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1. Introduction. In this paper, 3£ will always denote a local class of locally finite
groups, which is closed with respect to subgroups, homomorphic images, extensions, and
with respect to cartesian powers of finite 3£-groups. Examples for 3£ are the classes L^n of
all locally finite ^-groups and £($„ fl ©) of all locally soluble jr-groups (where n is a
fixed set of primes). In [4], a wreath product construction was used in the study of
existentially closed ^-groups (=e.c. 3£-groups); the restrictive type of construction
available in [4] permitted results for only countable groups. This drawback was then
removed partially in [5] with the help of permutational products. Nevertheless, the
techniques essentially only permitted amalgamation of X-groups with locally nilpotent
^-groups. Thus, satisfactory results could be obtained for Lgp-groups (resp. locally
nilpotent ^-groups) [6], while the theory remained incomplete in all other cases.

It is the purpose of the present note to close this gap. We can do so by using a new
construction, which is related to both Krasner-Kaloujnine embeddings and permutational
products. It is derived from the observation that, whenever N=G, then the right regular
representation G—»Sym(G) coincides with a Krasner-Kaloujnine embedding, if we
regard N Wr G/N as a permutation group on N xT (where T is a transversal of N in G)
and identify N x Tcanonically with G. Thus, if G e £, then the image of the right regular
representation lies in the intersection of NWrG/N with the constricted symmetric group
on G [3, p. 180]. The latter is locally finite, and so our assumptions about 3£ ensure that
the intersection is an S-group. Therefore, in the construction, we basically just try to find
enough elements in this intersection in order to obtain appropriate ^-supergroups of
given G e X. This is accomplished by a certain choice of T and some further
modifications.

The basic construction is given in Section 2. It turns out to be much easier than the
previous ones, and it allows us to reprove all previous theorems in full generality for
36-groups. In this paper, we will just fill the remaining gaps. In Section 3, we remove
the countability assumption from the theorems of [4, §4]. The results of [5, §4]
about complements in countable e.c. £-groups are generalized in Section 4 to results about
partial complements in e.c. 3£-groups. We also supplement our theorems about
algebraically closed (a.c.) L{9n n@)-groups [8]. Finally, Section 5 contains a treatment
of amalgamation in L ( ^ fl ©) which is in line with [7].

Note that it remains open whether the restriction to splitting groups in H. Ensel's
results [1] about e.c. Sylow tower groups is redundant.

2. The construction. Let ~: G —> H be a homomorphism of 3£-groups with kernel N.
Fix U<V<G such that V is finite. Choose left transversals R of UHN in U (or
equivajently of N in UN with R c U), and 5 of UN in G, and T of G in H. Then
H = TSR. Put Q = G x H, and regard the unrestricted regular wreath product W =
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G WrH as a permutation group on Q in the usual way, i.e.,

(g',h'Yh = {g'-(h%h'h) foral\f:H^G,heH.

Note that W = {/ • h \f:H^>G and heH} where flhlf2h2=flf2
h<~\lh2 and

(A)(/i/?rl)) = CO/i • (Mi)/2 for all ft e H. Define embeddings

o:H-*W and T : G - » W
via

(go, tosoro)
ha = (g1; fiiifj) where txs^ = tosofoh and gx = gososTu,

and

where tj^ = toSorog and gi=goSorog • r^sT1.

Observe that T is a standard embedding with respect to ~ in the sense of [2] (the
countermap -*:H—*G has to be defined via (&?)* = sr here). Finally, define an
embedding

via
( / • M ) J U = / - M where (tsf)f = s • (r)f • s~l for all t e T, s eS, r eR.

Obviously, Im ju < A • U where A = {/:H-> G \ (isr)f e sVs~l for all t e T, s e S, r e R}.

THEOREM 2.1. (a) W0=(Ho, Gx, AU) e 36.
(b) H o is a complement to the base group of W, and o \ 0 = p \ 0 = idQ.
( c ) / / JC : [/-» (U n N) Wr U < V Wr U denotes the Krasner-Kaloujnine embedding

with respect to the transversal R (i.e., uK=fu-u for all ueU, where (u')fu =
(«')* • u • (w'u)*"1 for all u' e U, and where * : U—> U is given by r* = r for all r e R),
then the diagram

U - ^ V Wr U

W

commutes.

Proof, (a) It suffices to show that Wo is locally finite, since the argument of [5, p.
1999] will then ensure that Woe£. Let G0<G and H0<H be finite with V < G 0 and
G0^H0. By [9, Lemma 5.3] it suffices to show that the transitivity systems of
Q = (H0o, Gox, AU) are boundedly finite. Fix co0 = (g0, tosoro) e Q. We will show that

<o$cQ0= {(g, &r) | tere tosoroHo and g

whence |fl»?|s|Qo|< |/^|- |Go|.
To this end, let <ol = (g1, ^ i j f^eQo- Then r ^ ^ =/oVb* and gi = gosoy ••sf1 for

suitable x e Ho, y e Go. Suppose that to? = a>2 = (g2, t2s2r2). If q = ho for some
fie Ho, then t2s2r2 = tlslr1h = t0s0rQxhet0s0rQH0 and g2 = g1sls2~

l =gosoy- sTls^s2
l =

gosoy -s^egoSoGoS^1. li_q=gx for some g e Go, then t2s2r2 = t1slr1g = t0s0r0xg e
toSofoHo (observe that Go < Ho) and g2 = gxs^g • r^s^ = goSoy • s^s^g • r ^ s j 1 =

• r\g ' ' •J1^1 £goSoGos2
l (observe that i? c ( /< V^<Go). If q = / • u e A . 0, then
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t2s2r2 = /if,r,M = toSoFoXii e tosoroHo (observe that ( / < V < G 0 < H); in particular s2 = su

and thus g2 = gi • (t^rFt)/ e gosoy s^^iV • sTl cgosoGoS2l (observe that V < Go). This
shows that <w? e Qo for all q eQ.

(b) is obvious.
(c) Fix u e U. Let <uS*r'J = <Uj with to, = (g,,/,5,r,) € Q. Then ^Sir, = toS(,rou.

In particular Si = s0, and we obtain gx = g0 • (tosoro)?u = gQs0 • (ro)/u • So ' =
('bM)*~1So"1 = go*o'bu ' 'T'sr1- This shows that UKft = ux.

The following technical lemma, which can be verified by straightforward calculations,
will be essential in our proofs.

LEMMA 2.2. Let f • b e W =AWrB where f.B^A and beB-1. If fuf2:B->A
satisfy supp(/) s Tfor a fixed left transversal T of (b) in B, then [f\,f2] = [[/ • b, f], f2] €

3. Filling some gaps. In this section we will complete the generalization of the
results of [4, §4] to uncountable e.c. 3£-groups (a project begun in [5, §2]). The reader
should be familiar with the results in [5, §2]. In particular, note that every e.c. 36-group G
has a unique chief series by [5, Theorem 2.3], and that there are three kinds of normal
subgroups in G: the groups M and N occurring in the chief factors M/N of G (here, the
Af's are precisely the normal closures (gG), geG-l), and the remaining normal
subgroups (which can be obtained as intersections of ATs or as unions of M's).

THEOREM 3.1. ([4, Theorem 4.8], [5, Theorem 2.4]). If M/N is a chief factor of an
e.c. H-group G, then every finite system of equations and inequalities with coefficients from
N, which is solvable in some H-supergroup of G, has already a solution in every verbal
subgroup of M. Moreover, for every K=G such that K has no maximal normal subgroup,
the following statements hold.

(a) Every finite system of equations and inequalities with coefficients from K, which is
solvable in some H-supergroup of G, already has a solution in K.

(b) Every normal subgroup of K is a normal subgroup in G. In particular, K has a
unique chief series, and the normal subgroups of K form a chain.

(c) Each automorphism of K, which is induced by conjugation with some element
from G, is locally inner.

Proof. Let y be a finite system of equations and inequalities with coefficients
nu ... , nreN, which is solvable in some 3£-supergroup of G. Since G is e.c. in £, there
exists a solution gu . .. , gs in G. Choose g eM - N and a word w(xu . . . , xv)¥= 1. Put
U = (nx,..., nr, g). Since G is verbally complete [4, Theorem 2.1], there exists a finite
subgroup K s C such that U^ Vand

* „ . . . , & e O ( V ) , (3.1)

where Q(X) = (w(xi,... , xv) \ xt e X) for any group X.
Apply the construction of Section 2 to the canonical epimorphism ~:G—*GIN. This

yields embeddings T : G - » W 0 and n:VWrU—>Wo (where Woedi is as in Theorem 2.1)
such that jfju = r \ U for some Krasner-Kaloujnine embedding K\U—*VWrLJ with
respect to a transversal R. Now «,x"=/n. where (r)fn. = r • ntr~l for all reR. Hence a
solution to Sfa in Z = V Wr 0 is given by fgt,. . . , fgi where (r)fg. = r • gfr~l for all reR.
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Because of (3.1) and Lemma 2.2 we have fg.eQ((gKz)), whence fgln,... ,fg>fi is a
solution to SPx in Q((grw")). Since G is e.c. in 36 and Gr<W0, there already exists a
solution to Sf in Q « g G » = Q(M).

The assertions (a), (b) and (c) now follow as in the proof of [4, Theorem 4.8].

A counterpart to Theorem 3.1 for factor groups is given by

THEOREM 3.2. Let G be an e.c. H-group, and let K=G such that G/Khas no minimal
normal subgroup. If SF is a finite system of equations and inequalities with coefficients
c1; . . . ,creG and a solution in some dc-supergroup of G, and if KD (cu . . . , cr) = 1,
then the system SFK/K has a solution in G/K.

Proof. Put C = {c\,. .. , cr). Since C is finite, and since G/K has no minimal normal
subgroup, there exists a chief factor M/N in G with K<N and M f l C = l . Fix g e M — N,
and let U = (C, g). Choose R = C and a finite V < G such that U < V and g e V. Apply
the construction of Section 2 to the canonical epimorphism 0:G-»G/M. This yields
embeddings CT:G/M—»W0 and T:G—*W0 and p: V Wr UO^- Wo, where Wo is an
36-subgroup of GWrG/M as in Theorem 2.1. Apply the construction of Section 2 to the
composition ~:G—*W0 of 6:G^*G/M and o:G/M—*W0. This yields embeddings
a: Wo -* Wo and t: G -+ Wo and £ : V Wr U^> W0) where Wo is an 3£-subgroup of G Wr Wo

as in Theorem 2.1.
From Theorem 2.1 we have a\U6 = fi\U6 and K/X = x \ U for the Krasner-

Kaloujnine embedding K: U—> VWr U8 with respect to R. Observe also, that JC | C =
6 | C by choice of R. Correspondingly, a \ 0 = p. | 0 and Kp, = f | U for the Krasner-
Kaloujnine embedding K:U—> V Wr 0 with respect to R, and ic | C = ~ | C. Therefore,
cf = ckp. = cfi = cd = cdoo = C0/XCT = cjc/za = era for all c e C.

Since G is e.c. in 3£, there exists a solution g i , . . . , & to & in G. Put D =
(C, g i , . . . , g^). Then gxxa,. . . , g^ra is a solution to Sfx in Wo. and gx e (dxdw°) for all
deD -1 (Lemma 2.2). Since G is e.c. in £ , there does already exist a solution
hu . . ., hs to Se in G such that g e </iG) for all /i e H - 1, where H=(C,hu..., hs).
The latter implies that HDK<HnN = l, whence htK, . . . , hsK is a solution to ^/C//C
in G/K.

Let M/N be a chief factor of the e.c. 3£-group G. If G satisfies the additional
assumption

for every g e G - 1 there exists a verbal subgroup of (gG) different from (gG), (3.2)

then it follows from [5, Theorem 2.6(b)] that Theorem 3.1 holds with N in place of K,
while Theorem 3.2 holds with M in place of K.

THEOREM 3.3. ([4, Theorem 4.9]). Let M/N be a chief factor of an e.c. H-group G.
(a) If M/N is not central, then CC/N(M/N) = Z(M/N), and M/N is infinite.
(b) Denote by y: G/CG(M/N)^> Aut(M/N) the canonical embedding and assume the

existence of xlt x2eNm (meM-N) with o(Xi)-o(Nm). If there exists aeAut(M/N)
with Nxxa = Nx2 such that the subgroup (a, Im y) ^ Aut(M/N) is an £-group, then x}

and x2 are conjugate in G.
(c) Any two elements from Nm (m e M — N) of order o(Nm) are conjugate in G.
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Proof, (a) follows from Theorem 3.1 as in the proof of [4, Theorem 4.9(a)].
(b) Denote epimorphic images modulo N by bars and put C = CG(M). At first we

will embed G into an 3E-group H, in which the images of xx and x2 are conjugate. In the
case when C = N, we choose H = (a, Im y) and the embedding y:G—*H; then

Now, suppose that C > M. The group Aut(M) acts on M Wr G/M via

(/ • MgY =fp-Mg for all /S e Aut(M), / : G/M^M, geG, where

(Mh)fp = ((Af/i)/)^ for all heG.

Since M is elementary abelian, the split extension H of M WrG/M by (a, Im y) is an
£-group. Choose * : G/Af-» G such that (Mg) * e Mg for all g e G. Then an embedding
d:G—>H is given by

gd = (/g • Mg) • (Cg)y for all geG, where

(Mfc)./j = N(g • (Mhg)*-1 • Mh*) for all heG.

(Note that (Cg)y = C{Mh*~l. (Mhg)*)y.) Moreover, (xl6)a = x26, since fn. = x,.
Now choose U = {xlt x2), and apply the construction of Section 2 to the composition

~:G-*H of the canonical epimorphism G^G/N and the above embedding G/N—>H.
This yields embeddings a://->W0 and T:G-+W0 and p:(UnN) Wr U^> Wo (where
W o e l is as in Theorem 2.1) such that a \ 0 = ju | 0 and *r̂  = x \ U for some Krasner-
Kaloujnine embedding K: (/->((/flAf) Wr 0. Because of o(Xi) = o(m) and [4, Lemma
4.2], the element X/K is conjugate in (Ur\N)WrO to ^, e t7. Moreover, we have
(i1Ju)ao= (i5t)(7 = ^2^- Hence x^r and JC2T are conjugate in Woe3L. Since G is e.c. in £,
we conclude that JCJ and x2 are already conjugate in G.

(c) See proof of [4, Theorem 4.9(c)].

In the case when 36 = L(g^ n ©), we can even describe the automorphisms between
finite subgroups of an e.c. 3£-group G, which are induced by conjugation in G. This
generalizes [6, Theorem 6.1] (see also [4, Theorem 5.3]).

THEOREM 3.4. Let G be an e.c. L&x n ®)-group.
(a) An isomorphism ip:A—*B between finite subgroups of G is induced by

conjugation in G, if and only if, for each chief factor M/N in G,
(1) ip(M DA) = M D B and rj>(N (1A) = N n B, and
(2) there exists an elementary-abelian group E > M/N such that the isomorphism

(M C\A)N/N—*(M D B)N/N induced by \\> can be extended to some aeAut(£) , such
that—for every g e G—conjugation on M/N with Ng can be extended to some Ng* e
Aut(E), and such that (a, Ng* | g e G) e £(&< D ©).

(b) The group of all a e Aut(G), which leave every chief factor M/N of G invariant
and induce a power n-automorphism on M/N (i.e., an automorphism, which raises each
element of M/N to a fixed power, and whose order is a n-number), is contained in the
group of all locally inner automorphisms of G.

Proof, (a) The necessity of the conditions (1) and (2) is obvious. Now suppose that
(1) and (2) hold. Let M/N be the unique chief factor in G with X = Ar\N<ADM = A.
As in the proof of Theorem 3.3(b) there exists an L ( ^ D ©)-group H 2: G/N such that
the isomorphism \\>: (M n A)N/N—*• (M D B)N/N induced by rp is induced by conjugation
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in H. Since G/N is a.c. in L(g:T D ©) (Theorem 4.3(b)), we conclude that ip is already
induced by conjugation in G/N. Thus, we may as well assume that ty = id. By induction
over \A\ we may assume that ty \ X is induced by conjugation in G. From Theorem 3.1(c)
we obtain that tp\X is even induced by conjugation in N.

Let ~:G—*G/N be the canonical epimorphism. Fix ylt . . . , yr eA — X such that
M C\A is the direct product of the (ft). Inductively, we will now find elements ht e N such
that ip | (X, yi,..., yt) is induced by conjugation with ht for 1 < i < r. Suppose that /*,_,
has been found for some i. Let Ao = (X, yu .. . , v,_i). Then we may as well assume that
r/» = id and xp | Ao = id. Let U = (Ao, v,, v,i/») and p = o(yt). Choose a finite V < G such
that (/<K". Put R = R2Rl where #i = {1, y,, . . . , yf-1} and where R2 is a left
transversal of X in .Ao- Apply the construction of Section 2 to T. This yields embeddings
x:G-*W0 and /x: V Wr £/-• Wo where VV0 is an L(%n n ©)-subgroup of GWrG as in
Theorem 2.1.

Since G is e.c. in L(g^ n ©), and since N= (yf)', it suffices to find some
f e (ytx

w°)' satisfying ytx
f = ytipx and [AOT,/] = 1. From Theorem 2.1 we have that

Kfi = T | (/ for the Krasner-Kaloujnine embedding *:: f/-̂  Z = V Wr t/ with respect to R.
It remains to show the existence of / e (_y,/cz)' satisfying yiK

f = yii}>K and [^40«r,/] = 1.
Define f:U^>U<V" via (o?)/ = r • (^,^)v • yTv • r~x for all r e R2 and 0 < v < p - 1.
Then / e (yiK2)' by Lemma 2.2, and straightforward calculations yield that y,*/ =y^K.
Now, regard some a e AQ. Clearly, aic=fa.a where fa: tJ^>X. Because of V | -̂ o = id,
conjugation with y? induces the same automorphism on Ao as conjugation with (y,t^)v.
This implies that [fa, f] = 1, and that (Fy7)f = (yj)f for all r e R2 and 0 < v < p - 1. But f/
is abelian, and thus our choice of R ensures that [a, / ] = 1 too.

(b) Observe that the power automorphisms of M/N are contained in the centre of

In the case when |;r| > 2 it remains open, whether every e.c. L($n D ©)-group G acts
via conjugation transitively on M/N - 1 for each chief factor M/N in G. (Chief factors of
locally finite p-groups are central [3,1.B.8].)

THEOREM 3.5. ([4, Theorem 4.11(f)]) If the e.c. 1-group G satisfies (3.2), then there
exists for every proper subnormal subgroup S of G a chief factor M/N in G such that
N<S<M.

Proof. Choose m minimal with respect to 5 = Sm<Sm_l<]. . . <Si<G. Then SX = M
for some chief factor M/N in G by Theorem 3.1. Assume by induction that N^Sk for
some k < m - 1. By Theorem 3.1 there exists x e Sk+X - N. Fix g eN. Choose U = (x, g)
and a finite subgroup V < G such that U^V and g e (Q(V))', where Q(M) is a verbal
subgroup different from M, which is given from (3.2). Apply the construction of Section 2
to the canonical epimorphism ~:G—*G/N. This yields embeddings T:G-+W0 and
fx.VWr (7-»Wo (where Woe£ is as in Theorem 2.1) such that Kfi = x \ U for some
Krasner-Kaloujnine embedding K: U-*Z = VWr 0. From Lemma 2.2 we obtain that
gKe[[xK, Q((XKZ))], Q((XKZ))], whence gre[[xr, Q«XT W '°» ] , Q((XTW°))]. Since G is
e.c. in 1, we already have g e [[x, Q((xc))], Q((xG))] < [[x, N], N] < [[Sk+U Sk], Sk] <
Sk+1. This shows that N<Sk+1.

4. Partial complements and algebraically closed groups. Let G be a countable e.c.
3E-group satisfying (3.2). In [5] we have shown that, if K=G with K±(gc) for all
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g e G - 1, then every finite F -&G with F C\K = \ is contained in a complement to K in
G. This can be generalized as follows.

THEOREM 4.1. ([5, Theorem 4.2]). Let M/N be a chief factor of the e.c. %-group G
such that Q(A/) = N for some verbal subgroup Q(M) of M. If F is a finite subgroup of G
with Nft F = 1, and if N • F <G0^G where \G0:N\ is countable, then Fis contained in a
complement to N in Go.

Proof. Since Go is the union of an ascending chain of groups C satisfying
N • F ^ C ̂  Go and \C: N\ < °°, we may as well assume that Go is finite. Let D be a finite
subgroup of Go with F ^ D and Go = N • D. Fix x e M - N. Put U = (D,x), and choose a
finite K < G such that U ^ Q(V). Furthermore, let R = R • F where R is a left transversal
of UHNF in U. Apply the construction of Section 2 to the canonical epimorphism
--.G->G/N. This yields embeddings o:G^>W0 and x:G^>W0 and fi: V Wr U-* Wo

(where Woe3E is as in Theorem 2.1) such that o\0 = n\ U and KU = x \ U for the
Krasner-Kaloujnine embedding K : U-* VWr 0 with respect to R. By choice of R,

yx = yKfi =yn=ya for every y e F.

For every u e [/, we obtain

«T = UKJU =fun • up =fuli • uo for suitable /„: 0—* U C\N, where

funeQ(A')<Q((xxw°)) by Lemma 2.2.
Moreover,

xx =fxn • xo6 A' • (d6)a< (dow°) whenever deD-N.

Since G is e.c. in 3£, there does already exist an embedding o:D—*G such that yo = y for
all y G F, and such that d e Q«*G>) • do for all d e D and x e <<iaG> for all deD-N.
Now Im a is the desired complement, since the above properties ensure that F^lmo,
that d e N • do for all def», and that Afnimo = l.

THEOREM 4.2. ([5, Theorem 4.1]). Let K be a normal subgroup of the e.c. H-group G
which does not occur in any chief factor of G. If F is a finite subgroup of G with
K(1F = 1, and if K • F^G0^G where \G0:K\ is countable, then F is contained in a
complement to K in Go.

Proof. Again we may assume that \G0:K\ is finite. Let D be a finite subgroup of Go

with F^D and Go = K • D. Then there exist chief factors MXINX and M2/N2 in G such that
M2<K<Nt and D DN2 = D n K = D D7V,. Denote by d:G^>G/N2 and -;GIN2-+
G/Nx the canonical epimorphisms. Fix *,• e Af,-— N,-. Put U= (D, xux2), and choose a
finite V<G such that U< V. Let Rt be a left transversal of ( t /nN,D)0 in t/0. Then
R^Ri-DO is a left transversal of (UnNJO in i/0 (because of DnJVi = DnJV2).
Apply the construction of Section 2 to T, with 7?, in place of R. This yields embeddings
a,:G/N,-» Wo and x{:G/N2-*W0, where JV0 is an ^-subgroup of G/N2 WrG/N^ as in
Theorem 2.1. Denote by \i>:G-*W0 the composition of 6 and T^ AS in the proof of
Theorem 4.1 we have

JC,V = xldxl e (d~6oTn) for every deD-Nu and

di/> = d0r = ddO for every d e D.
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In particular,

*iV> 6 (dxi>w°) for every deD-N^.

Now let R2 = R-z • F, where R2 is a left transversal of U fl N2F in U. Apply the
construction of Section 2 to \p, with R2 in place of R. This yields embeddings o2: Wo—* Wo

and x2:G —*W0 and fi2:VWr Uxj>-+ Wo, where Wo is an .^-subgroup of GWrW0 as in
Theorem 2.1. As in the proof of Theorem 4.1 we have

yx2 = vipo2 for every v e F.

For every M € U, we obtain

w*2 =/«M2 • MV°2 for suitable /„ : Uip —* U nJV2, where
/u/z2 e (JCJT^0) by Lemma 2.2.

Moreover,

x x x 2 =fXlH2• x 1 i p o 2 e (dipoY0) f o r e v e r y d e D - Nx = D - N 2 .

Since G is e.c. in 3t, there does already exist an embedding o:Dxl>—*G such that
\po\F = idF, and such that de(x2)-dij>d for all d e D and j t , e ( d ^ a G ) for all
deD- N2. It follows that F < I m a , that deM2- dipd c /C • dipo for all d e D , and that
KDim o^Nx Dim o = 1, whence Im a is the desired complement.

The above results can be used to characterize the a.c. X-groups as in [8]. This
removes the countability assumption from [8, Theorems C(c) and D(c)].

THEOREM 4.3. ([5, Theorem 4.3(a)]). Let G be an e.c. Z-group.
(a) If K -0G such that K does not occur in any chief factor of G, then G/K is e.c.

in X.
(b) If M/N is a chief factor in G such that N = Q(M) for some verbal subgroup Q(M)

of M, then G/N is a.c. in £, but G/M is not a.c. in 36.

Proof, (a) Let y be a finite system of equations and inequalities with coefficients
Kgu ..., Kgr e G/K and a solution in some 36-supergroup H of G/K. By Theorem 4.2
there exist c, e Kgi such that (cx,. .., cr) fl K = 1. Let ST be the system obtained from
replacing Kgt by c, in 5̂ . Choose U = (cx,..., cr) = R, and apply the construction of
Section 2 to the canonical epimorphism ~:G-*G/K^H. This yields embeddings
a: / / -» Wo and x: G —> Wo (where Wo e 3£ is as in Theorem 2.1) with (Kgj)o = C,CT = c,r for
1 < i < r. Hence Wo contains a solution to 3~x. Since G is e.c. in 3E, there already exists a
solution to ST in G. Now it follows from Theorem 3.2 that ff= 3~K/K has a solution in
G/K.

(b) Let V be a finite system of equations with coefficients Ngu • • • , Ngr eG/N and a
solution in some 3£-supergroup H of G/N. By Theorem 4.1 there exist c, e Ngj such that
(clt .. ., cr) PI N = 1. Let 5" be the system obtained from replacing Ng,- by c, in y.
Proceed as in (a) to find a solution hu ..., hs to 5T in G. Because ST consists of equations
only, and because (cx, . . . , cr) D JV = 1, the system y=STN/N has the solution
M i j , . . . , Nhs in G/N. This shows that G/N is a.c. in 3£. The remaining assertion follows
as in the proof of [5, Theorem 4.3(b)] from the remark at the end of Section 5.

THEOREM 4.4. ([8, Theorem C(c)]). If the non-trivial a.c. 3i-group G has no minimal
normal subgroups, then G is e.c. in 3E.
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Proof. Let S3 be a finite system of equations and inequalities with coefficients from G
and a solution in some 3£-supergroup H of G. We may assume that H is e.c. in 36. Let
K = {J{N\N = H and N HG = 1}. Assume that there exists a minimal normal subgroup
M/K in H/K. If g e (M D G) - 1, then M = <g") by [5, Theorem 2.3]; and since G is a.c.
in 26, we conclude that M DG = (gc). Thus, M n G is a minimal normal subgroup in G,
in contradiction to our assumption. Therefore, H/K has no minimal normal subgroup.
Because of GDK = 1 we may identify G canonically with GK/KsH/K. Then the
system V^VK/K has a solution in H/K by Theorem 3.2. But G D L # 1 for every
non-trivial normal subgroup L of H/K, whence G is e.c. in 36 by [8, Lemma 3].

THEOREM 4.5. ([8, Theorem D(c)]). If every e.c. %-group satisfies (3.2), then the a.c.
^.-groups are precisely the factor groups H/N of the e.c. £-groups H by their normal
subgroups N satisfying N #= (hH) for all h e H — 1.

Proof. By Theorem 4.3 it suffices to show that every a.c. 36-group G occurs as a
suitable factor of some e.c. 3£-group H. If G has no minimal normal subgroup, we may
apply Theorem 4.4 and choose H = G. If there exists a minimal normal subgroup M of G,
we may follow the proof of [8, Theorem D(a)], provided that the following can be shown.

If G ̂  H e 36, and if K/L is a chief factor in H such that K — L contains some
ceM, then Lf\G = KM <KHG. (4.1)

However, since the normal subgroups of G are totally ordered under inclusion by [8,
Proposition (b)], we immediately obtain that L n G % M, whence L C\ G = 1. Moreover,
M = (cG) <K(1G (thus (4.1) obtains and this completes the proof of Theorem 4.5).

5. Amalgamation in L(%n D ©). In [7] we gave a necessary and sufficient condition
for an amalgam of finite soluble ^-groups to be contained in a finite soluble ;r-group.
Combining the construction of Section 2 with the technique of [7] we are able to extend
this result to amalgams of L(g^ PI @)-groups over a finite common subgroup.

T H E O R E M 5 . 1 . ( [ 7 , T h e o r e m 2 ] , [ 5 , T h e o r e m 2 . 1 ] ) . A n amalgam G U H \ U of
fl ®)-groups G and H over a finite common subgroup U is contained in an
H ®)-group, if and only if there exist normal series 2 G in G and Sw in H with

elementary-abelian factors, such that 2 G D U = 2W fl U, and such that the following
condition holds:

(*) whenever M/N and K/L are factors of 2 C resp. 2 H satisfying M PiU = K(1U>
L fl U = N n U, then there exists an elementary-abelian group E containing the amalgam

M/N U K/L | (U fl M)N/N = (UD K)L/L

(where (UHM)N/N and (UDK)L/L are identified via uN = uL for all ueU f\M =
UC\K), and there exist homomorphisms a: G/M —> Aut(£) and f}:H/K^> Aut(£) such
that every (Mg)a acts on UN/N as conjugation with Ng, such that every (Kh)P acts on
UL/L as conjugation with Lh, and such that A = (Im a, Im j8) is an L(gJI D ®)-subgroup
o/Aut(£).

Proof. If G U H | U is contained in an L(gJt n ©)-group W, then any chief series S w

in W induces normal series 2 G and 2 H in G resp. H with elementary-abelian factors, and
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such that 2 G D U = HH n U. Moreover (*) is satisfied, if we choose for E the correspond-
ing factor of 2 W and define a and /3 via action by conjugation.

For the proof of the converse, we proceed by induction over the length of SG n U. In
the case when U = 1, the amalgam is contained in G x H e L($n n @). Assume now, that
there exist elementary-abelian factors M/N in G and K/L in H such that M C\U = KC\
U>LnU = NDU = l, and such that the amalgam

G/M U H/K | UM/M = UK/K

is contained in an L(^n D ©)-group D. Let £, A, a and /3 be as in (*). Denote
epimorphic images modulo N resp. L by bars. As in the proof of [7, Theorem 2], we can
define an embedding r] of the amalgam G U H \ 0 into (E X] y4) HV £>. Observe that
gt] =fg • Mg and hrj =fh • Kh for all g e G, h e //, where Im/g c £ XI «g, U)M/M)a and
Im/fc £ £ X] «/i, U)M/M)p. Thus,

Im ?y c Z = U {(£ X A>) Wr Z) | / l 0 < ̂  finite} € L(gre n ©).

In the following, we suppress r\ and regard Z as an L(g;t n ©)-supergroup of G U H | 0.
Now, apply the construction of Section 2 to ~:G—*G/N<Z with R = U. This yields

embeddings o:Z-*W0 and T : G -*• Wo, where Wo is an L(g^ n ©)-subgroup of G Wr Z as
in Theorem 2.1. From our choice of R, we have that a\U=r\U. Hence the above gives
an embedding of G U H \ U = U into Wo. A further application of the construction of
Section 2 yields an embedding of G U H \ U into an L(g3t n ©)-group.

As in the proof of [7, Theorem 5] it can be deduced from Theorem 5.1, that an
amalgam G U H | U of L(^JI D ©)-groups G and / / over a finite supersoluble common
subgroup U is contained in an L(%n D ©)-group, if there exist chief series in G and H
which induce a common chief series in U. (This also generalizes [6, Theorem 3.1].) This
allows us to construct all kinds of embeddings of countable locally supersoluble jr-groups
into e.c. L ( ^ D©)-groups (as in [5, §3]). Moreover, it can be shown as in [7, Theorem
6], that a finite supersoluble jr-group is an amalgamation base in L($n n ©), if and only if
it is either a cyclicp-group, or the split extension of a cyclic/?-group P by a cyclic q-group
Q with CQ{P) = 1 and q \ p - 1.

Note also that the results of [5, §3] about embeddings of countable locally nilpotent
^-groups into countable e.c. 3£-groups satisfying (3.2) carry over to uncountable e.c.
3£-groups. This can be proved easily with the technique of proof of Theorem 5.1.

Added October 2, 1989. It recently occurred to the author, that the construction of
Section 2 is not limited to only locally finite groups. In fact, it may be used in the more
general set up of [4], i.e., for the study of e.c. L3£-groups, where the class X. is closed with
respect to subgroups, quotients, extensions, and with respect to cartesian powers of
finitely generated (f.g.) 3£-groups. This works, because the group Wo of Theorem 2.1 is
contained in the union of split extensions Wx = Ax X Ho, where X ranges over all f.g.
subgroups of G, and where Ax = {/: / / - • G j (fir)/ e sXs'1 for all t e T, s e S, r e R); the
above assumptions ensure that Wx e 36. (The construction may even be simplified by
deleting 5 and choosing T as left transversal of U in H.) This allows it to remove the
countability assumptions from [4, Theorems 4.7-4.11 and 5.3]. Also, [5, Theorem 3.1]
can be extended to embeddings of f.g. nilpotent 3£-groups into e.c. LI -groups (and
correspondingly to embeddings of polycyclic 36-groups into e.c. L3£-groups with abelian
chief factors, provided that 3£ contains all torsion-free divisible abelian groups).
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