ ∈ R
p : ‖θ‖0 ≤ k, ‖θ‖2 ≤ 1} . (25)

With some abuse of notation, a disjoint decomposition of �k can be written as

�k =
k⋃

s=1

⋃
|M|=s

B2,s.
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The last union includes repetition of B2,s as subsets of Rp with unequal supports.
Using this decomposition, it follows that a 1

4 -net N (ε,�k) of �k with respect to
the euclidean norm on R

p can be chosen to satisfy

N (ε,�k) ⊆
k⋃

s=1

⋃
|M|=s

Ns(ε),

and, hence, can be bounded in cardinality by

|N (ε,�k)| ≤
k∑

s=1

(
p

s

)
|Ns(ε)| .

Applying Lemma 4.1 of Pollard (1990), it follows that

|Ns(ε)| ≤ (1+ ε−1)s ⇒ |N (ε,�k)| ≤
k∑

s=1

(
p

s

)
(1+ ε−1)s ≤

(
(1+ ε−1)ep

k

)k

.

(Lemma 4.1 of Pollard (1990) provides the bound on the covering number to be
( 3

ε
)d, but it can be improved from the proof to (1+ 1

ε
)d.) Here, one can choose the

elements of the covering set Ns(ε) to be s-sparse in R
p. See Lemma 3.3 of Plan and

Vershynin (2013) for a similar result. Based on these calculations and the covering
set N (ε,�k), we bound Dn(k) and RIPn(k) by a finite maximum of mean-zero
averages.

Observe that

Dn(k) = sup
θ∈�k

θ

(
�̂n −�n

)
≤ sup

α∈N (1/2,�k)

α

(
�̂n −�n

)
+ sup

β∈�k/2
β

(
�̂n −�n

)
= sup

α∈N (1/2,�k)

α

(
�̂n −�n

)
+ 1

2
sup
β∈�k

β

(
�̂n −�n

)
.

Therefore,

Dn(k) ≤ 2 sup
θ∈N (1/2,�k)

∣∣∣∣∣1n
n∑

i=1

{
θ
XiYi −E

[
θ
XiYi

]}∣∣∣∣∣ . (26)

It is clear that the bound is sharp up to a constant factor. By a similar calculation,
it can be shown that

RIPn(k) ≤ 2 sup
θ∈N (1/4,�k)

∣∣∣∣∣1n
n∑

i=1

{(
X


i θ
)2 −E

[(
X


i θ
)2]}∣∣∣∣∣ . (27)

See Lemma 2.2 of Vershynin (2012) for a derivation. Importantly, independence
of the random vectors is not used in any of these calculations. Replacing the
continuous supremum by a finite maximum works irrespective of how the random
vectors are distributed.
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As an immediate corollary, we get the following rate of convergence results.

THEOREM 4.1. Define, for k ≥ 1,

ϒ�
n,k := sup

θ∈�k

1

n

n∑
i=1

Var
(
θ
XiYi

)
, and ϒ�

n,k := sup
θ∈�k

1

n

n∑
i=1

Var
((

θ
Xi
)2)

.

Then, the following rates of convergence hold if Kn,p = O(1):

(a) Under Assumption (MExp),

Dn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+ k1/2(logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠,

RIPn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+ k(logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠ .

Here, T1(α) = min{α,1}.
(b) Under Assumption (JExp),

Dn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+ (logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠,

RIPn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+ (logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠ .

For simplicity, we provide here only rates of convergence. A more precise tail
bound is given in Theorem A.2 of Appendix A.

Remark 4.1 (Simplified rates of convergence). In most cases, the second term
in the rate of convergence is of lower order than the first term. Hence, under both
the assumptions (MExp) and (JExp), we get

Dn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n

⎞⎠ and RIPn(k) = Op

⎛⎝√ϒ�
n,kk log(ep/k)

n

⎞⎠ .

We believe these to be optimal, because if X and Y are independent and jointly
Gaussian, then the rates would be

√
k log(ep/k)/n; see Theorem 3.3 of Cai and

Yuan (2012) and Lemma 15 of Loh and Wainwright (2012) for related results. ♦
A direct application of Theorem 4.1 to Theorem 3.4 implies the following

uniform linear representation result for linear regression under independence.
Recall the notation 	n(k) from (23) and also β̂n,M and βn,M from (7) and (10).
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THEOREM 4.2. If (	n(k))−1 = O(1) as n,p → ∞, then the following rates of
convergence hold as n → ∞ :

(a) Under Assumption (MExp),

sup
M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2

= Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+K2

n,p

k(logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠,

and

sup
M∈M(k)

∥∥∥∥∥β̂n,M −βn,M − 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)∥∥∥∥∥

2

= Op

(
max{ϒ�

n,k,ϒ
�
n,k}k log(ep/k)

n
+K4

n,p

k2(logn)4/α(k log(ep/k))2/T1(α/2)

n2

)
.

(b) Under Assumption (JExp),

sup
M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2

= Op

⎛⎝√ϒ�
n,kk log(ep/k)

n
+K2

n,p

(logn)2/α(k log(ep/k))1/T1(α/2)

n

⎞⎠,

and

sup
M∈M(k)

∥∥∥∥∥β̂n,M −βn,M − 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)∥∥∥∥∥

2

= Op

(
max{ϒ�

n,k,ϒ
�
n,k}k log(ep/k)

n
+K4

n,p

(logn)4/α(k log(ep/k))2/T1(α/2)

n2

)
.

Remark 4.2 (Simplified rates of convergence). The result can be made much
more precise by giving the exact tail bound for all the quantities using the exact
result of Theorem A.2. We leave the details to the reader. From Theorem 4.2, it
is clear that if k log(ep/k)2/T1(α) = o(n), then the least-squares linear regression
estimator is uniformly consistent at the rate of

√
k log(ep/k)/n, which is well

known to be the minimax optimal rate of convergence for high-dimensional linear
regression estimators under a true linear model with a sparse parameter vector. We
conjecture these rates to be optimal. However, we have not derived minimax rates
for this problem. Also, our results are uniform over all probability distributions of
the random vectors (Xi,Yi) satisfying either of the Assumptions (MExp) or (JExp)
with Kn,p ≤ K for some fixed constant K < ∞. ♦
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Remark 4.3 (Fixed covariates). The results in this section do not require
any special properties of the data generating distribution such as linearity and
Gaussianity. The results only require independence of random vectors with weak
exponential tails, but it is not assumed that (Xi,Yi) have identical distributions for
1 ≤ i ≤ n.

It is worth mentioning a special case of our setting that is popular in the classical
as well as modern linear regression literature: the setting of fixed covariates. As
explained in Buja et al. (2019), this assumption has its roots in the ancillarity theory
assuming the truth of a linear model. If the covariates are nonstochastic, then

�̂n = 1

n

n∑
i=1

XiX


i = 1

n

n∑
i=1

E
[
XiX



i

]= �n,

so that RIPn(k) = 0, for all n and k. Therefore, the bounds in Theorem 3.4 become
trivial in the sense that the uniform linear representation error becomes zero. The
result applies because assumption (MExp) holds with

Kn,p = max{max
1≤i≤n

‖Xi‖∞ , max
1≤i≤n

‖Yi‖ψα
}.

Also, note from Theorem 3.1 that

sup
M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2
≤ Dn(k)

	n(k)
,

which again leads to the same rate of convergence
√

k log(ep/k)/n. An interesting
observation here is that there is no dependence on the strength of linear association
S2,k(�n,�n) defined in equation (15) in the case of fixed covariates. ♦

Remark 4.4 (Are the rates optimal?). We believe the rates for the uniform linear
representation error to be optimal; cf. Theorem 5.1 of Javanmard et al. (2018).
An intuitive reason is as follows. Any symmetric function of independent random
variables can be expanded as a sum of degenerate U-statistics of increasing order
according to the Hoeffding decomposition; see van Zwet (1984). That is,

f (W1, . . . ,Wn) = U1n +U2n +·· ·+Unn,

for any symmetric function f of independent random variables W1, . . . ,Wn. Here,
Uin represents an ith order degenerate U-statistics.

For the statistic β̂n,M − βn,M , the first-order term U1n in the decomposition is
given by

U (M)
1n = 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)

.

Hence, the difference β̂n,M − βn,M − U (M)
1n is of the same order as the second-

order U-statistics U (M)
2n next in the decomposition. It is well known that under mild

conditions, a second-order degenerate U-statistics is of order 1
n ; see Serfling (1980,
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Chap 5) for precise results. Therefore, bounding the supremum of the ‖·‖2-norm
in the uniform linear representation by

2 max
|M|≤k

max
θ∈R|M|,‖θ‖2≤1

θ

(
β̂n,M −βn,M −U (M)

1n

)
≈ 2 max

|M|≤k
max

θ∈R|M|,‖θ‖2≤1
θ
U (M)

2n ,

we see that this is a maximum of at most (
5ep
k )k many degenerate U-statistics of

order 2, which is expected to be of order (log(5ep/k)k)/n = (k log(5ep/k))/n. See
de la Peña and Giné (1999) for results about suprema of degenerate U-statistics.

♦
Remark 4.5 (Using covariance matrices instead of Gram matrices). The quan-

tities ϒ�
n,k and ϒ�

n,k play an important role in determining the exact rates of
convergence in Theorem 4.2. Under Assumption (JExp), it can be easily shown
that these quantities are of the same order as Kn,p. In cases where the dimension
grows, Assumption (JExp) cannot be justified with nonzero mean of Xi’s unless
‖E[Xi]‖2 = O(1). Under Assumption (MExp), ϒ�

n,k and ϒ�
n,k can grow with k,

and it is hard to pinpoint their growth rate. In many cases, it is reasonable to
assume a bounded operator norm of the covariance matrix instead of the second
moment (or Gram) matrix. For this reason, it is of interest to analyze the least-
squares estimators with centered random vectors. In this case, �̂n and �̂n should
be replaced by

�̂∗
n := 1

n

n∑
i=1

(
Xi − X̄

)(
Xi − X̄

)

and �̂∗

n := 1

n

n∑
i=1

(
Xi − X̄

)(
Yi − Ȳ

)
.

Here, X̄ and Ȳ represent the sample means of the covariates and the response,
respectively. Without the assumption of equality of E[Xi], for 1 ≤ i ≤ n, �̂∗

n is not
consistent for the covariance matrix of X̄. Define

μ̄X
n := 1

n

n∑
i=1

E [Xi] and μ̄Y
n := 1

n

n∑
i=1

E [Yi] .

It is easy to prove that

�̂∗
n = 1

n

n∑
i=1

(
Xi − μ̄X

n

)(
Xi − μ̄X

n

)
 − (X̄n − μ̄X
n

)(
X̄n − μ̄X

n

)

= �̃n − (X̄n − μ̄X

n

)(
X̄n − μ̄X

n

)

,

where

�̃n := 1

n

n∑
i=1

(
Xi − μ̄X

n

)(
Xi − μ̄X

n

)

.

Similarly, we get

�̂∗
n = �̃n − (X̄ − μ̄X

n

)(
Ȳ − μ̄Y

n

)
, where �̃n := 1

n

n∑
i=1

(
Xi − μ̄X

n

)(
Yi − μ̄Y

n

)
.
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Note that �̃n and �̃n are averages of independent random vectors and random
matrices, and so the theory before applies with the target vector and matrix given by

�∗
n = 1

n

n∑
i=1

E
[(

Xi − μ̄X
n

)(
Yi − μ̄Y

n

)]
and �∗

n = 1

n

n∑
i=1

E

[(
Xi − μ̄X

n

)(
Xi − μ̄X

n

)
]
.

It is important to recognize that Theorem 3.4 is not directly applicable, since the
forms of �̂∗

n and �̂∗
n do not match the structure required. One has to apply Theorem

3.3 to obtain

sup
M∈M(k)

∥∥∥∥∥β̂∗
M −β∗

M − 1

n

n∑
i=1

[
�∗

n (M)
]−1 (

Xi − μ̄X
n

)
(M){

Yi − μ̄Y
n − (Xi(M)− μ̄X

n (M))
β∗
M

}∥∥
2

≤ D(k,X̄ − μ̄X
n )
[|Ȳ − μ̄Y

n |+D(k,X̄ − μ̄X
n )S∗

2,k

]
	∗

n(k)

+ RIP∗
n(k)

	∗
n(k)

× D∗
n(k)+RIP∗

n(k)S
∗
2,k

	∗
n(k)−RIP∗

n(k)
,

where

β̂∗
M := βM(�̂∗

n,�̂
∗
n), β∗

M := βM(�∗
n,�

∗
n), S∗

2,k := S2,k(�
∗
n,�

∗
n),

and

RIP∗
n(k) := RIP(k,�̂∗

n −�∗
n ), D∗

n(k) := D(k,�̂∗
n −�∗

n), and

	∗
n(k) := 	(k;�∗

n ).

From the calculations presented above, it follows that

RIP∗
n(k) ≤ RIP(k,�̃n −�∗

n )+D2(k,X̄ − μ̄X
n ),

D∗
n(k) ≤ D(k,�̃n −�∗

n)+D(k,X̄ − μ̄X
n )
∣∣Ȳ −μY

n

∣∣ .
The right-hand side terms above can be controlled using Theorem A.1. Thus,
the linear representation changes when using the sample covariance matrix. See
Section 4.1.1 of Kuchibhotla and Chakrabortty (2020) for more details. ♦

5. RATES FOR FUNCTIONALLY DEPENDENT OBSERVATIONS

In this section, we extend all the results presented in the previous section to
dependent data. The dependence structure on the observations we use is based on a
notion developed by Wu (2005). It is possible to derive these results also under the
classical dependence notions like α-, β-, ρ-mixing; however, verifying the mixing
assumptions can often be hard and many well-known processes do not satisfy them.
See Wu (2005) for more details. It has also been shown that many econometric
time series can be studied under the notion of functional dependence; see Wu and
Mielniczuk (2010), Liu, Xiao, and Wu (2013), and Wu and Wu (2016). For a study
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of dependent processes under a similar framework called Lp-approximability, see
Pötscher and Prucha (1997).

The dependence notion of Wu (2005) is written in terms of an input–output
process that is easy to analyze in many settings. The process is defined as follows.
Let {εi,ε

′
i : i ∈Z} denote a sequence of i.i.d. random variables on some measurable

space (E,B). Define the q-dimensional process Wi with causal representation as

Wi = Gi(. . . ,εi−1,εi) ∈ R
q, (28)

for some vector-valued function Gi(·) = (gi1(·), . . . ,giq(·)). By Wold representation
theorem for stationary processes, this causal representation holds in many cases.
Define the nondecreasing filtration

Fi := σ (. . . ,εi−1,εi) .

Using this filtration, we also use the notation Wi = Gi(Fi). To measure the
strength of dependence, define, for r ≥ 1 and 1 ≤ j ≤ q, the functional dependence
measure

δs,r,j := max
1≤i≤n

∥∥Wi(j)−Wi,s(j)
∥∥

r , and �m,r,j :=
∞∑

s=m

δs,r,j, (29)

where

Wi,s(j) := gij(Fi,i−s) with Fi,i−s := σ
(
. . . ,εi−s−1,ε

′
i−s,εi−s+1, . . . ,εi−1,εi

)
.

(30)

The σ -field Fi,i−s represents a coupled version of Fi. The quantity δs,r,j measures
the dependence using the distance in terms of ‖·‖r-norm between gij(Fi) and
gij(Fi,i−s). In other words, it is quantifying the impact of changing εi−s on
gij(Fi); see Definition 1 of Wu (2005). The dependence adjusted norm for the
jth coordinate is given by

‖{W(j)}‖r,ν := sup
m≥0

(m+1)ν�m,r,j, ν ≥ 0.

To summarize these measures for the vector-valued process, define

‖{W}‖r,ν := max
1≤j≤q

‖{W(j)}‖r,ν and ‖{W}‖ψα,ν := sup
r≥2

r−1/α ‖{W}‖r,ν .

Remark 5.1 (Independent sequences). Any notion of dependence should at least
include independent random variables. It might be helpful to understand how inde-
pendent random variables fit into this framework of dependence. For independent
random vectors Wi, the causal representation reduces to

Wi = Gi(. . . ,εi−1,εi) = Gi(εi) ∈ R
q.
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It is not a function of any of the previous εj,j < i. This implies by the definition
(30) that

Wi,s =
{

Gi(εi) = Wi, if s ≥ 1,

Gi(ε
′
i) =: W ′

i, if s = 0.

Here, W ′
i represents an i.i.d. copy of Wi. Hence,

δs,r,j =
{

0, if s ≥ 1,∥∥Wi(j)−W ′
i (j)
∥∥

r ≤ 2‖Wi(j)‖r , if s = 0.

It is now clear that, for any ν > 0,

‖{W}‖r,ν = sup
m≥0

(m+1)ν�m,r = �0,r ≤ 2 max
1≤j≤q

‖Wi(j)‖r .

Hence, if the independent sequence Wi satisfies assumption (MExp), then
‖{W}‖ψα,ν < ∞, for all ν > 0, in particular for ν = ∞. Therefore, independence
corresponds to ν = ∞. As ν decreases to zero, the random vectors become more
and more dependent. ♦

All our results in this section are based on the following tail bound for the
maximum of averages of functionally dependent variables which is an extension
of Theorem 2 of Wu and Wu (2016). This result is similar to Theorem A.1. For
this result, define

s(λ) := (1/2+1/λ)−1, and T1(λ) := min{λ,1} for all λ > 0. (31)

THEOREM 5.1. Suppose Z1, . . . ,Zn are random vectors in R
q with a causal

representation such as (28) with mean zero. Assume that, for some α > 0 and
ν > 0,

‖{Z}‖ψα,ν = sup
r≥2

sup
m≥0

r−1/α(m+1)ν�m,r ≤ Kn,q.

Define

�n(ν) := 2ν ×

⎧⎪⎨⎪⎩
5/(ν −1/2)3, if ν > 1/2,

2(log2 n)5/2, if ν = 1/2,

5(2n)(1/2−ν)/(1/2−ν)3, if ν < 1/2.

Then, for all t ≥ 0, with probability at least 1−8e−t,

max
1≤j≤q

∣∣∣∣∣
n∑

i=1

Zi(j)

∣∣∣∣∣≤ e
√

n‖{Z}‖2,ν Bν

√
t + log(q+1)

+CαKn,q(logn)1/s(α)�n(ν)(t + log(q+1))1/T1(s(α)).

Here, Bν and Cα are constants depending only on ν and α, respectively.
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Proof. The proof follows from Theorem B.1 proved in Appendix B and a union
bound. �

Getting back to the application of uniform-in-submodel results for linear regres-
sion, we assume that the random vectors are elements of a causal process with
exponential tails. Formally, suppose (X1,Y1), . . . ,(Xn,Yn) are random vectors in
R

p ×R satisfying the following assumption:

(DEP) Assume that there exist n vector-valued functions Gi and an i.i.d.
sequence {εi : i ∈ Z} such that

Wi := (Xi,Yi) = Gi(. . . ,εi−1,εi) ∈ R
p+1.

Also, for some ν,α > 0,

‖{W}‖ψα,ν ≤ Kn,p and max
1≤i≤n

max
1≤j≤p+1

|E [Wi(j)] | ≤ Kn,p.

Based on Remark 5.1, Assumption (DEP) is equivalent to Assumption (MExp)
for independent data. For independent random variables, the second part of
Assumption (DEP) about the expectations follows from the ψα-bound assumption.
The reason for this expectation bound in the assumption here is that the functional
dependence measure δs,r does not have any information about the expectation,
since∥∥Wi(j)−Wi,s(j)

∥∥
r = ∥∥(Wi(j)−E [Wi(j)])− (Wi,s(j)−E

[
Wi,s(j)

])∥∥
r .

The coupled random variable Wi,s has the same expectation as Wi. Since the
quantities we need to bound involve products of random variables, such a bound
on the expectations is needed for our analysis.

We are now ready to state the final results of this section. Only results similar
to Theorems A.2 and 4.2 are stated. Also, we only state the results under marginal
moment assumption, and the version with joint moment assumption can easily be
derived based on the proof. These results are based on Theorem 5.1. Recall from
inequalities (26) and (27) that

Dn(k) ≤ 2 sup
θ∈N (1/2,�k)

∣∣∣∣∣1n
n∑

i=1

{
θ
XiYi −E

[
θ
XiYi

]}∣∣∣∣∣,
RIPn(k) ≤ 2 sup

θ∈N (1/4,�k)

∣∣∣∣∣1n
n∑

i=1

(
X


i θ
)2 −E

[(
X


i θ
)2]∣∣∣∣∣ .

Note that these quantities involve linear combinations (θ
Xi) and products
(θ
XiYi) of functionally dependent random variables. It is clear that all linear
combinations and products of functionally dependent random variables have a
causal representation, since if W(1)

i := h(1)
i (Fi) and W(2)

i := h(2)
i (Fi), then

αW(1)
i +βW(2)

i = αh(1)
i (Fi)+βh(2)

i (Fi) and W(1)
i W(2)

i = h(1)
i (Fi)h

(2)
i (Fi).
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Thus, they can be studied under the same framework of dependence. In Lemma
B.4, we bound the functional dependence measure of such linear combination and
product processes.

For the main results of this section, define, for θ ∈ �k (see (25)),

ϑ
(�)
4 (θ) :=

(∥∥{θ
X}∥∥4,0 + max
1≤i≤n

∣∣E[θ
Xi
]∣∣)‖{Y}‖4,ν

+
(

‖{Y}‖4,0 + max
1≤i≤n

|E [Yi]|
)∥∥{θ
X}∥∥4,ν ,

ϑ
(�)
4 (θ) := 2

(∥∥{θ
X}∥∥4,0 + max
1≤i≤n

∣∣E[θ
Xi
]∣∣)∥∥{θ
X}∥∥4,ν .

THEOREM 5.2. Fix n,k ≥ 1 and let t ≥ 0 be any real number. Define√
ϒ�

n,k := sup
θ∈�k

ϑ
(�)
4 (θ), and

√
ϒ�

n,k := sup
θ∈�k

ϑ
(�)
4 (θ).

Then, under Assumption (DEP), with probability at least 1−16e−t, the following
inequalities hold simultaneously:

Dn(k) ≤ 2eBν

√
ϒ�

n,k(t + k log(3ep/k))

n

+CαK2
n,p

k1/2(logn)1/s(α/2)�n(ν)(t + k log(3ep/k))1/T1(s(α/2))

n
,

and

RIPn(k) ≤ 2eBν

√
ϒ�

n,k(t + k log(5ep/k))

n

+CαK2
n,p

k(logn)1/s(α/2)�n(ν)(t + k log(5ep/k))1/T1(s(α/2))

n
.

Here, T1(α) and s(α) are functions given in (31) and Bν,Cα are constants
depending only on ν and α, respectively.

Proof. By Lemma B.4 and Assumption (DEP), it holds that, for all θ ∈ �k,∥∥{θ
XY}∥∥2,ν ≤ ϑ�
4 (θ) and

∥∥{(θ
X)2}∥∥2,ν ≤ ϑ�
4 (θ).

Also, using Lemmas B.3 and B.4, it follows that

sup
r≥2

r−2/α
∥∥{θ
XY}∥∥r,ν ≤ 3k1/2K2

n,p21/α,

sup
r≥2

r−2/α
∥∥{(θ
X)2}∥∥r,ν ≤ 3kK2

n,p21/α .

Hence, applying Theorem 5.1, the result is proved. �
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Theorem 5.2 along with Theorem 3.4 implies the following uniform linear
representation result for linear regression under functional dependence. Recall
the notation 	n(k) from equation (23) and also β̂n,M and βn,M from equations (7)
and (10).

THEOREM 5.3. If (	n(k))−1 = O(1) as n,p → ∞, then under Assumption
(DEP), the following rates of convergence hold as n → ∞ :

sup
M∈M(k)

∥∥∥β̂n,M −βn,M

∥∥∥
2

= Op

⎛⎝√ϒ�
n,kk log(ep/k)

n

+K2
n,p

k1/2(logn)1/s(α/2)�n(ν)(k log(ep/k))1/T1(s(α/2))

n

⎞⎠,

and

sup
M∈M(k)

∥∥∥∥∥β̂n,M −βn,M − 1

n

n∑
i=1

[�n(M)]−1 Xi(M)
(
Yi −X


i (M)βn,M
)∥∥∥∥∥

2

= Op

(
max{ϒ�

n,k,ϒ
�
n,k}k log(ep/k)

n

)

+K4
n,pOp

(
k2(logn)2/s(α/2)(k log(ep/k))2/T1(s(α/2))�2

n(ν)

n2

)
.

In comparison to Theorem 4.2, the rates attained here are very similar except
for two changes:

1. The exponent terms α/2 and T1(α/2) are replaced by s(α/2) and T1(s(α/2)),
respectively. This is because of the use of a version of Burkholder’s inequality
from Rio (2009) in the proof of Theorem B.1.

2. The factor �n(ν) in the second-order terms above. This factor is due to
the dependence of the process. If ν > 1/2 (which corresponds to “weak”
dependence), then �n(ν) is of order 1, and for the boundary case ν = 1/2,
�n(ν) is of order (logn)5/2. In both these cases, the rates obtained for func-
tionally dependent ψα-random vectors match very closely the rates obtained
for independent ψs(α)-random vectors.

Remark 5.2 (Some comments on Assumption (DEP)). Assumption (DEP) is
similar to the one used in Theorem 3.3 of Zhang and Wu (2017) for derivation
of a high-dimensional central limit theorem with logarithmic dependence on the
dimension p. It is worth mentioning that in their notation, α corresponds to the
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functional dependence and ν corresponds to the moment assumption. Also, their
assumption is written as

sup
r≥2

‖{Z}‖r,ν

rα
< ∞ (after swapping the dependence and moment parameters).

Our assumption, however, is written as

sup
r≥2

‖{Z}‖r,ν

r1/α
< ∞.

Hence, our parameters (α,ν) correspond to their parameters (1/ν,α). Our assump-
tions are weaker than those used by Zhang and Cheng (2014). From the discussion
surrounding equation (28) there, they require geometric decay of �m,r,j, while we
only require polynomial decay. Zhang and Wu (2017) only deal with stationary
sequences and Zhang and Cheng (2014) allows nonstationarity. Some useful
examples verifying the bounds on the functional dependence measure are also
provided in Zhang and Cheng (2014). ♦

6. DISCUSSION AND CONCLUSIONS

In this paper, we have proved uniform-in-submodel results for the least-squares
linear regression estimator under a model-free framework allowing for the total
number of covariates to diverge “almost exponentially” in n. Our results are based
on deterministic inequalities. The exact rate bounds are provided when the random
vectors are independent and functionally dependent. In both cases, the random
variables are assumed to have weak exponential tails to provide logarithmic
dependence on the dimension p.

In this paper, we have primarily focused on OLS linear regression. The main
results, uniform-in-submodel consistency and linear representation, continue to
hold for a large class of M-estimators defined by twice differentiable loss function
as shown in Kuchibhotla (2018). The implications of these results are that one
can use all the information from all the observations to build a submodel (subset
of covariates) and apply a general M-estimation technique on the final model
selected. These results can be extended to nondifferentiable loss functions using
techniques from empirical process theory, in particular, the stochastic uniform
equicontinuity assumption. See, for example, Giessing (2018, Chap. 2) for results
under independence.

All of our results are free of the assumption of correctly specified models.
Therefore, our results provide a “target” βn,M for the estimator β̂n,M irrespective of
whether M is fixed or random as long as |M| ≤ k. This implication follows from
the uniform-in-submodel feature of the results. The conclusion here is that if the
statistician has a target in mind, then all they need to check is if βn,M is close to
the target they are thinking of.

As mentioned in the beginning of the article, one can rethink high-dimensional
linear regression as using high-dimensional data for exploration to find a
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“significant” set of variables and then applying the “low-dimensional” linear
regression technique. If the exploration is not restricted to a very principled
method, then inference can be very difficult. This problem is exactly equivalent
to the problem of valid postselection inference. Postselection inference has
a rich history in both statistics and econometrics. Leeb and Pötscher (2005,
2006a, 2006b, 2008) have provided several impossibility results regarding the
estimation of the distribution of β̂M̂ , when M̂ represents the data-dependent
selected model. One way to avoid this difficulty is by performing inference for all
models simultaneously. The results in this paper allow for the construction of a
simultaneous inference procedure using a high-dimensional central limit theorem
and multiplier bootstrap; see Bachoc et al. (2019a; 2019b), Kuchibhotla et al.
(2021), and Belloni et al. (2018, Sect. 2) for more details. A related exploration
will be provided in a future manuscript.

APPENDICES

A. Auxiliary Results for Independent Random Vectors

The following result proves a tail bound for a maximum of the average of mean-zero random
variables and follows from Theorem 4 of Adamczak (2008). The result there is only stated
for α ∈ (0,1]; however, the proof can be extended to the case α > 1. See the forthcoming
paper Kuchibhotla and Chakrabortty (2020) for a clear exposition.

THEOREM A.1. Suppose W1, . . . ,Wn are mean-zero independent random vectors in
R

q,q ≥ 1 such that, for some α > 0 and Kn,q > 0,

max
1≤i≤n

max
1≤j≤q

‖Wi(j)‖ψα
≤ Kn,q.

Define

�n,q := max
1≤j≤q

1

n

n∑
i=1

E

[
W2

i (j)
]

.

Then, for any t ≥ 0, with probability at least 1−3e−t,

max
1≤j≤q

∣∣∣∣∣∣1n
n∑

i=1

Wi(j)

∣∣∣∣∣∣≤ 7

√
�n,q(t + log(2q))

n
+ CαKn,q(log(2n))1/α(t + log(2q))1/T1(α)

n
,

where T1(α) = min{α,1} and Cα is a constant depending only on α.

Proof. Fix 1 ≤ j ≤ q and apply Theorem 4 of Adamczak (2008) with F = {f } where
f (Wi) = Wi(j), for 1 ≤ i ≤ n. Then, applying the union bound, the result follows. To extend
the result to the case α > 1, use Theorem 5 of Adamczak (2008) with α = 1 to bound the
second part of inequality (8) there. �

Using Theorem A.1, we get the following results for RIP and D under independence.
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THEOREM A.2. Fix n,k ≥ 1 and let t ≥ 0 be any real number. Then, the following
probability statements hold true:

(a) Under Assumption (MExp), with probability at least 1 − 6e−t, the following two
inequalities hold simultaneously:

Dn(k) ≤ 14

√
ϒ�

n,k(t + k log(3ep/k))

n

+CαK2
n,p

k1/2(log(2n))2/α(t + k log(3ep/k))1/T1(α/2)

n
,

and

RIPn(k) ≤ 14

√
ϒ�

n,k(t + k log(5ep/k))

n

+CαK2
n,p

k(log(2n))2/α(t + k log(5ep/k))1/T1(α/2)

n
.

(b) Under Assumption (JExp), with probability at least 1 − 6e−t, the following two
inequalities hold simultaneously:

Dn(k) ≤ 14

√
ϒ�

n,k(t + k log(3ep/k))

n

+CαK2
n,p

(log(2n))2/α(t + k log(3ep/k))1/T1(α/2)

n
,

and

RIPn(k) ≤ 14

√
ϒ�

n,k(t + k log(5ep/k))

n

+CαK2
n,p

(log(2n))2/α(t + k log(5ep/k))1/T1(α/2)

n
.

Here, T1(α) = min{α,1} and Cα is a constant depending only on α.

Proof. These bounds follow from Theorem A.1 and inequalities (26) and (27). To bound
Dn(k), we take

Wi := (θ
XiYi)θ∈N (1/2,�k),

in Theorem A.1. Because |N (1/2,�k)| ≤ (3ep/k)k, the result follows. Similarly for
RIPn(k), we take

Wi := ((θ
Xi)
2)θ∈N (1/4,�k),

in Theorem A.1. �

B. Auxiliary Results for Dependent Random Vectors

In this section, we present a moment bound for sum of functionally dependent mean-zero
real-valued random variables. The moment bound here is an extension of Theorem 2 of Wu
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and Wu (2016) to random variables with exponential tails. The main distinction is that our
moment bound exhibits a part Gaussian behavior. For proving these moment bounds, we
need a few preliminary results and notation. Suppose Z1 . . . ,Zn are mean-zero real-valued
random variables with a causal representation

Zi = gi(. . . ,εi−1,εi), (32)

for some real-valued function gi. We write δk,r = ∥∥Zi −Zi,k
∥∥

r . The following proposition
bounds the rth moment of Zi in terms of ‖{Z}‖r,ν . This is based on the calculation shown
after equation (2.8) in Wu and Wu (2016).

PROPOSITION B.1. Consider the setting above. If E [Zi] = 0, for 1 ≤ i ≤ n, then

‖Zi‖r ≤ ‖{Z}‖r,0 ≤ ‖{Z}‖r,ν , for any r ≥ 1 and ν > 0.

Proof. Assuming E [Zi] = 0, for 1 ≤ i ≤ n, it follows that

Zi =
i∑

�=−∞

(
E
[
Zi
∣∣F�

]−E
[
Zi
∣∣F�−1

])
,

and so,

‖Zi‖r ≤
i∑

�=−∞

∥∥E[Zi
∣∣F�

]−E
[
Zi
∣∣F�−1

]∥∥
r =

i∑
�=−∞

∥∥E[Zi −Zi,i−�

∣∣F−�

]∥∥
r ≤

∞∑
�=0

δ�,r .

The last inequality follows from Jensen’s inequality and noting that the last bound equals
�0,r , it follows that ‖Zi‖r ≤ �0,r = ‖{Z}‖r,0 . �

The following lemma provides a bound on the moments of a martingale in terms of the
moments of the martingale difference sequence. This result is an improvement over the
classical Burkholder’s inequality.

LEMMA B.1 (Theorem 2.1 of Rio (2009)). Let {Sn : n ≥ 0} be a martingale sequence
with S0 = 0 adapted with respect to some nondecreasing filtration Fn,n ≥ 0. Let Xk =
Sk −Sk−1 denote the corresponding martingale difference sequence. Then, for any p ≥ 2,

‖Sn‖p ≤√p−1

⎛⎝ n∑
k=1

‖Xk‖2
p

⎞⎠1/2

.

The following simple calculation is also used in Theorem B.1. Define

L :=
⌊

logn

log2

⌋
and λ� :=

{
3π−2�−2, if 1 ≤ � ≤ L/2,

3π−2(L+1−�)−2, if L/2 < � ≤ L.
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LEMMA B.2. The following inequalities hold true:

(a) For any β ≥ 0 and p ≥ 2,

L∑
�=1

1

λ
p
�2p�β

≤ 2
L/2∑
�=1

1

λ
p
�2p�β

≤
{(

5/β3
)p (

π2/3
)p+1

, if β > 0,

2(log2 n)2p+1
(
π2/3

)p+1
, if β = 0.

(b) For any β > 0 and p ≥ 2,

L∑
�=1

2p�(1/2−β)

λ
p
�

≤
(

π2

3

)p+1

⎧⎪⎨⎪⎩
(5/(β −1/2)3)p, if β > 1/2,

2(log2 n)2p+1, if β = 1/2,

(2n)(1/2−β)p(5/(1/2−β)3)p, if β < 1/2.

Proof. (a) Note that, for any β > 0,

sup
�>0

�32−�β = �3 exp(−(log2)�β) ≤
(

3

eβ log2

)3

≤ 5

β3 ,

and so,(
3

π2

)p L∑
�=1

1

λ
p
�2p�β

=
L/2∑
�=1

(
�2

2�β

)p

+
L∑

�=L/2+1

(
(L+1−�)2

2�β

)p

≤
L/2∑
�=1

(
�2

2�β

)p

+2−pβ

L/2∑
�=1

(
�2

2�β

)p

≤ 2

(
5

β3

)p L/2∑
�=1

1

�p
≤ π2

3

(
5

β3

)p

.

Hence, the result (a) follows. The case β = 0 follows from the calculation in (b).
(b) If β > 1/2, then

L∑
�=1

2p�(1/2−β)

λ
p
�

=
L∑

�=1

1

�p2p�(β−1/2)
,

and so, the bound for this case follows from (a).
If β = 1/2, then

L∑
�=1

2p�(1/2−β)

λ
p
�

=
L∑

�=1

1

λ
p
�

≤ 2

(
π2

3

)p L/2∑
�=1

�2p ≤ 2

(
π2

3

)p(
logn

log2

)2p+1

.

If β > 1/2, then

L∑
�=1

2p�(1/2−β)

λ
p
�

=
L/2∑
�=1

2�(1/2−β)p

λ
p
�

+2(L+1)(1/2−β)p
L/2∑
�=1

1

λ
p
�2�(1/2−β)p
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≤
L/2∑
�=1

2�(1/2−β)p

λ
p
�

+ (2n)(1/2−β)p
L/2∑
�=1

1

λ
p
�2�(1/2−β)p

≤ 2(L+1)(1/2−β)p
L/2∑
�=1

1

λ
p
�2(L+1−�)(1/2−β)p

+ (2n)(1/2−β)p
L/2∑
�=1

1

λ
p
�2�(1/2−β)p

≤ (2n)(1/2−β)p
L/2∑
�=1

1

λ
p
�2�(1/2−β)p

+ (2n)(1/2−β)p
L/2∑
�=1

1

λ
p
�2�(1/2−β)p

≤ (2n)(1/2−β)p
(

5

(1/2−β)3

)p(
π2

3

)p+1

.

Hence, the result follows. �

Define the functions

s(λ) := (1/2+1/λ)−1, and T1(λ) := min{λ,1} for all λ > 0. (33)

THEOREM B.1. Suppose Z1, . . . ,Zn are elements of the causal process (32) with mean
zero. Assume that, for some α > 0 and ν > 0,

‖{Z}‖ψα,ν = sup
p≥2

sup
m≥0

p−1/α(m+1)ν�m,p < ∞. (34)

Define

�n(ν) := 2ν ×

⎧⎪⎨⎪⎩
5/(ν −1/2)3, if ν > 1/2,

2(log2 n)5/2, if ν = 1/2,

5(2n)(1/2−ν)/(1/2−ν)3, if ν < 1/2.

Then, for any p ≥ 2,∥∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥∥
p

≤ √
pn‖{Z}‖ψα,ν Bν +Cα ‖{Z}‖ψα,ν (logn)1/s(α)p1/T1(s(α))�n(ν), (35)

where Cα is a constant depending only on α, and Bν is a constant depending only on ν

given by

Bν := √
6

[
1+ 20π32ν

3
√

3ν3

]
, if ν > 0.

Furthermore, it follows by Markov’s inequality that, for all t ≥ 0,

P

⎛⎝∣∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣∣≥ e
√

tn‖{Z}‖2,ν Bν +Cα ‖{Z}‖ψα,ν t1/T1(s(α))(logn)1/s(α)�n(ν)

⎞⎠≤ 8e−t.

Here, Cα is different from the one in the moment bound (35).
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Proof. Define

Sn :=
n∑

i=1

Zi, L =
⌊

logn

log2

⌋
, and ξ� =

{
2�, if 0 ≤ � < L,

n, if � = L.

Define, for m ≥ 0,

Z(m)
i := E

[
Zi
∣∣εi−m, . . . ,εi

]
, and Mi,� :=

i∑
k=1

(
Z(ξ�)

k −Z
(ξ�−1)

k

)
.

Let

Sn,m :=
n∑

i=1

Z(m)
i ,

and consider the decomposition

Sn = Sn,0 + (Sn −Sn,n
)+ L∑

�=1

(
Sn,ξ�

−Sn,ξ�−1

)
:= I+ II+ III. (36)

We prove the moment bound (35) by bounding the moments of each term in the decompo-
sition (36).

Bounding I: Regarding the first term I, observe that Sn,0 is a sum of independent random

variables Z(0)
i satisfying the tail assumption of Theorem A.1 with β = α. This verification

follows by noting that∥∥∥Z(0)
i

∥∥∥
p

(a)≤ ‖Zi‖p
(b)≤ ‖{Z}‖p,ν

(c)≤ p1/α ‖{Z}‖ψα,ν .

Inequality (a) follows from Jensen’s inequality, (b) follows from Proposition B.1, and (c)
follows from assumption (34). Hence, we get that, for any p ≥ 1,

‖I‖p =
∥∥∥∥∥∥

n∑
i=1

E
[
Zi
∣∣εi
]∥∥∥∥∥∥

p

≤√6p

⎛⎝ n∑
i=1

E

[
Z2

i

]⎞⎠1/2

+Cα ‖{Z}‖ψα,ν p1/T1(α) (logn)1/α ,

for some constant Cα depending only on α. Here, Jensen’s inequality is used to bound the
variance of E

[
Zi
∣∣εi
]
. By Proposition B.1, ‖Zi‖2 ≤ ‖{Z}‖2,ν , and hence,∥∥Sn,0

∥∥
p ≤√6pn‖{Z}‖2,ν +Cα ‖{Z}‖ψα,ν p1/T1(α) (logn)1/α . (37)

Bounding II: For the second term, note that

Sn =
n∑

i=1

Zi =
n∑

i=1

E
[
Zi
∣∣εi,εi−1, . . .

]= Sn,∞,
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and hence,

Sn −Sn,n =
∞∑

m=n

(
Sn,m+1 −Sn,m

)
.

Substituting the definition of Sn,m, we have

Sn,m+1 −Sn,m =
n∑

k=1

(
E
[
Zk
∣∣εk, . . . ,εk−m−1

]−E
[
Zk
∣∣εk, . . . ,εk−m

])
.

We now prove that the summands above form a martingale difference sequence with respect
to a filtration. The following construction is taken from the proof of Lemma 1 of Liu and
Wu (2010). Define

Dk,m+1 := E
[
Zk
∣∣εk, . . . ,εk−m−1

]−E
[
Zk
∣∣εk, . . . ,εk−m

]
,

and the nondecreasing filtration

Gk,m+1 := σ
(
εk−m−1,εk−m−1, . . .

)
.

It is easy to see that

E
[
Dn−k+1,m+1

∣∣Gk−1,m+1
]= 0. (38)

Therefore, {(Dn−k+1,m+1,Gk,m+1) : 1 ≤ k ≤ n} forms a martingale difference sequence.
This implies that Sn,m+1 − Sn,m is a martingale, and hence, by Lemma B.1, we get, for
p ≥ 2,

∥∥Sn,m+1 −Sn,m
∥∥2

p ≤ p
n∑

k=1

∥∥Dk,m+1
∥∥2

p .

To further bound the right-hand side, note that, for p ≥ 2,∥∥Dk,m+1
∥∥

p = ∥∥E[Zk −g(. . . ,ε′
k−m−1,εk−m, . . . ,εk)

∣∣εk, . . . ,εk−m−1
]∥∥

p ≤ δm+1,p. (39)

Hence, for p ≥ 2,∥∥Sn,m+1 −Sn,m
∥∥

p ≤ √
pnδm+1,p,

and∥∥Sn −Sn,n
∥∥

p ≤
∞∑

m=n

∥∥Sn,m+1 −Sn,m
∥∥

p ≤ √
pn

∞∑
m=n

δm+1,p = √
pn�n+1,p.

Under assumption (34), we obtain

‖II‖p = ∥∥Sn −Sn,n
∥∥

p ≤ ‖{Z}‖ψα,ν
n1/2p1/2+1/α

(n+2)ν
= ‖{Z}‖ψα,ν n1/2−νp1/2+1/α . (40)

Bounding III: To bound III, note by definition of Mi,� that

III =
L∑

�=1

n∑
k=1

(
Z(ξ�)

k −Z
(ξ�−1)

k

)
=

L∑
�=1

Mn,�.
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Now, observe that the summands of Mn,�,

Dk,� :=
(

Z(ξ�)
k −Z

(ξ�−1)
k

)
,

are ξ�-dependent in the sense that Dk,� and Ds,� are independent if |s − k| > ξ�. This
can be proved as follows. By definition, Dk,� is only a function of (εk, . . . ,εk−ξ�

), and
by independence of εk,k ∈ Z, the claim follows. Now, a blocking technique can be used to
convert Mn,� into a sum of independent variables. See Corollary A.1 of Romano and Wolf
(2000) for a similar use. Define

A� := {2ξ�i+ j : i ∈ Z, 1 ≤ j ≤ ξ�},
B� := {2ξ�i+ ξ� + j : i ∈ Z, 1 ≤ j ≤ ξ�} .

Consider the decomposition of Mn,� as

Mn,� =
n∑

k=1

Dk,� = An,� +Bn,�,

where

An,� :=
∑

1≤k≤n,k∈A
Dk,� and Bn,� :=

∑
1≤k≤n,k∈B

Dk,�.

We now provide moment bounds for Mn,� by giving moment bounds for An,� and Bn,�,
which is in turn done by separating the summands of An,� and Bn,� to form an independent
sum. Note that

An,� =

⌊
n

2ξ�

⌋∑
i=1

⎛⎝ ξ�∑
j=1

D2ξ�i+j,�

⎞⎠=

⌊
n

2ξ�

⌋∑
i=1

⎛⎝ 2ξ�i+ξ�∑
k=2ξ�i+1

(
Z(ξ�)

k −Z
(ξ�−1)

k

)⎞⎠

=

⌊
n

2ξ�

⌋∑
i=1

(
M2ξ�i+ξ�,� −M2ξ�i,�

)
. (41)

By the ξ�-independence of the summands of Mn,�, we get that the summands in the final
representation of An,� are independent, and so Theorem A.1 applies. In the following, we
verify the assumption of Theorem A.1. For 1 ≤ i < j ≤ n, it is clear that

Mj,� −Mi,� =
j∑

k=i+1

(
Z(ξ�)

k −Z
(ξ�−1)

k

)

=
j∑

k=i+1

⎛⎝ ξ�∑
t=1+ξ�−1

(
Zξ�

k −Z
(ξ�−1)
k

)⎞⎠
=

ξ�∑
t=1+ξ�−1

⎛⎝ j∑
k=i+1

(
Z(t)

k −Z(t−1)
k

)⎞⎠ .
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By triangle inequality,

∥∥Mj,� −Mi,�
∥∥

p ≤
ξ�∑

t=1+ξ�−1

∥∥∥∥∥∥
j∑

k=i+1

(
Z(t)

k −Z(t−1)
k

)∥∥∥∥∥∥
p

. (42)

As proved in (38), the summation for each t represents a martingale, and hence, by Lemma
B.1, we get, for p ≥ 2, that∥∥∥∥∥∥

j∑
k=i+1

(
Z(t)

k −Z(t−1)
k

)∥∥∥∥∥∥
2

p

≤ p
j∑

k=i+1

∥∥∥Z(t)
k −Z(t−1)

k

∥∥∥2

p
≤ p

j∑
k=i+1

δ2
t,p = p(j− i)δ2

t,p.

Here, we used inequality (39). Substituting this in inequality (42) and using ξ�−1 ≥ ξ�/2,
we get

∥∥Mj,� −Mi,�
∥∥

p ≤ p1/2(j− i)1/2
ξ�∑

t=1+ξ�−1

δt,p ≤ p1/2(j− i)1/2�1+ξ�−1,p

≤ ‖{Z}‖p,ν p1/2(j− i)1/2(2+ ξ�−1)−ν

≤ 2ν ‖{Z}‖p,ν p1/2(j− i)1/2ξ−ν
�

. (43)

Under assumption (34), we get∥∥Mj,� −Mi,�
∥∥

p ≤ 2ν ‖{Z}‖ψα,ν p1/2+1/α(j− i)1/2ξ−ν
�

= 2ν ‖{Z}‖ψα,ν p1/s(α)(j− i)1/2ξ−ν
�

.

See (33) for the definition of s(α). Thus, for all 1 ≤ i ≤ � n
2ξ�

�,

sup
p≥2

p−1/s(α)
∥∥M2ξ�i+ξ�,� −M2ξ�i,�

∥∥
p ≤ 2ν ‖{Z}‖ψα,ν ξ

1/2−ν
�

.

So, the summands of An,� in the final representation in (41) are independent and satisfy the
hypothesis of Theorem A.1 with β = s(α). Therefore, for p ≥ 2,

∥∥An,�
∥∥

p ≤√6p

⎛⎝�n/(2ξ�)�∑
i=1

∥∥M2ξ�i+ξ�,� −M2ξ�i,�
∥∥2

2

⎞⎠1/2

+Cα2ν ‖{Z}‖ψα,ν (logn)1/s(α) ξ
1/2−ν
�

p1/T1(s(α))

≤√12p‖{Z}‖2,ν
2νξ

1/2
�

ξν
�

(
n

2ξ�

)1/2

+Cα2ν ‖{Z}‖ψα,ν (logn)1/s(α) ξ
1/2−ν
�

p1/T1(s(α))

≤ 2ν

ξν
�

[
‖{Z}‖2,ν

√
6pn+Cα ‖{Z}‖ψα,ν p1/T1(s(α)) (logn)1/s(α) ξ

1/2
�

]
.

Here, the second inequality follows from (43).
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Similarly, a representation for Bn,� exists with independent summands satisfying the
assumption of Theorem A.1 with β = s(α), and so,∥∥Bn,�

∥∥
p ≤ 2ν

ξν
�

[
‖{Z}‖2,ν

√
6pn+Cα ‖{Z}‖ψα,ν p1/T1(s(α)) (logn)1/s(α) ξ

1/2
�

]
.

Combining the bounds for An,� and Bn,� implies the bound on Mn,� as

∥∥Mn,�
∥∥

p ≤ 21+ν

ξν
�

[
‖{Z}‖2,ν

√
6pn+Cα ‖{Z}‖ψα,ν p1/T1(s(α)) (logn)1/s(α) ξ

1/2
�

]
. (44)

To complete bounding III, we need to bound the moments of the sum of Mn,� over 1 ≤ � ≤ L,
which are all dependent. For this, define the sequence

λ� =
{

3π−2�−2, if 1 ≤ � ≤ L/2,

3π−2(L+1−�)−2, if L/2 < � ≤ L.

This positive sequence satisfies
∑L

�=1 λ� < 1. It is easy to derive from H’´older’s inequality
that∣∣∣∣∣∣

L∑
�=1

a�

∣∣∣∣∣∣p ≤
L∑

�=1

|a�|p
λ

p
�

.

Substituting in this inequality a� = Mn,� and the moment bound (44), we get

E

⎡⎣∣∣∣∣∣∣
L∑

�=1

Mn,�

∣∣∣∣∣∣p
⎤⎦≤ 2(2+ν)p ‖{Z}‖p

2,ν (6pn)p/2
L∑

�=1

1

λ
p
�
ξ

pν
�

+Cp
α2(2+ν)p ‖{Z}‖p

ψα,ν pp/T1(s(α)) (logn)p/s(α)
L∑

�=1

ξ
p/2
�

λ
p
�
ξ

pν
�

.

It follows from Lemma B.2 and the definition of �n(ν) that, for p ≥ 2,∥∥∥∥∥∥
L∑

�=1

Mn,�

∥∥∥∥∥∥
p

≤ 5π322

3
√

3

[
2ν ‖{Z}‖2,ν

√
6pn

ν3
+Cα ‖{Z}‖ψα,ν (logn)1/s(α)�n(ν)p1/T1(s(α))

]
.

(45)

Combining the moment bounds (37), (40), and (45), it follows that, for p ≥ 2,

‖Sn‖p ≤√6pn‖{Z}‖ψα,ν

[
1+ 20π32ν

3
√

3ν3

]
+‖{Z}‖ψα,ν n1/2−νp1/s(α)

+Cα ‖{Z}‖ψα,ν (logn)1/s(α)p1/T1(s(α))�n(ν).

Here, the inequalities s(α) ≤ α and T1(s(α)) ≤ T1(α) are used. Now, noting that �n(ν) ≥
n1/2−ν , for all ν > 0 and p1/s(α) ≤ p1/T1(s(α)), the result follows. �
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In the following two lemmas, we prove that the dependent adjusted norm of linear
combinations and products of functionally dependent random variables can be bounded
in terms of the individual processes. Recall the definition of �k from (25).

LEMMA B.3. Suppose Assumption (DEP) holds, then, for any θ ∈ �k,

sup
θ∈�k

∥∥∥{θ
X}
∥∥∥

r,ν
≤ k1/2Kn,p.

Proof. Fix θ ∈ �k. Set the functional dependence measure (29) for the linear combina-
tion θ
X as

δ
(L)
s,r := max

1≤i≤n

∥∥∥θ
Xi − θ
Xi,s

∥∥∥
r

.

Note that θ ∈ �k are all k-sparse, and so there are only k nonzero coordinates θ(j) of θ .
Since the functional dependence measure is a norm, it follows that

δ
(L)
s,r = max

1≤i≤n

p∑
j=1

|θ(j)|∥∥Xi(j)−Xi,s(j)
∥∥

r

≤
p∑

j=1

|θ(j)| max
1≤i≤n

∥∥Xi(j)−Xi,s(j)
∥∥

r =
p∑

j=1

|θ(j)|δs,r,j.

Hence, for m ≥ 0,

�
(L)
m,r :=

∞∑
s=m

δ
(L)
s,r ≤

∞∑
s=m

p∑
j=1

|θ(j)|δs,r,j =
p∑

j=1

|θ(j)|
( ∞∑

s=m
δs,r,j

)
=

p∑
j=1

|θ(j)|�m,r,j.

This implies that

�
(L)
m,r ≤ ‖θ‖1 max

1≤j≤p
�m,r,j ≤ k1/2 max

1≤j≤p
�m,r,j.

Therefore, for r ≥ 1 and ν > 0,∥∥∥{θ
X}
∥∥∥

r,ν
≤ k1/2 ‖{X}‖r,ν ⇒

∥∥∥{θ
X}
∥∥∥
ψα,ν

≤ k1/2 ‖{X}‖ψα,ν ≤ k1/2Kn,p,

proving the result. �

LEMMA B.4. Suppose (W(1)
1 ,W(2)

1 ), . . . ,(W(1)
n ,W(2)

n ) are n functionally dependent

real-valued random vectors. Set Wi = W(1)
i W(2)

i , for 1 ≤ i ≤ n. Then, for all r ≥ 2 and
ν > 0,

‖{W}‖r/2,ν ≤
∥∥∥{W(1)}

∥∥∥
r,0

∥∥∥{W(2)}
∥∥∥

r,ν
+ max

1≤i≤n

∣∣∣E[W(1)
i

]∣∣∣∥∥∥{W(2)}
∥∥∥

r,ν

+
∥∥∥{W(2)}

∥∥∥
r,0

∥∥∥{W(1)}
∥∥∥

r,ν
+ max

1≤i≤n

∣∣∣E[W(2)
i

]∣∣∣∥∥∥{W(1)}
∥∥∥

r,ν
.
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Proof. Set, for j = 1,2,

δ
(j)
s,r :=

∥∥∥W(1)
i −W(1)

i,s

∥∥∥
r
, and �

(j)
m,r :=

∞∑
s=m

δ
(j)
s,r .

Fix 1 ≤ i ≤ n and consider

ϕs,r/2,i :=
∥∥∥W(1)

i W(2)
i −W(1)

i,s W(2)
i,s

∥∥∥
r/2

=
∥∥∥W(1)

i

[
W(2)

i −W(2)
i,s

]
+W(2)

i,s

[
W(1)

i −W(1)
i,s

]∥∥∥
r/2

≤
∥∥∥W(1)

i

[
W(2)

i −W(2)
i,s

]∥∥∥
r/2

+
∥∥∥W(2)

i,s

[
W(1)

i −W(1)
i,s

]∥∥∥
r/2

≤
∥∥∥W(1)

i

∥∥∥
r

∥∥∥W(2)
i −W(2)

i,s

∥∥∥
r
+
∥∥∥W(2)

i,s

∥∥∥
r

∥∥∥W(1)
i −W(1)

i,s

∥∥∥
r

≤
∥∥∥W(1)

i

∥∥∥
r
δ
(2)
k,r +

∥∥∥W(2)
i,s

∥∥∥
r
δ
(1)
k,r .

Since ε′
i−k is identically distributed as εi−k,

∥∥∥W(2)
i,s

∥∥∥
r
=
∥∥∥W(2)

i

∥∥∥
r
. So, an upper bound on

the dependence adjusted norm can be obtained as

�m,r/2 =
∞∑

k=m

max
1≤i≤n

ϕk,r/2,i ≤ max
1≤i≤n

∥∥∥W(1)
i

∥∥∥
r

∞∑
k=m

δ
(2)
k,r + max

1≤i≤n

∥∥∥W(2)
i

∥∥∥
r

∞∑
k=m

δ
(1)
k,r

≤ max
1≤i≤n

∥∥∥W(1)
i

∥∥∥
r
�

(2)
m,r + max

1≤i≤n

∥∥∥W(2)
i

∥∥∥
r
�

(1)
m,r,

and thus,

‖{W}‖r/2,ν ≤ max
1≤i≤n

∥∥∥W(1)
i

∥∥∥
r

∥∥∥{W(2)}
∥∥∥

r,ν
+ max

1≤i≤n

∥∥∥W(2)
i

∥∥∥
r

∥∥∥{W(1)}
∥∥∥

r,ν

≤
∥∥∥{W(1)}

∥∥∥
r,0

∥∥∥{W(2)}
∥∥∥

r,ν
+ max

1≤i≤n

∣∣∣E[W(1)
i

]∣∣∣∥∥∥{W(2)}
∥∥∥

r,ν

+
∥∥∥{W(2)}

∥∥∥
r,0

∥∥∥{W(1)}
∥∥∥

r,ν
+ max

1≤i≤n

∣∣∣E[W(2)
i

]∣∣∣∥∥∥{W(1)}
∥∥∥

r,ν
,

proving the result. �

C. Proof of Proposition 3.1

Proof. It is easy to see that

RIP(k,�1 −�2) = sup
θ∈Rp,‖θ‖0≤k,

‖θ‖2≤1

∣∣∣θ
 (�1 −�2)θ

∣∣∣
≤ sup

θ∈Rp,
‖θ‖0≤k,‖θ‖2≤1

‖θ‖2
1 |||�1 −�2|||∞ ≤ k|||�1 −�2|||∞.

Here, we have used inequalities (3). A similar proof implies the second result. �
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