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Abstract
For a finite-type surface 𝔖, we study a preferred basis for the commutative algebra C[ℛSL3 (C) (𝔖)] of regular
functions on the SL3 (C)-character variety, introduced by Sikora–Westbury. These basis elements come from the
trace functions associated to certain trivalent graphs embedded in the surface 𝔖. We show that this basis can be
naturally indexed by nonnegative integer coordinates, defined by Knutson–Tao rhombus inequalities and modulo
3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the
tropical points at infinity of the dual version of the character variety.
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1. Introduction

For a finitely generated group Γ and a suitable Lie group G, a primary object of study in low-dimensional
geometry and topology is the character variety

ℛ𝐺 (Γ) = {𝜌 : Γ −→ 𝐺}// 𝐺

consisting of group homomorphisms 𝜌 from Γ to G, considered up to conjugation. Here, the quotient is
taken in the algebraic geometric sense of geometric invariant theory [MFK94]. Character varieties can
be explored using a wide variety of mathematical skill sets. Some examples include the Higgs bundle
approach of Hitchin [Hit92], the dynamics approach of Labourie [Lab06] and the representation theory
approach of Fock–Goncharov [FG06].

We are interested in the case where the group G is the special linear group SL𝑛 (C). Adopting the
viewpoint of algebraic geometry, one can study the SL𝑛 (C)-character variety ℛSL𝑛 (C) (Γ) by means of
its commutative algebra of regular functions C[ℛSL𝑛 (C) (Γ)]. An example of a regular function is the
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trace function Tr𝛾 : ℛSL𝑛 (C) (Γ) → C associated to an element 𝛾 ∈ Γ, sending a representation 𝜌 to the
trace Tr(𝜌(𝛾)) ∈ C of the matrix 𝜌(𝛾) ∈ SL𝑛 (C). A theorem of Procesi [Pro76] implies that the trace
functions Tr𝛾 generate the algebra of functions C[ℛSL𝑛 (C) (Γ)] as an algebra and also identifies all of
the relations.

Sikora [Sik01] provided a more refined description of Procesi’s result in the case where Γ = 𝜋1 (𝔛) is
the fundamental group of a topological space𝔛; see also the earlier work of Bullock [Bul97] for the case
𝐺 = SL2(C). Sikora extended the notion of a trace function to include functions Tr𝑊 ∈ C[ℛSL𝑛 (C) (𝔛)]
on the character variety ℛSL𝑛 (C) (𝔛) := ℛSL𝑛 (C) (𝜋1 (𝔛)) that are associated to homotopy classes of
certain (ciliated) oriented n-valent graphs W, called webs, in the space 𝔛. The trace functions Tr𝑊 span
the algebra of functions C[ℛSL𝑛 (C) (𝔛)] as a vector space, and the relations are described pictorially in
terms of the associated graphs.

In this article, we restrict attention to the case where the Lie group is SL3(C) and the space 𝔛 = 𝔖 is
a punctured finite-type surface. Sikora–Westbury [SW07] proved that the collection of trace functions
Tr𝑊 associated to nonelliptic webs W, which are certain webs embedded in the surface𝔖, forms a linear
basis for the algebra of functions C[ℛSL3 (C) (𝔖)].

An analogous result [HP93] in the case of SL2(C) says that the collection of trace functions Tr𝛾
associated to essential multicurves 𝛾 embedded in the surface 𝔖 forms a linear basis for the algebra
of functions C[ℛSL2 (C) (𝔖)]. A well-known topological-combinatorial fact says that if the punctured
surface 𝔖 is equipped with an ideal triangulation 𝜆, then the geometric intersection numbers 𝜄(𝛾, 𝐸) of
a curve 𝛾 with the edges E of 𝜆 furnish an explicit system of nonnegative integer coordinates on the
collection of essential multicurves 𝛾. These coordinates can be characterized by finitely many triangle
inequalities and parity conditions.

The present work is part of a series of two papers, whose goal is to generalize these SL2-properties
to the case 𝑛 = 3. The main result of the current paper is the following.

Theorem 1.1. For a punctured finite-type surface𝔖 equipped with an ideal triangulation 𝜆, the Sikora–
Westbury SL3-web basis for the algebra of functions C[ℛSL3 (C) (𝔖)] admits an explicit system of
nonnegative integer coordinates, which can be characterized by finitely many Knutson–Tao rhombus
inequalities [KT99] and modulo 3 congruence conditions.

In the companion article [DS20b], we prove that the web coordinates from Theorem 1.1 are natural
with respect to the action of the mapping class group of the surface 𝔖.

Theorem 1.2 [DS20b]. If another ideal triangulation 𝜆′ of 𝔖 is chosen, then the induced coordinate
transformation takes the form of a tropicalized A-coordinate cluster transformation (as opposed to
X -coordinate) in the language of Fock–Goncharov [FG06, FZ02].

Strictly speaking, Theorems 1.1 and 1.2 have been stated assuming that the punctured surface 𝔖
has empty boundary. In §9, we give two different, but related, generalizations (Theorems 9.1 and 9.8)
of Theorem 1.1 valid in the boundary setting, 𝜕𝔖 ≠ ∅; see also [Kim20]. There, we also provide
applications to the geometry and topology of SL3(C)-character varieties, as well as to the representation
theory of the Lie group SL3(C). In the companion article [DS20b], we likewise provide a version of
Theorem 1.2 valid in the boundary setting.

This work drew much inspiration from papers of Xie [Xie13], Kuperberg [Kup96] and Goncharov–
Shen [GS15].

At its heart, Theorem 1.1 simply describes how to assign tuples of numbers to pictures. We have
motivated these web pictures W by their association with trace functions Tr𝑊 . As such, it is desirable
to tie directly the coordinates to the trace functions. Such a relationship is well known for SL2 (C); see
[FG07a], for instance. In that case, the trace functions Tr𝛾 for curves 𝛾 can be expressed as Laurent
polynomials Tr𝛾 = Tr𝛾 (𝑋𝑖) in variables 𝑋𝑖 where there is one variable per coordinate (that is, per edge
𝐸𝑖 of 𝜆). Moreover, the coordinates of a curve 𝛾 can be read off as the exponents of the highest term of
the trace polynomial Tr𝛾 (𝑋𝑖), demonstrating the tropical geometric nature of these coordinates.
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There is a similar story for SL3(C) and conjecturally for SL𝑛 (C). The Fock–Goncharov theory tells us
how to express the trace functions Tr𝑊 for webs W as Laurent polynomials Tr𝑊 (𝑋𝑖). Here, the number
of variables 𝑋𝑖 (called Fock–Goncharov coordinates) increases with n. In the case 𝑛 = 3, Kim [Kim20],
building on [Dou20], showed that the tropical coordinates of Theorem 1.1 appear as the exponents of
the highest term of the Fock–Goncharov trace polynomial Tr𝑊 (𝑋𝑖). This idea was Xie’s [Xie13] point
of departure, and these coordinates were constructed following his lead.

Kuperberg’s landmark paper [Kup96] influenced [SW07] and laid the topological foundation for the
present work as well. He proved that a certain collection of web pictures drawn on an ideal polygon 𝔇𝑘
indexes a linear basis for the subspace of SL3 (C)-invariant tensors in a k-fold tensor product of finite-
dimensional irreducible representations of SL3(C). Along the way, he showed how the pictures for the
ideal polygon𝔇𝑘 can be obtained by gluing together the more basic pictures for an ideal triangle𝔇3. We
apply Kuperberg’s local pictorial ideas in order to analyze global web pictures drawn on a triangulated
surface (𝔖, 𝜆).

Motivated by the Fock–Goncharov duality conjecture [FG06] (see also [GHKK18, GS18]),
Goncharov–Shen [GS15] developed a theory by which bases of algebras of functions on moduli spaces,
defined abstractly via the geometric Satake correspondence, can be indexed by positive integral trop-
ical points, namely the preimage points mapping to Z�0 under a tropicalized potential function. They
showed that, for an ideal triangle 𝔇3 equipped with a general linear symmetry group, the positive inte-
gral tropical points correspond to solutions of the Knutson–Tao rhombus inequalities. In the SL3-setting
of this article, Theorem 1.1 also makes use of these inequalities in order to assign positive integer coor-
dinates to webs. We think of this result as a manifestation of Goncharov–Shen’s ideas about duality; see
[DS20b] for a further discussion. (For another geometric application of the Goncharov–Shen potential
function, see [HS23].)

Frohman–Sikora [FS22] independently constructed coordinates for the same SL3-web basis as that
appearing in Theorem 1.1. While their topological strategy is the same, their coordinates are different
from ours. They do not characterize by inequalities the values taken by their coordinates, and they do not
address the question of naturality under changing the triangulation. Their proof is algebraic, as it uses the
Sikora–Westbury theorem (discussed above) saying that the nonelliptic webs are linearly independent,
which ultimately relies on the diamond lemma from noncommutative algebra. On the other hand, we
give a purely topological-combinatorial proof of Theorem 1.1, which does not require using this linear
independence. Moreover, we give an alternative geometric proof of this Sikora–Westbury theorem,
by using Theorem 1.1 together with the SL3-quantum trace map [Dou20, Kim20]. (Ishibashi–Kano
[IK22] mimicked the construction and proof strategy of Theorem 1.1 to define shearing coordinates for
unbounded SL3-laminations.)

As another application, Kim [Kim20, Kim21] used Theorems 1.1 and 1.2 to study a classical and
quantum SL3-version of Fock–Goncharov duality, generalizing the SL2-case [FG06, AK17].

For the underlying SL3-geometry, see [FG07b, CTT20].
We are also interested in comparing our methods to other approaches to studying webs and related

objects, falling under the umbrella of so-called ‘higher laminations’. In addition to webs [Sik05, Fon12,
CKM14], this includes cluster algebras [FP16, IY23], buildings [FKK13, Le16, Mar19] and spectral
networks [GMN13, NY22].

2. Global webs

We introduce the primary topological objects of study.

2.1. Topological setting

Let 𝔖 be an oriented punctured surface of finite topological type, namely 𝔖 is diffeomorphic to the
space obtained by removing a finite subset P, called the set of punctures, from a closed oriented surface
𝔖. In particular, note that𝔖 has empty boundary, 𝜕𝔖 = ∅. We require that there is at least one puncture
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Figure 1. Ideal triangulations.

Figure 2. Web.

and that the Euler characteristic 𝜒(𝔖) of the punctured surface 𝔖 is strictly less than zero, 𝜒(𝔖) < 0.
These topological conditions guarantee the existence of an ideal triangulation 𝜆 of the punctured surface
𝔖, namely a triangulation 𝜆 of the closed surface 𝔖 whose vertex set is equal to the set of punctures P.
See Figure 1 for some examples of ideal triangulations.

To simplify the exposition, we always assume that 𝜆 does not contain any self-folded triangles,
meaning that each triangle 𝔗 of 𝜆 has three distinct edges. Such a 𝜆 always exists. Our results should
generalize, essentially without change, to allow for self-folded triangles.

2.2. Webs

Definition 2.1. An immersed curve, or just curve, 𝛾 in any surface (possibly with boundary) �̂� is an
immersion into �̂� of the circle 𝑆1 or the compact interval I. In other words, a curve is either an oriented
loop (that is, a closed curve) or an oriented arc, possibly with self-intersections.

We will often be working with embedded curves, where there are no self-intersections.
Definition 2.2. An embedded global web, or just global web or web, 𝑊 = {𝑤𝑖}𝑖 on the surface 𝔖 is a
finite collection of closed connected oriented trivalent (finite) graphs or closed curves 𝑤𝑖 embedded in
𝔖 such that the (images of the) components 𝑤𝑖 are mutually disjoint and such that each vertex of 𝑤𝑖 is
either a source or a sink, namely the orientations either go all in or all out, respectively. Note that the
web W has empty boundary, 𝜕𝑊 = ∅.

For an example, in Figure 2 we show a web on the once punctured torus, which has four components
consisting of two trivalent graphs and two curves.
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Figure 3. Global parallel-move.

Figure 4. Prohibited square-face.

Definition 2.3. Two webs W and 𝑊 ′ on the surface 𝔖 are parallel equivalent if W can be taken to 𝑊 ′,
preserving orientation, by a sequence of moves of the following two types:

1. an isotopy of the web, namely a smoothly varying family of webs;
2. a global parallel-move, exchanging two loops that together form the boundary of an embedded

annulus A in the surface 𝔖; see Figure 3.

In this case, we say that W and 𝑊 ′ belong to the same parallel equivalence class [𝑊] = [𝑊 ′].

Intuitively, we think of parallel equivalent as meaning homotopic on the surface.

2.3. Faces

Definition 2.4. A face D of a web W on the surface 𝔖 is a contractible component of the complement
𝑊𝑐 ⊆ 𝔖 of the web. A n-face 𝐷𝑛 is a face with n sides, counted with multiplicity. An alternative
name for a zero-face 𝐷0, two-face 𝐷2, four-face 𝐷4 and six-face 𝐷6 is a disk-, bigon-, square- and
hexagon-face, respectively.

For an example, the web shown in Figure 2 above has one disk-face, one bigon-face, two square-
faces and two hexagon-faces; these faces are shaded in the figure. Notice that one of the hexagon-faces
consists of five edges of the web, one edge being counted twice.

By orientation considerations, faces must have an even number of sides.
Bigon- and square-faces always consist of exactly two and four edges, respectively, of W. See Figure 4.
In figures, we often omit the web orientations, as in Figure 5.

2.4. Nonelliptic webs

Definition 2.5. A web W on the surface𝔖 is called nonelliptic if it has no disk-, bigon- or square-faces.
Otherwise, W is called elliptic.
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Figure 5. Local webs.

If W is nonelliptic and if 𝑊 ′ is parallel equivalent to W, then 𝑊 ′ is nonelliptic. Denote the set of
nonelliptic webs by 𝒲𝔖, and the set of parallel equivalence classes of nonelliptic webs by [𝒲𝔖]. The
empty web 𝑊 = ∅ represents a class with one element in [𝒲𝔖].

3. Local webs

As a technical device, we study webs-with-boundary in the disk.

3.1. Ideal polygons

For a nonnegative integer 𝑘 � 0, an ideal k-polygon 𝔇𝑘 is the surface 𝔇0 − 𝑃 obtained by removing k
punctures 𝑃 ⊆ 𝜕𝔇0 from the boundary of the closed disk 𝔇0.

Observe that, when 𝑘 > 0, the boundary 𝜕𝔇𝑘 of the ideal polygon consists of k ideal arcs.

3.2. Local webs

Recall the notion of a curve (Definition 2.1).

Definition 3.1. An embedded local web, or just local web, 𝑊 = {𝑤𝑖}𝑖 in an ideal polygon 𝔇𝑘 is a finite
collection of connected oriented trivalent graphs or curves 𝑤𝑖 embedded in𝔇𝑘 such that the components
𝑤𝑖 are mutually disjoint and such that each vertex of 𝑤𝑖 is either a source or sink. Note that the local web
W may have boundary, in which case we require 𝜕𝑊 = 𝑊 ∩ 𝜕𝔇𝑘 and we consider each point 𝑣 ∈ 𝜕𝑊
to be a monovalent vertex.

For some examples of local webs, see Figure 5. There, 𝑘 = 4.

3.3. External faces

Definition 3.2. A face D of a local web W in an ideal polygon 𝔇𝑘 (𝑘 � 0) is a contractible component
of the complement 𝑊𝑐 ⊆ 𝔇𝑘 of W that is puncture-free, meaning that D does not limit to any punctures
𝑝 ∈ 𝑃. A n-face 𝐷𝑛 is a face with n sides. Here, a maximal segment 𝛼 ⊆ (𝜕𝔇𝑘 ) ∩ 𝐷𝑛 of the boundary
𝜕𝔇𝑘 contained in the face 𝐷𝑛 is counted as a side, called a boundary side. An external face 𝐷ext (resp.
internal face 𝐷int) of the local web W is a face having at least one (resp. no) boundary side.

In contrast to internal faces, external faces can have an odd number of sides. An alternative name
for an external two-face 𝐷ext

2 , three-face 𝐷ext
3 , four-face 𝐷ext

4 with one boundary side and five-face 𝐷ext
5

with one boundary side is a cap-, fork-, H- and half-hexagon-face, respectively; see Figure 6. Also, as
for global webs (see Definition 2.4), an alternative name for an internal zero-face 𝐷int

0 , two-face 𝐷int
2 ,

four-face 𝐷int
4 and six-face 𝐷int

2 is a disk-, bigon-, square- and hexagon-face.
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Figure 6. Cap-, fork-, H-, external four-, and half-hexagon-face.

Figure 7. Tiling the closed disk with the dual graph of a local web.

For example, the connected local web in Figure 5a has one fork-face, two H-faces, one half-hexagon-
face, one external six-face, one bigon-face, one square-face and one internal eight-face. Also, the
disconnected local web in Figure 5b has one cap-face, one fork-face, one H-face, one half-hexagon-face,
one external six-face, two disk-faces, one bigon-face and one square-face.

3.4. Combinatorial identity

Proposition 3.3 (compare [Kup96, §6.1]). Let W be a connected local web in the closed disk 𝔇0 with
nonempty boundary 𝜕𝑊 ≠ ∅. Then,

2𝜋 =
∑

internal faces 𝐷int
𝑛

(
2𝜋 −

𝜋

3
𝑛
)
+

∑
external faces 𝐷ext

𝑛

(
𝜋 −

𝜋

3
(𝑛 − 2)

)
.

Proof. Since W is connected, its complement 𝑊𝑐 ⊆ 𝔇0 contains at most one annulus, which faces the
boundary 𝜕𝔇0. Such an annulus does not exist, since 𝜕𝑊 ≠ ∅. Thus, every component D of 𝑊𝑐 is
contractible, and of course puncture-free, so D is a face.

It follows that the closed disk 𝔇0 can be tiled by the dual graph of W. More precisely, the vertices
of the dual graph are the faces of W, and the complement of the dual graph consists of triangles. In
Figure 7, we demonstrate this tiling procedure for the local web W that we saw in Figure 5a above (after
forgetting the punctures).

This triangular tiling gives rise to a flat Riemannian metric with conical singularities and piecewise-
geodesic boundary on the closed disk 𝔇0, by requiring that each triangle is Euclidean equilateral. Apply
the Gauss–Bonnet theorem to this singular flat surface. �

3.5. Nonellipticity

Definition 3.4. As for global webs, a local web W in an ideal polygon 𝔇𝑘 is nonelliptic if W has no
disk-, bigon-, or square-faces. Otherwise, W is called elliptic; see Figure 8.

Lemma 3.5. Let W be a nonelliptic local web in the closed disk 𝔇0 such that W is connected, has
nonempty boundary 𝜕𝑊 ≠ ∅ and has at least one trivalent vertex. Then W has at least three fork- and/or
H-faces.
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Figure 8. Nonelliptic local webs in the closed disk.

Proof. We apply the formula of Proposition 3.3. For each internal face 𝐷int
𝑛 of W, the internal angle

2𝜋 − (𝜋/3)𝑛 � 0 is nonpositive since 𝑛 � 6 by nonellipticity. For each external face 𝐷ext
𝑛 , necessarily

𝑛 � 2, and the external angle 𝜋 − (𝜋/3) (𝑛− 2) is � 0 is nonpositive if and only if 𝑛 � 5. By hypothesis,
W has no cap-faces (else W would be an arc). So, those external faces 𝐷ext

𝑛 with a positive contribution
satisfy 𝑛 = 3, 4. The result follows since fork- and H-faces contribute 2𝜋/3 and 𝜋/3, respectively, in the
formula. �

Lemma 3.6. Nonelliptic local webs W (≠ ∅) in an ideal polygon 𝔇𝑘 (𝑘 � 0) having empty boundary
𝜕𝑊 = ∅ do not exist.

Proof. Suppose otherwise. We may assume W is connected. Since W is nonelliptic, W is not a loop
(this uses that 𝔇𝑘 is contractible). Then, the outer rim of W forms the boundary of a smaller closed disk
𝔇′0 ⊆ 𝔇𝑘 containing a subweb 𝑊 ′ ⊆ 𝑊 that has nonempty boundary 𝜕𝑊 ′ ≠ ∅. By nonellipticity, 𝑊 ′
does not have a cap-face, so 𝑊 ′ has a trivalent vertex. Applying Lemma 3.5 to connected components
of 𝑊 ′, an analysis of innermost components leads to the fact that 𝑊 ′ has at least one fork- or H-face. By
nonellipticity, 𝑊 ′ does not have an H-face, and it does not have a fork-face by orientation considerations
applied to W. �

Lemma 3.6 plus a small argument allows us to relax the hypotheses of Lemma 3.5 as follows.

Proposition 3.7. Let W be a nonelliptic local web in the closed disk 𝔇0 such that W is connected and
has at least one trivalent vertex. Then W has at least three fork- and/or H-faces. If, in addition, W is
assumed not to have any cap-faces, then the connectedness hypothesis above is superfluous. �

3.6. Essential and rungless local webs

Definition 3.8. A local web W in an ideal polygon 𝔇𝑘 (𝑘 � 0) is essential if:

1. the local web W is nonelliptic;
2. the web W is taut: for any compact arc 𝛼 embedded in 𝔇𝑘 whose boundary 𝜕𝛼 lies in a component E

of the boundary 𝜕𝔇𝑘 (and is disjoint from W), the number of intersection points 𝜄(𝑊, 𝐸) of W with
the segment 𝐸 ⊆ 𝐸 delimited by 𝜕𝛼 does not exceed the number of intersection points 𝜄(𝑊, 𝛼) of W
with 𝛼, that is 𝜄(𝑊, 𝐸) � 𝜄(𝑊, 𝛼); see Figures 9 and 10.

Note that essential local webs cannot have any cap- or fork-faces but can have H-faces. Later, we will
need the operation of adding or removing an H-face, depicted in Figure 11.

Definition 3.9. A local web W in an ideal polygon𝔇𝑘 (𝑘 � 0) is rungless if it does not have any H-faces;
see Figure 12.

Remark 3.10.

1. A consequence of Proposition 3.7, which we will not use, is that (nonempty) essential local webs in
the closed disk 𝔇0 or ideal monoangle 𝔇1 do not exist.
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Figure 9. Tautness condition for an essential local web.

Figure 10. More nonelliptic webs.

Figure 11. Adding or removing an H-face.

Figure 12. More essential webs.

2. Kuperberg [Kup96, §4, 6.1] says ‘(core of a) nonconvex nonelliptic web in the k-clasped web space’
for our ‘(rungless) essential local web in the ideal k-polygon’.

3.7. Ladder-webs in ideal biangles

Another name for an ideal two-polygon 𝔇2 is an ideal biangle or just biangle, denoted by 𝔅. The
boundary 𝜕𝔅 consists of two ideal arcs 𝐸 ′ and 𝐸 ′′, called the boundary edges of the biangle. We want
to characterize essential local webs W in the biangle 𝔅; compare (1) in Remark 3.10.

Definition 3.11. For any surface �̂�, possibly with boundary, an immersed multicurve, or just multicurve,
Γ = {𝛾𝑖} on �̂� is a finite collection of connected oriented curves (Definition 2.1) 𝛾𝑖 immersed in �̂� such
that 𝜕𝛾𝑖 = 𝛾𝑖 ∩ 𝜕�̂�. Note that 𝛾𝑖 and 𝛾 𝑗 might intersect in �̂� for any i and j. Note also that a component
𝛾𝑖 may be either a loop or an arc.
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Figure 13. Construction of a ladder-web.

Figure 14. Replacing a local crossing with an H (also called a rung).

In the current section, components 𝛾𝑖 of a multicurve Γ will always be embedded, but different
components might intersect. This will not be the case later on in §8.

A pair of arcs 𝛾1 and 𝛾2 each intersecting both boundary edges in 𝔅 are oppositely oriented if 𝛾1
and 𝛾2 go into (resp. out of) and out of (resp. into) 𝐸 ′, respectively. Similarly, the arcs 𝛾1 and 𝛾2 are
same-oriented if 𝛾1 and 𝛾2 both go into (resp. out of) 𝐸 ′, respectively.

Definition 3.12. A symmetric strand-set pair 𝑆 = (𝑆′, 𝑆′′) for the biangle 𝔅 is a pair of finite collections
𝑆 = (𝑆′, 𝑆′′) = ({𝑠′}, {𝑠′′}) of disjoint oriented strands located on the boundary 𝜕𝔅 = 𝐸 ′ ∪ 𝐸 ′′ such
that the strands 𝑠′ (resp. 𝑠′′) lie on the boundary edge 𝐸 ′ (resp. 𝐸 ′′) and such that the number of in-
strands (resp. out-strands) on 𝐸 ′ is equal to the number of out-strands (resp. in-strands) on 𝐸 ′′; see the
leftmost picture in Figure 13.

Given a symmetric strand-set pair 𝑆 = (𝑆′, 𝑆′′), in the following definition we associate to S a
multicurve in the biangle 𝔅, denoted 〈𝑊 (𝑆)〉.

Definition 3.13. The local picture 〈𝑊 (𝑆)〉 associated to a symmetric strand-set pair 𝑆 = (𝑆′, 𝑆′′) is the
multicurve in the biangle 𝔅 obtained by connecting the strands on 𝐸 ′ to the strands on 𝐸 ′′ with arcs,
in an order preserving and minimally intersecting way, loosely speaking, as illustrated in the middle
picture in Figure 13. Here, order preserving means in a way such that no same-oriented arcs intersect.

Observe, in the local picture 〈𝑊 (𝑆)〉, that 𝛾1 and 𝛾2 intersect if and only if (1) they are oppositely
oriented, and (2) they intersect exactly once. We denote by 𝒫(𝑆) ⊆ 𝔅 the set of intersection points p of
pairs of oppositely oriented arcs in the local picture 〈𝑊 (𝑆)〉.

Finally, we say how to associate a local web 𝑊 (𝑆) in 𝔅 to a symmetric pair 𝑆 = (𝑆′, 𝑆′′).

Definition 3.14. The ladder-web 𝑊 (𝑆) in the biangle 𝔅 obtained from a symmetric strand-set pair
𝑆 = (𝑆′, 𝑆′′) is the unique (up to ambient isotopy of 𝔅) local web obtained by resolving each intersection
point 𝑝 ∈ 𝒫(𝑆) into two vertices connected by a horizontal edge, relative to the biangle, called a rung;
see Figures 13 and 14.

The following statement is implicit in [Kup96, Lemma 6.7] and also appears in [FS22, §8].

Proposition 3.15. The ladder-web 𝑊 (𝑆) is essential. Conversely, given an essential local web W in the
biangle 𝔅, there exists a unique symmetric strand-set pair 𝑆 = (𝑆′, 𝑆′′) such that 𝑊 = 𝑊 (𝑆). Thus, W
is a ladder-web.
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Figure 15. Essential local web 𝑊𝔅 in the biangle, and its corresponding local picture 〈𝑊𝔅〉.

Proof. For the first statement, the nonellipticity of 𝑊 (𝑆) follows because two oppositely oriented curves
in the local picture 〈𝑊 (𝑆)〉 do not cross more than once (if there were a square-face, a pair of curves
would cross twice), and the tautness of 𝑊 (𝑆) is immediate.

Conversely, let W be an essential local web in 𝔅. The collection of ends of W located on the boundary
edges 𝐸 ′ ∪ 𝐸 ′′ determines a strand-set pair 𝑆 = (𝑆′, 𝑆′′). We show that S is symmetric and 𝑊 = 𝑊 (𝑆).
In particular, S is uniquely determined.

If W has a trivalent vertex, let 𝑊 denote the induced local web in the closed disk 𝔇0 underlying 𝔅,
obtained by filling in the two punctures of 𝔅. Applying Proposition 3.7 to 𝑊 guarantees that 𝑊 (possibly
minus some arc components) has at least three fork- and/or H-faces. At most two of these faces can
straddle the two punctures of 𝔅, so we gather W has one fork- or H-face 𝐷ext lying on 𝐸 ′ or 𝐸 ′′. Since
W is taut, 𝐷ext is an H-face.

We can then remove this H-face from 𝔅 (recall Figure 11), obtaining a local web 𝑊1 that is essential
and has strictly fewer trivalent vertices than W. Repeating this process, we obtain a sequence of essential
local webs 𝑊 = 𝑊0,𝑊1, . . . ,𝑊𝑛 such that 𝑊𝑛 has no trivalent vertices and is obtained from W by
removing finitely many H-faces. By nonellipticity, 𝑊𝑛 consists of a collection of arcs 𝛾 (𝑛)𝑖 (as opposed
to loops), and since𝑊𝑛 is taut, each arc 𝛾 (𝑛)𝑖 connects to both boundary edges 𝐸 ′ and 𝐸 ′′ of the biangle𝔅.

Replacing the removed H-faces with local crossings (Figure 14), we obtain a multicurve Γ in 𝔅
consisting of arcs 𝛾 (0)𝑖 , each intersecting both edges 𝐸 ′ and 𝐸 ′′, such that only oppositely oriented arcs
𝛾 (0)𝑖 intersect; see Figure 15. In particular, the pair (𝑆′, 𝑆′′) is symmetric.

We claim Γ is the local picture 〈𝑊 (𝑆)〉. Since only oppositely oriented arcs intersect, Γ is order
preserving (Definition 3.13). It remains to show Γ is minimally intersecting, namely that no arcs intersect
more than once. Suppose they did. Then, because only oppositely oriented arcs intersect, there would
be an embedded bigon B in the complement Γ𝑐 ⊆ 𝔅; see the right side of Figure 16. Such an embedded
bigon B corresponds in the local web W to a square-face, violating the nonellipticity of W. We gather
Γ = 〈𝑊 (𝑆)〉, as claimed.

By definition of the multicurve Γ and the local web 𝑊 (𝑆), it follows that 𝑊 = 𝑊 (𝑆). �

For technical reasons, in §8 we will need the following concept.

Definition 3.16. The local picture 〈𝑊𝔅〉 associated to an essential local web 𝑊𝔅 in the biangle 𝔅
is the local picture 〈𝑊 (𝑆)〉 (Definition 3.13) corresponding to the unique symmetric strand-set pair
𝑆 = (𝑆′, 𝑆′′) such that 𝑊𝔅 = 𝑊 (𝑆); see Figure 15.
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Figure 16. Prohibited ladder-webs and local pictures.

Figure 17. Honeycomb-web.

Figure 18. Rungless essential local web 𝑊𝔗 in the triangle and its corresponding local picture 〈𝑊𝔗〉

in the holed triangle.

3.8. Honeycomb-webs in ideal triangles

Another name for an ideal three-polygon 𝔇3 is an ideal triangle 𝔗. We want to characterize rungless
essential local webs W in triangles 𝔗.

Definition 3.17. For a positive integer 𝑛 > 0, the n-out-honeycomb-web 𝐻out
𝑛 (resp. n-in-honeycomb-

web 𝐻in
𝑛 ) in the triangle 𝔗 is the local web 𝐻𝑛 dual to the n-triangulation of 𝔗, where the orientation

of 𝐻𝑛 is such that all the arrows go out of (resp. into) the triangle 𝔗.

For example, in Figure 17 we show the five-out-honeycomb-web 𝐻out
5 .

The following statement is implicit in [Kup96, Lemma 6.8] and also appears in [FS22, §9].

Proposition 3.18. A honeycomb-web 𝐻𝑛 in the triangle 𝔗 is rungless and essential. Conversely, given
a connected rungless essential local web W in 𝔗 having at least one trivalent vertex, there exists a
unique honeycomb-web 𝐻𝑛 = 𝐻out

𝑛 or = 𝐻in
𝑛 such that 𝑊 = 𝐻𝑛. Consequently, a (possibly disconnected)

rungless essential local web W in 𝔗 consists of a unique (possibly empty) honeycomb 𝐻𝑛 together with
a collection of disjoint oriented arcs located on the corners of 𝔗; see the left-hand side of Figure 18.

Proof. The first statement is immediate.
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Figure 19. Laying down a honeycomb: 1 of 2.

Figure 20. Laying down a honeycomb: 2 of 2.

Step 1. Let W be as in the second statement. Just like the proof of Proposition 3.15, applying
Proposition 3.7 to the induced web 𝑊 in the underlying closed disk 𝔇0 guarantees that 𝑊 has at least
three fork- and/or H-faces, at most three of which can straddle the three punctures of 𝔗. Since W is
taut and rungless, W has no fork- or H-faces. Thus, 𝑊 has exactly three fork- and/or H-faces, each of
which straddles a puncture. Since these three faces are the only ones with a positive contribution in the
formula of Proposition 3.3, they must be fork-faces. Moreover, since the total contribution of these three
fork-faces is 2𝜋, every other face has exactly zero contribution. We gather that each interior face of W
is a hexagon-face and each external face of W is a half-hexagon-face.

Step 2. To prove that W is a honeycomb-web 𝐻𝑛, we argue by induction on n, showing that the
triangle 𝔗 can be tiled by W face-by-face, starting from a corner of 𝔗.

(2.a) Assume inductively that some number of half-hexagon-faces have been laid down as part of the
bottom layer of faces sitting on the bottom edge E, illustrated in Figure 19.

The strand labeled s either: (1) ends on the right edge 𝐸 ′ of the triangle 𝔗, thereby creating a fork
straddling the rightmost puncture and completing the bottom layer of faces; (2) ends at a vertex disjoint
from the vertices previously laid, hence the strand s is part of the boundary of the next half-hexagon-face;
(3) ends at one of the vertices previously laid.

If (1), we continue to the next step of the induction, which deals with laying down the middle layers.
If (2), we repeat the current step. Lastly, we argue (3) cannot occur. Indeed, suppose it did. The strand
s is part of the boundary of the next half-hexagon-face 𝐷ext

5 . But, as can be seen from the figure, the
external face 𝐷ext

5 has � six sides, which is a contradiction.
(2.b) Assume inductively that the bottom layer and some number of middle layers have been laid

down and moreover that some number of faces have been laid down as part of the current layer, illustrated
in Figure 20. Consider the next face D shown in the figure.

The face D is either external or internal. If it is internal, then D is a hexagon-face. In this case, the
strands s and 𝑠′ end at the fifth and sixth vertices of the hexagon-face, and we repeat the current step.
Otherwise, D is external, so it is a half-hexagon-face, 𝐷 = 𝐷ext

5 . However, we see from the figure that
in this case 𝐷ext

5 has � six sides, which is a contradiction.
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Figure 21. Local parallel-move.

To finish the induction, we repeat this step until the strand 𝑠′ does not exist, in which case the strand
s is part of a nonexternal side of a half-hexagon-face lying on the boundary edge 𝐸 ′.

Step 3. The last statement of the proposition follows since each honeycomb-web 𝐻𝑛 attaches to all
three boundary edges of the triangle 𝔗. �

Later, in order to assign coordinates to webs, we will need to consider rungless essential local webs
𝑊𝔗 in a triangle 𝔗 up to a certain equivalence relation. Say that a local parallel-move applied to 𝑊𝔗 is
a move swapping two arcs on the same corner of 𝔗; see Figure 21.

Definition 3.19. Let 𝒲𝔗 denote the collection of rungless essential local webs in the triangle 𝔗. We say
that two local webs 𝑊𝔗 and 𝑊 ′𝔗 in 𝒲𝔗 are equivalent up to corner-ambiguity if they are related by local
parallel-moves. The corner-ambiguity equivalence class of a local web 𝑊𝔗 ∈ 𝒲𝔗 is denoted by [𝑊𝔗],
and the set of corner-ambiguity classes is denoted [𝒲𝔗].

For technical reasons, in §8 we will need the following concept.

Definition 3.20. Given a triangle 𝔗, a holed triangle 𝔗0 is the triangle minus an open disk 𝔗0 =
𝔗 − Int(𝔇0); see the right-hand side of Figure 18 above. Let 𝑊𝔗 be a rungless essential local web in
𝔗, which by Proposition 3.18 consists of a honeycomb-web 𝐻𝑛 together with a collection of disjoint
oriented corner arcs {𝛾𝑖}. The local picture 〈𝑊𝔗〉 associated to 𝑊𝔗 is the multicurve (Definition 3.11)
in the holed triangle 𝔗0 consisting of the corner arcs 𝛾𝑖 together with 3𝑛 oriented arcs {𝛾′𝑗 } disjoint from
each other and from the 𝛾𝑖 and going either all out of or all into the boundary 𝜕𝔇0 of the removed disk,
such that for each boundary edge E of the triangle 𝔗 there are n arcs 𝛾′𝑗 ending on E; see again Figure 18.

4. Good position of a global web

Using the technical results about local webs from §3, we continue studying global webs W on the surface
𝔖. We assume 𝔖 is equipped with an ideal triangulation 𝜆; see §2.1.

4.1. Generic isotopies

Definition 4.1. A web W on 𝔖 is generic with respect to the ideal triangulation 𝜆 if none of its vertices
intersect the edges E of 𝜆, and if in addition W intersects 𝜆 transversally.

Two generic webs W and 𝑊 ′ are generically isotopic if they are isotopic through generic webs; see
Definition 2.3.

Whenever there is an ideal triangulation 𝜆 present, we always assume that ‘web’ means ‘generic
web’. However, we distinguish between isotopies and generic isotopies.

4.2. Minimal position

Recall the notion of two parallel equivalent webs; see Definition 2.3.
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Figure 22. Tightening- and H-moves.

Definition 4.2. Given a web W on the surface 𝔖 and given an edge E of the ideal triangulation 𝜆, the
local geometric intersection number of the web W with the edge E is

𝐼 (𝑊, 𝐸) = min
𝑊 ′
(𝜄(𝑊 ′, 𝐸)) ∈ Z�0 (𝑊 ′ is parallel equivalent to 𝑊),

where 𝜄(𝑊 ′, 𝐸) is the number of intersection points of 𝑊 ′ with E.
The web W is in minimal position with respect to the ideal triangulation 𝜆 if

𝜄(𝑊, 𝐸) = 𝐼 (𝑊, 𝐸) ∈ Z�0 (for all edges 𝐸 of 𝜆).

(If this is the case, W minimizes the intersection number 𝜄(𝑊, 𝜆) with the ideal triangulation 𝜆.)

Let 𝑊 ′ be a web, let 𝔗 be a triangle in the ideal triangulation 𝜆, and let 𝑊 ′𝔗 = 𝑊 ′∩𝔗 be the restriction
of 𝑊 ′ to 𝔗. Suppose that the local web 𝑊 ′𝔗 is not taut; see Definition 3.8. Then there is an edge E of 𝜆
and a compact arc 𝛼 ending on E such that 𝜄(𝑊 ′, 𝐸) > 𝜄(𝑊 ′, 𝛼); see Figure 22. We can then isotope the
part of 𝑊 ′ that is inside the bigon B, which is bounded by 𝛼 and the segment 𝐸 of E delimited by 𝜕𝛼,
into the adjacent triangle, resulting in a new web W. This is called a tightening-move. Similarly, if the
restriction 𝑊 ′𝔗 has an H-face, then we may apply an H-move to push the H into the adjacent triangle;
see again Figure 22.

Note that tightening- and H-moves can be achieved with an isotopy of the web but not a generic
isotopy. Also, by definition, in order to apply an H-move, we assume that the shaded region shown at
the bottom of Figure 22 is empty, namely it does not intersect the web.

We borrow the following result from [FS22, §6] (and give essentially the same proof in the arXiv
version [DS20a] of this article).

Proposition 4.3. If 𝑊 ′ is a nonelliptic web on the surface𝔖, then (by applying tightening-moves) there
exists a nonelliptic web W that is isotopic (in particular, parallel equivalent) to 𝑊 ′ and that is in minimal
position with respect to the ideal triangulation 𝜆; see Definition 2.5.

Moreover, given any two parallel equivalent nonelliptic webs W and 𝑊 ′ in minimal position, then
W can be taken to 𝑊 ′ by a sequence of H-moves, global parallel-moves and generic isotopies; see
Definition 2.3. �

4.3. Split ideal triangulations

A split ideal triangulation 𝜆 with respect to the ideal triangulation 𝜆 is a collection of bi-infinite arcs
obtained by doubling every edge E of 𝜆. In other words, we fatten each edge E into a biangle 𝔅; see
Figure 23.
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Figure 23. Split ideal triangulation.

Figure 24. (Part of) a web in good position.

The notions of generic web and generic isotopy for webs with respect to the split ideal triangulation
𝜆 are the same as those for webs with respect to the ideal triangulation 𝜆. We always assume that webs
are generic with respect to 𝜆.

To avoid cumbersome notation, we identify the triangles 𝔗 of the ideal triangulation 𝜆 to the triangles
𝔗 of the split ideal triangulation 𝜆.

Remark 4.4. For a related usage of split ideal triangulations, in the SL2-case, see [BW11].

4.4. Good position

Definition 4.5. For a fixed split ideal triangulation 𝜆, a web W on 𝔖 is in good position with respect to
𝜆 if the restriction 𝑊𝔅 = 𝑊 ∩𝔅 (resp. 𝑊𝔗 = 𝑊 ∩ 𝔗) of W to each biangle 𝔅 (resp. triangle 𝔗) of 𝜆 is
an essential (resp. rungless essential) local web; see Figure 24.

Note that for a web W in good position, each restriction 𝑊𝔅 to a biangle 𝔅 of 𝜆 is a ladder-web; see
Definition 3.14, Proposition 3.15 and Figures 13 and 15. Also, each restriction 𝑊𝔗 to a triangle 𝔗 of
𝜆 is a (possibly empty) honeycomb-web 𝐻𝑛 together with a collection of disjoint oriented corner arcs;
see Definition 3.17, Proposition 3.18 and Figures 17 and 18.

If W is a web in good position, then a modified H-move carries an H-face in a biangle 𝔅 to an H-face
in an adjacent biangle 𝔅′, thereby replacing W with a new web 𝑊 ′; see Figure 25. If, in addition, W is
nonelliptic, then 𝑊 ′ is also in good position. The nonelliptic condition for W is required to ensure that
the new local web restriction 𝑊 ′𝔅′ is nonelliptic.

Remark 4.6. Of importance will be that the effect in the intermediate triangle 𝔗 of a modified H-move
is to swap two parallel oppositely oriented corner arcs; see again Figure 25.

Once more, the following result is implicit in [Kup96, Lemma 6.5 and the proof of Theorem 6.2, pp.
139-140] (in the setting of an ideal k-polygon 𝔇𝑘 ) and also appears in [FS22, §10].

Proposition 4.7. If 𝑊 ′ is a nonelliptic web on the surface 𝔖, then there exists a nonelliptic web W that
is isotopic (in particular, parallel equivalent) to 𝑊 ′ and that is in good position with respect to the split
ideal triangulation 𝜆.
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Figure 25. Modified H-move.

Figure 26. Enlarging a biangle.

Moreover, given any two parallel equivalent nonelliptic webs W and 𝑊 ′ in good position, then W can
be taken to 𝑊 ′ by a sequence of modified H-moves, global parallel-moves and generic isotopies.

Proof. We will keep track of isotopies by moving the split triangulation 𝜆 instead of webs.
By Proposition 4.3, we can replace 𝑊 ′ with a nonelliptic web W that is isotopic to 𝑊 ′ and that is

in minimal position with respect to the ideal triangulation 𝜆. We proceed to construct the split ideal
triangulation 𝜆.

Let us begin by splitting each edge E of 𝜆 into two edges 𝐸 ′ and 𝐸 ′′ that are very close to E. These
split edges form a preliminary split ideal triangulation 𝜆, whose triangles (resp. biangles) are denoted
by 𝔗 (resp. 𝔅𝐸 ); see the left-hand side of Figure 26.

By definition of minimal position, the restriction 𝑊𝔗 of W to a triangle 𝔗 of the ideal triangulation
𝜆 is taut. Since, in addition, W is nonelliptic, we have that 𝑊𝔗 is essential. If the preliminary split ideal
triangulation 𝜆 is sufficiently close to 𝜆, then the restriction 𝑊𝔗 of W to the triangle 𝔗 ⊆ 𝔗 associated
to 𝔗 is also an essential local web. If all of the local webs 𝑊𝔗 are rungless, then W is in good position
with respect to 𝜆.

Otherwise, assume 𝑊𝔗 has an H-face on an edge of 𝜆, say the edge 𝐸 ′. Then by isotopy we can
enlarge the biangle 𝔅𝐸 until it just envelops this H-face. In other words, we can isotope the edge 𝐸 ′

so that it cuts out this H-face from the triangle 𝔗; see Figure 26. The result of this step is a new split
ideal triangulation 𝜆, retaining the property that the local web restrictions 𝑊𝔗 are essential. Repeating
this process until all of the local webs 𝑊𝔗 are rungless, we obtain the desired split ideal triangulation 𝜆.
Notice it might be the case that there is more than one biangle into which an H-face can be moved; see
again Figure 26.

For the second statement of the proposition, note that if a nonelliptic web W is in good position
with respect to 𝜆, then W is minimal with respect to the ideal triangulation 𝜆 (which, for the sake of
argument, we can take to be contained in 𝜆, that is 𝜆 ⊆ 𝜆). (Indeed, this follows by the proof of the first
part of Proposition 4.3, provided in [FS22, DS20a], and uses the fact that adding a ladder web 𝑊𝔅 to a
rungless essential web 𝑊𝔗 preserves the tautness property.) Similarly, 𝑊 ′ is in minimal position. Thus,
applying the second part of Proposition 4.3, we gather that W can be taken to 𝑊 ′ by a finite sequence
of H-moves, global parallel-moves and generic isotopies. The result follows by the definition of good
position and modified H-moves. �
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Figure 27. Dotted ideal triangulations.

5. Global coordinates for nonelliptic webs

Recall that [𝒲𝔖] denotes the collection of parallel equivalence classes of nonelliptic webs on the surface
𝔖; see just below Definition 2.5. Our goal in this section is to define a function ΦFG

𝜆 : [𝒲𝔖] → Z
𝑁
�0

depending on the ideal triangulation 𝜆, where 𝑁 = −8𝜒(𝔖) > 0 is a positive integer depending only on
the topology of 𝔖. In §6-8, we characterize the image of ΦFG

𝜆 and prove that it is injective. We think of
ΦFG
𝜆 as putting global coordinates on [𝒲𝔖].

5.1. Dotted ideal triangulations

Consider a surface �̂� = 𝔖 or = 𝔗 equipped with an ideal triangulation 𝜆, where, in this subsection,
𝜆 = 𝔗 when �̂� = 𝔗. The associated dotted ideal triangulation is the pair consisting of 𝜆 together with
𝑁 ′ = 𝑁 or = 7 distinct dots attached to the one- and two-cells of 𝜆, where there are two edge-dots
attached to each one-cell and there is one triangle-dot attached to each two-cell; see Figure 27. Given
a triangle 𝔗 of 𝜆 and an edge E of 𝔗, it makes sense to talk about the left-edge-dot and right-edge-
dot as viewed from 𝔗; see Figure 27b. Choosing an ordering for the 𝑁 ′ dots lying on the dotted ideal
triangulation 𝜆 defines a one-to-one correspondence between functions {dots} → Z and elements of
Z𝑁

′ . We always assume that such an ordering has been chosen.

5.2. Local coordinate functions

Consider a dotted ideal triangle 𝔗; see Figure 27b. Recall (Definition 3.19) that 𝒲𝔗 denotes the
collection of rungless essential local webs 𝑊𝔗 in 𝔗 and that [𝒲𝔗] denotes the set of corner-ambiguity
classes [𝑊𝔗] of local webs 𝑊𝔗 in 𝒲𝔗 .

Definition 5.1. An integer local coordinate function or just local coordinate function,

Φ𝔗 : 𝒲𝔗 −→ Z
7

is a function assigning to each local web 𝑊𝔗 in 𝒲𝔗 one integer coordinate per dot lying on the dotted
triangle 𝔗, satisfying the following properties:

1. if a local web 𝑊𝔗 in 𝒲𝔗 can be written 𝑊𝔗 = 𝑊 ′𝔗 �𝑊 ′′𝔗 as the disjoint union of two local webs, each
in 𝒲𝔗 , then

Φ𝔗 (𝑊𝔗) = Φ𝔗 (𝑊
′
𝔗) +Φ𝔗 (𝑊

′′
𝔗 ) ∈ Z7;
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Figure 28. Property (1): 𝑎𝑖 = 𝑎′𝑖 + 𝑎′′𝑖 .

Figure 29. Properties (2) and (3).

2. for an edge E of 𝔗, the ordered pair of coordinates (𝑎𝐿𝐸 , 𝑎𝑅𝐸 ) of the function Φ𝔗 assigned to the left-
and right-edge-dots lying on E, respectively, depends only on the pair (𝑛in

𝐸 , 𝑛out
𝐸 ) of numbers of in-

and out-strands of the local web 𝑊𝔗 on the edge E; moreover, different pairs (𝑛in
𝐸 , 𝑛out

𝐸 ) yield different
pairs of coordinates (𝑎𝐿𝐸 , 𝑎𝑅𝐸 );

3. there are two symmetries; the first is that Φ𝔗 respects the rotational symmetry of the triangle (see
Remark 5.2 below for a more precise statement), and the second is that if the numbers 𝑛in

𝐸 and 𝑛out
𝐸

of in- and out-strands on an edge E are exchanged, then the coordinates 𝑎𝐿𝐸 and 𝑎𝑅𝐸 are exchanged as
well;

4. observe, by property (1), the function Φ𝔗 (𝑊𝔗) = Φ𝔗 (𝑊
′
𝔗) agrees on local webs 𝑊𝔗 and 𝑊 ′𝔗 in 𝒲𝔗

representing the same corner-ambiguity class [𝑊𝔗] = [𝑊 ′𝔗] in [𝒲𝔗] (because 𝑊𝔗 and 𝑊 ′𝔗 differ
only by permutations of oriented corner arcs), thus inducing

Φ𝔗 : [𝒲𝔗] −→ Z
7,

also called Φ𝔗; we require that this induced function Φ𝔗 is an injection.

The coordinates assigned by Φ𝔗 to edge-dots (resp. triangle-dots) are called edge-coordinates (resp.
triangle-coordinates).

We illustrate properties (1), (2), (3) in Figures 28 and 29.

Remark 5.2 (from pictures to coordinates). Let us be more precise about what we mean by the first
symmetry of property (3), which will also allow us the opportunity to give a clearer explanation of the
meaning of pictures such as those shown in the figures below. We will use the picture displayed on the
left-hand side of Figure 28 as a reference. When we draw such a picture, we have implicitly selected a
preferred vertex of the triangle 𝔗, say the vertex appearing at the top of the picture; write 𝔗0 to indicate
this extra data. A tuple (𝑎1, 𝑎2, . . . , 𝑎7) ∈ Z

7 defines a function {dots of 𝔗0} → Z by sending the i-th
dot to 𝑎𝑖 , as indicated in the picture. If this tuple is associated to a local web 𝑊𝔗0 , then we say this
tuple is the value Φ𝔗0 (𝑊𝔗0 ) of the local coordinate function evaluated on the web 𝑊𝔗0 . The rotational
symmetry of property (3) says that if 𝑊 ′𝔗0

is the different local web obtained by rotating 𝑊𝔗0 by 2𝜋/3
radians clockwise, with coordinates Φ𝔗0 (𝑊

′
𝔗0
) = (𝑎′1, 𝑎

′
2, . . . , 𝑎

′
7), then 𝑎′1 = 𝑎5, 𝑎′2 = 𝑎6, 𝑎′3 = 𝑎1,

𝑎′4 = 𝑎2, 𝑎′5 = 𝑎3, 𝑎′6 = 𝑎4 and 𝑎′7 = 𝑎7. Lastly, we define Φ𝔗 (𝑊𝔗) = Φ𝔗0 (𝑊𝔗0 ), and the rotational
symmetry implies that this is independent of the choice of preferred vertex.
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Figure 30. Fock–Goncharov local coordinate function ΦFG
𝔗 .

5.3. Local coordinates from Fock–Goncharov theory

We define an explicit Fock–Goncharov local coordinate function ΦFG
𝔗 : 𝒲𝔗 → Z

7
�0 valued in nonnega-

tive integers.
By property (1) in Definition 5.1, it suffices to define ΦFG

𝔗 on connected local webs in 𝒲𝔗 . By
Proposition 3.18, these come in one of exactly eight types 𝐻out

𝑛 , 𝐻in
𝑛 , 𝑅1, 𝐿1, 𝑅2, 𝐿2, 𝑅3, 𝐿3 illustrated

in Figure 30. In the figure, note that in the two top left triangles we have, for visibility, drawn the
local pictures

〈
𝐻out
𝑛

〉
and

〈
𝐻in
𝑛

〉
as a shorthand for the actual n-out-honeycomb-web 𝐻out

𝑛 and n-in-
honeycomb-web 𝐻in

𝑛 , respectively; see Definition 3.20. It is immediate that ΦFG
𝔗 satisfies property (3)

and the first part of (2). The second part of (2) follows by the invertibility of the matrix
( 2 1

1 2
)
. We will

check property (4) in §6.

Remark 5.3.
1. Xie [Xie13] writes down the same local coordinates (up to a multiplicative factor of 3) for 𝑅1, 𝐿1,

𝑅2, 𝐿2, 𝑅3, 𝐿3 as well as the one-honeycomb-webs 𝐻out
1 and 𝐻in

1 .
2. The definition of these local coordinates can be checked experimentally by studying the highest terms

of the Fock–Goncharov SL3-trace polynomials; see the introduction as well as [Kim20, Proposition
5.80] (and [Kim21, Proposition 3.15]). Moreover, it appears that these coordinates fit into a broader
geometric context [SWZ20, Theorem 8.22(2)].

3. The coordinates in the SL2-setting are geometric intersection numbers; see the introduction. In
contrast, the SL3-coordinates depend on the choice of orientation of 𝔖.

5.4. Global coordinates from local coordinate functions

Assume that, for an abstract dotted triangle 𝔗, we have chosen an arbitrary local coordinate function
Φ𝔗 : 𝒲𝔗 → Z

7. We show that this induces a global coordinate function Φ𝜆 : [𝒲𝔖] → Z
𝑁 that is well

adapted to the choice of Φ𝔗 . The argument uses only properties (1), the first part of (2) and (3) of Φ𝔗 .
As a guiding example of the construction to come, reference Figure 33, which uses the Fock–

Goncharov local coordinate function ΦFG
𝔗 . This is an example on the once punctured torus𝔖. Note that

the web W in the example has one hexagon-face. All of the other components of 𝑊𝑐 are not contractible.
So W is nonelliptic.

Step 1. Consider the split ideal triangulation 𝜆 (§4.3). We put dots on each triangle 𝔗 of 𝜆. The chosen
local coordinate function Φ𝔗 can be associated to each of these dotted triangles 𝔗; see the left-hand
side of Figure 31.
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Figure 31. Local coordinates Φ𝔗 attached to the triangles 𝔗 of 𝜆 (left), and the corresponding global
coordinates Φ𝜆 attached to 𝜆 (right).

Figure 32. Local coordinates attached to a biangle: 𝑎𝐿𝐸′ = 𝑎𝑅𝐸′′ and 𝑎𝑅𝐸′ = 𝑎𝐿𝐸′′ .

Figure 33. Tropical Fock–Goncharov A-coordinates for a nonelliptic web.

Step 2. Fix a nonelliptic web W on 𝔖 that is in good position (Definition 4.5) with respect to the
split ideal triangulation 𝜆. We assign to W one integer coordinate per dot lying on the dotted ideal
triangulation 𝜆, namely an element Φ𝜆(𝑊) in Z𝑁 .

By good position, the local web restriction 𝑊𝔗 = 𝑊∩𝔗 is in 𝒲𝔗 for each triangle 𝔗 of 𝜆. So, we may
evaluate the local coordinate function Φ𝔗 on 𝑊𝔗 , obtaining coordinates for each of the seven dots lying
on the dotted triangle 𝔗 of 𝜆. For instance, in this way we assign coordinates to all of the dots shown on
the left-hand side of Figure 31 above. We claim that these coordinates glue together along each biangle
𝔅 of 𝜆 in such a way that we obtain one coordinate per dot lying on the dotted ideal triangulation 𝜆; see
Figure 31.

Indeed, suppose 𝔅 is a biangle between two triangles 𝔗′ and 𝔗′′ of 𝜆. Let 𝐸 ′ and 𝐸 ′′ be the
corresponding boundary edges of𝔅, and let 𝑎𝐿𝐸′ and 𝑎𝑅𝐸′ (resp. 𝑎𝐿𝐸′′ and 𝑎𝑅𝐸′′) be the coordinates assigned
by Φ𝔗′ (resp. Φ𝔗′′) to the left- and right-edge-dots, respectively, lying on 𝐸 ′ (resp. 𝐸 ′′) as viewed from
𝔗′ (resp. 𝔗′′). Also, denote by 𝑛in

𝐸′ and 𝑛out
𝐸′ (resp. 𝑛in

𝐸′′ and 𝑛out
𝐸′′) the numbers of in- and out-strands of

the local web restriction 𝑊𝔗′ (resp. 𝑊𝔗′′) lying on the edge 𝐸 ′ (resp. 𝐸 ′′); see Figure 32.
Since, by good position, the restriction 𝑊𝔅 = 𝑊 ∩ 𝔅 is a ladder-web, we have 𝑛out

𝐸′ = 𝑛in
𝐸′′ and

𝑛in
𝐸′ = 𝑛out

𝐸′′ . It follows immediately from properties (3) and the first part of (2) that the coordinates across
from each other agree 𝑎𝐿𝐸′ = 𝑎𝑅𝐸′′ and 𝑎𝑅𝐸′ = 𝑎𝐿𝐸′′ . So, we may glue together the two pairs of coordinates
into two coordinates lying on the edge E of 𝜆, as desired.
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Step 3. For a general nonelliptic web 𝑊 ′ on 𝔖, by the first part of Proposition 4.7 there exists a
nonelliptic web W that is parallel equivalent to 𝑊 ′ and that is in good position with respect to the split
ideal triangulation 𝜆. Define Φ𝜆 (𝑊 ′) = Φ𝜆(𝑊) in Z𝑁 .

To show Φ𝜆 (𝑊 ′) is well defined, suppose 𝑊2 is another web as W. By the second part of Proposition
4.7, the nonelliptic webs W and 𝑊2 are related by a sequence of modified H-moves and global parallel-
moves. The effect of either of these moves on a web in good position is to swap, possibly many, parallel
oppositely oriented corner arcs in the triangles 𝔗 of 𝜆; recall Figures 25 and 3 above, respectively. By
property (1) of Φ𝔗 , we have Φ𝜆 (𝑊) = Φ𝜆(𝑊2).

From this point on, our approach diverges from that in [FS22]. In particular, our coordinates are
different from theirs.

Definition 5.4. The Fock–Goncharov global coordinate function

ΦFG
𝜆 : [𝒲𝔖] −→ Z

𝑁
�0

is the well defined global coordinate function on [𝒲𝔖], valued in nonnegative integers, induced by the
Fock–Goncharov local coordinate function ΦFG

𝔗 . In §7-8, we prove:

Proposition 5.5. The Fock–Goncharov global coordinate function ΦFG
𝜆 is an injection of sets.

Remark 5.6. Proposition 5.5 is valid for any global coordinate function Φ𝜆 : [𝒲𝔖] → Z
𝑁 induced by

a local coordinate function Φ𝔗 : [𝒲𝔗] → Z
7. The proof is the same as the one we will give for ΦFG

𝜆
and uses properties (4) and the second part of (2) in Definition 5.1.

Remark 5.7 (relation to Fock–Goncharov theory; see [DS20b] for a more detailed discussion). To a
surface-with-boundary �̂� (see §9 below), Fock–Goncharov/Goncharov–Shen [FG06, GS15] associated
two dual moduli spaces APGL3 ,�̂�

and ℛSL𝑛 ,�̂�
, both of which are certain generalizations of the character

variety. They are dual in the sense of Fock–Goncharov–Shen duality, which in particular says that the
positive tropical integer points A+

PGL3 ,�̂�
(Z𝑡 ) of the A-moduli space index a natural linear basis for the

ring 𝒪(ℛSL𝑛 ,�̂�
) of regular functions on the generalized character variety. Here, the positivity is taken

with respect to the tropicalized Goncharov–Shen potential.
An ideal triangulation 𝜆 determines a coordinate chart A+

PGL3 ,�̂�
(Z𝑡 )𝜆 of A+

PGL3 ,�̂�
(Z𝑡 ). More con-

cretely, in coordinates the positivity condition with respect to the tropicalized Goncharov–Shen potential
translates to the Knutson–Tao rhombus inequalities (see §6 below), and in this way the coordinate chart
A+

PGL3 ,�̂�
(Z𝑡 )𝜆 � 𝒞+𝜆 becomes identified with the Knutson–Tao cone 𝒞+𝜆 . If 𝜆′ is another ideal trian-

gulation, the coordinate change map A+
PGL3 ,�̂�

(Z𝑡 )𝜆 → A+
PGL3 ,�̂�

(Z𝑡 )𝜆′ takes the form of a tropicalized
A-coordinate cluster transformation. For these reasons, Theorems 1.1 and 1.2 can be interpreted as say-
ing that the web coordinates constructed above provide a natural identification between the set [𝒲𝔖] of
parallel equivalence classes of rungless essential webs (see §9 below) and the positive tropical integer
points A+

PGL3 ,�̂�
(Z𝑡 ).

As another concrete manifestation of Fock–Goncharov duality, when the trace function Tr𝑊 on the
SL3-character variety associated to a basis web W is written as a polynomial in the Fock–Goncharov X -
coordinates, then this polynomial has a unique highest term, whose exponents are precisely the tropical
A-coordinates assigned to the web W; see §9.3 below for more precise statements.

For a discussion of previous works motivating our construction, see the introduction as well as
Remarks 3.10(2), 4.4, 5.3(1, 2), 6.5(1), 9.2, 9.12(2).

6. Knutson–Tao cone

For 𝑁 = −8𝜒(𝔖) > 0, we construct a subset 𝒞+𝜆 ⊆ Z
𝑁
�0 that we will show, in §7-8, is the image

𝒞+𝜆 = ΦFG
𝜆 ([𝒲𝔖]) of the mapping ΦFG

𝜆 : [𝒲𝔖] → Z
𝑁
�0 constructed in §5. The subset 𝒞+𝜆 is called the
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Knutson–Tao cone associated to the ideal triangulation 𝜆, and is defined by finitely many Knutson–Tao
rhombus inequalities and modulo 3 congruence conditions.

6.1. Integer cones

Definition 6.1. An integer cone, or just cone, 𝒞 is a submonoid of Z𝑛 for some positive integer n. In
other words, 𝒞 ⊆ Z𝑛 is a subset that contains 0 and is closed under addition.

A partition of 𝒞 is a decomposition 𝒞 = 𝒞1 �𝒞2 � · · · �𝒞𝑘 as a disjoint union of subsets.
A positive integer cone, or just positive cone, 𝒞+ is a cone that is contained in Z𝑛�0.

We define notions of independence for cones.

Definition 6.2. Let 𝒞 ⊆ Z𝑛 ⊆ Q𝑛 be a cone, and let Ω ⊆ Q be a subset such that 0 ∈ Ω. Let
𝑐1, 𝑐2, . . . , 𝑐𝑘 be a collection of cone points in 𝒞. We say that the cone points {𝑐𝑖}

1. span the cone 𝒞 if every cone point 𝑐 ∈ 𝒞 can be written as a Z�0-linear combination of the cone
points {𝑐𝑖};

2. are weakly independent over Ω if

𝜔1𝑐1 + · · · + 𝜔𝑘𝑐𝑘 = 0 ∈ Q𝑛 =⇒ 𝜔1 = · · · = 𝜔𝑘 = 0 (𝜔1, . . . , 𝜔𝑘 ∈ Ω);

3. form a weak basis of 𝒞 if they span 𝒞 and are weakly independent over Ω = Z�0 ⊆ Q;
4. are strongly independent over Ω if

𝜔1𝑐1 + · · · + 𝜔𝑘𝑐𝑘 = 𝜔′1𝑐1 + · · · + 𝜔′𝑘𝑐𝑘 ∈ Q
𝑛 =⇒ 𝜔1 = 𝜔′1, . . . , 𝜔𝑘 = 𝜔′𝑘 (𝜔𝑖 , 𝜔

′
𝑗 ∈ Ω).

Note:

◦ strongly independent over Ω =⇒ weakly independent over Ω;
◦ strongly independent over Z�0⇐⇒weakly independent over Z⇐⇒ linearly independent overQ (the

usual definition from linear algebra).

The following technical fact is immediate from the definitions.

Lemma 6.3. Let 𝒞,𝒞′ ⊆ Z𝑛 be two cones. Consider a Z�0-linear bijection 𝜓 : 𝒞′ → 𝒞 that extends
to a Q-linear isomorphism 𝜓 : Q𝑛 → Q𝑛. Let {𝑐𝑖} be cone points of 𝒞, and let {𝑐′𝑖} be cone points of
𝒞′, such that 𝜓(𝑐′𝑖) = 𝑐𝑖 . Then,

1. if the cone points {𝑐′𝑖} span 𝒞′, then the cone points {𝑐𝑖} span 𝒞;
2. if the {𝑐′𝑖} are weakly independent over Z�0, then so are the {𝑐𝑖};
3. therefore, if the {𝑐′𝑖} form a weak basis of 𝒞′, then the {𝑐𝑖} form a weak basis of 𝒞;
4. if the {𝑐′𝑖} are strongly independent over Z�0, then so are the {𝑐𝑖};
5. the function 𝜓 sends partitions of 𝒞′ to partitions of 𝒞. �

6.2. Local Knutson–Tao cone

Let 𝔗 be a dotted ideal triangle (§5.1); recall Figure 27b above. In this section, we are going to order
the dots on 𝔗 so that if the dots are labeled as in the left-hand side of Figure 34, then a point 𝑐 ∈ Z7

will be written

𝑐 = (𝑎11, 𝑎12, 𝑎21, 𝑎22, 𝑎31, 𝑎32, 𝑎) ∈ Z7. (*)

Let Z/3 ⊆ Q denote the set of integer thirds within the rational numbers, namely Z/3 is the image of
the map Z→ Q sending 𝑛 ↦→ 𝑛/3. Note that Z ⊆ Z/3.
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Figure 34. Rhombus numbers.

To each point 𝑐 ∈ Z7, as in Equation (*), associate a nine-tuple of rhombus numbers

𝑟 (𝑐) = (𝑟11, 𝑟12, 𝑟13, 𝑟21, 𝑟22, 𝑟23, 𝑟31, 𝑟32, 𝑟33) ∈ (Z/3)9

by the linear equations (see Figure 34 above)

𝑟12 = (𝑎 + 𝑎32 − 𝑎11 − 𝑎31)/3, 𝑟11 = (𝑎22 + 𝑎31 − 𝑎 − 0)/3,

𝑟13 = (𝑎21 + 𝑎 − 𝑎12 − 𝑎22)/3;

𝑟22 = (𝑎 + 𝑎12 − 𝑎21 − 𝑎11)/3, 𝑟21 = (𝑎32 + 𝑎11 − 𝑎 − 0)/3,

𝑟23 = (𝑎31 + 𝑎 − 𝑎22 − 𝑎32)/3;

𝑟32 = (𝑎 + 𝑎22 − 𝑎31 − 𝑎21)/3, 𝑟31 = (𝑎12 + 𝑎21 − 𝑎 − 0)/3,

𝑟33 = (𝑎11 + 𝑎 − 𝑎32 − 𝑎12)/3.

Definition 6.4. The local Knutson–Tao positive cone, or just local Knutson–Tao cone or local cone, 𝒞+𝔗
associated to the dotted ideal triangle 𝔗 is defined by

𝒞+𝔗 =
{
𝑐 ∈ Z7; 𝑟 (𝑐) = (𝑟11, 𝑟12, 𝑟13, 𝑟21, 𝑟22, 𝑟23, 𝑟31, 𝑟32, 𝑟33) ∈ Z9

�0 ⊆ (Z/3)
9}.

By linearity, this indeed defines a cone contained in Z7. We will prove below in this subsection that
𝒞+𝔗 ⊆ Z

7
�0 is, in fact, a positive cone.

Remark 6.5.

1. The inequalities 3𝑟𝑖 𝑗 � 0 are known as the Knutson–Tao rhombus inequalities; see [KT99, Appendix
2] and [GS15, §3.1]. Note that 3𝑟𝑖 𝑗 is always in Z by definition. We impose the additional modulo 3
congruence condition that the 𝑟𝑖 𝑗 are integers. This is analogous to the parity condition imposed in
[Foc97, §3.1] in the case of SL2.

2. By the proof of Proposition 6.6 below, we could just as well have taken rational coefficients 𝑐 ∈ Q7

in Definition 6.4 without changing the resulting cone 𝒞+𝔗 ⊆ Z
7
�0 ⊆ Q

7. That is, any rational solution
to 𝑟 (𝑐) ∈ Z9

�0 is, in fact, a nonnegative integer solution.

To see that 𝒞+𝔗 is nontrivial, one checks that the image ΦFG
𝔗 (𝒲𝔗) of the Fock-Goncharov local

coordinate function ΦFG
𝔗 : 𝒲𝔗 → Z

7
�0 (§5.3) lies in the local cone ΦFG

𝔗 (𝒲𝔗) ⊆ 𝒞+𝔗 . By property (1)
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Figure 35. Linear dependence relation over Z.

in Definition 5.1, it suffices to check this on the connected local webs in 𝒲𝔗; recall Figure 30 above.
Specifically, using the convention in Equation (*), we have

𝑐(𝑅1) = ΦFG
𝔗 (𝑅1) = (0, 0, 1, 2, 2, 1, 1), 𝑐(𝐿1) = ΦFG

𝔗 (𝐿1) = (0, 0, 2, 1, 1, 2, 2),
𝑐(𝑅2) = ΦFG

𝔗 (𝑅2) = (2, 1, 0, 0, 1, 2, 1), 𝑐(𝐿2) = ΦFG
𝔗 (𝐿2) = (1, 2, 0, 0, 2, 1, 2),

𝑐(𝑅3) = ΦFG
𝔗 (𝑅3) = (1, 2, 2, 1, 0, 0, 1), 𝑐(𝐿3) = ΦFG

𝔗 (𝐿3) = (2, 1, 1, 2, 0, 0, 2),
𝑐(𝐻in

𝑛 ) = ΦFG
𝔗 (𝐻

in
𝑛 ) = (2𝑛, 𝑛, 2𝑛, 𝑛, 2𝑛, 𝑛, 3𝑛),

𝑐(𝐻out
𝑛 ) = ΦFG

𝔗 (𝐻
out
𝑛 ) = (𝑛, 2𝑛, 𝑛, 2𝑛, 𝑛, 2𝑛, 3𝑛).

The associated nine-tuples of rhombus numbers are

𝑟 (𝑐(𝑅1)) = (1, 0, 0, 0, 0, 0, 0, 0, 0), 𝑟 (𝑐(𝐿1)) = (0, 1, 1, 0, 0, 0, 0, 0, 0),
𝑟 (𝑐(𝑅2)) = (0, 0, 0, 1, 0, 0, 0, 0, 0), 𝑟 (𝑐(𝐿2)) = (0, 0, 0, 0, 1, 1, 0, 0, 0),
𝑟 (𝑐(𝑅3)) = (0, 0, 0, 0, 0, 0, 1, 0, 0), 𝑟 (𝑐(𝐿3)) = (0, 0, 0, 0, 0, 0, 0, 1, 1),
𝑟 (𝑐(𝐻in

𝑛 )) = (0, 0, 𝑛, 0, 0, 𝑛, 0, 0, 𝑛),
𝑟 (𝑐(𝐻out

𝑛 )) = (0, 𝑛, 0, 0, 𝑛, 0, 0, 𝑛, 0).

By rank considerations, the eight cone points 𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3), 𝑐(𝐻in
𝑛 ),

𝑐(𝐻out
𝑛 ) have a linear dependence relation over Z. For instance (see Figure 35),

𝑐(𝐻out
𝑛 ) + 𝑐(𝐻in

𝑛 ) = 𝑛(𝑐(𝐿1) + 𝑐(𝐿2) + 𝑐(𝐿3)) ∈ 𝒞+𝔗 .

Nevertheless, we can say the following:

Proposition 6.6. The collection of eight cone points

𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3), 𝑐(𝐻
in
1 ), 𝑐(𝐻

out
1 ) ∈ ΦFG

𝔗 (𝒲𝔗) ⊆ 𝒞+𝔗

forms a weak basis of the Knutson–Tao local cone 𝒞+𝔗 .
Among these eight cone points, the seven points

𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3), 𝑐(𝐻
in
1 )

are strongly independent over Z�0, and the seven points

𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3), 𝑐(𝐻
out
1 )

https://doi.org/10.1017/fms.2023.120 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.120


Forum of Mathematics, Sigma 27

are strongly independent over Z�0. Moreover, each cone point c in 𝒞+𝔗 can be uniquely expressed in
exactly one of the following three forms:

𝑐 = 𝑛1𝑐(𝑅1) + 𝑛2𝑐(𝐿1) + · · · + 𝑛6𝑐(𝐿3),

𝑐 = 𝑛1𝑐(𝑅1) + 𝑛2𝑐(𝐿1) + · · · + 𝑛6𝑐(𝐿3) + 𝑛𝑐(𝐻in
1 ),

𝑐 = 𝑛1𝑐(𝑅1) + 𝑛2𝑐(𝐿1) + · · · + 𝑛6𝑐(𝐿3) + 𝑛𝑐(𝐻out
1 ), (𝑛𝑖 ∈ Z�0, 𝑛 ∈ Z>0).

Because the spanning set 𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3), 𝑐(𝐻
in
1 ), 𝑐(𝐻

out
1 ) consists of pos-

itive points, we immediately obtain:

Corollary 6.7. The local Knutson–Tao cone satisfies the property that 𝒞+𝔗 = ΦFG
𝔗 (𝒲𝔗) ⊆ Z

7
�0. In

particular, 𝒞+𝔗 is a positive cone. �

Corollary 6.8. The Fock–Goncharov local coordinate function ΦFG
𝔗 : 𝒲𝔗 → 𝒞+𝔗 satisfies property

(4) in Definition 5.1, namely, the induced function ΦFG
𝔗 : [𝒲𝔗] ↩→ 𝒞+𝔗 , defined on the collection of

corner-ambiguity classes [𝑊𝔗] of local webs 𝑊𝔗 in 𝒲𝔗 , is an injection.

Proof. Assume ΦFG
𝔗 (𝑊𝔗) = ΦFG

𝔗 (𝑊
′
𝔗) ∈ 𝒞+𝔗 . This cone point falls into one of the three families in

Proposition 6.6. For the sake of argument, suppose

ΦFG
𝔗 (𝑊𝔗) = ΦFG

𝔗 (𝑊
′
𝔗) = 𝑛1𝑐(𝑅1) + 𝑛2𝑐(𝐿1) + · · · + 𝑛6𝑐(𝐿3) + 𝑛𝑐(𝐻in

1 ) (𝑛𝑖 ∈ Z�0, 𝑛 ∈ Z>0).

Note that 𝑛𝑐(𝐻in
1 ) = 𝑐(𝐻in

𝑛 ) in𝒞+𝔗; see Figure 30. By the uniqueness property in Proposition 6.6 together
with property (1) in Definition 5.1, we gather that 𝑊𝔗 and 𝑊 ′𝔗 have 1 +

∑6
𝑖=1 𝑛𝑖 connected components,

one of which is a n-in-honeycomb 𝐻in
𝑛 , and 𝑛1 (resp. 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) of which are corner arcs 𝑅1

(resp. 𝐿1, 𝑅2, 𝐿2, 𝑅3, 𝐿3). The only ambiguity is how these corner arcs are permuted on their respective
corners, that is [𝑊𝔗] = [𝑊 ′𝔗] in [𝒲𝔗]. �

Proof of Proposition 6.6. Define two subsets (𝒞+𝔗)in and (𝒞+𝔗)
out of 𝒞+𝔗 by

(𝒞+𝔗)
in = SpanZ�0

(𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3)) + Z�0 · 𝑐(𝐻
in
1 ), (#)

(𝒞+𝔗)
out = SpanZ�0

(𝑐(𝑅1), 𝑐(𝐿1), 𝑐(𝑅2), 𝑐(𝐿2), 𝑐(𝑅3), 𝑐(𝐿3)) + Z>0 · 𝑐(𝐻
out
1 ). (##)

(Here, 𝐴 + 𝐵 = {𝑎 + 𝑏; 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.) Put

𝑐1 = 𝑐(𝑅1), 𝑐2 = 𝑐(𝐿1), 𝑐3 = 𝑐(𝑅2), 𝑐4 = 𝑐(𝐿2),

𝑐5 = 𝑐(𝑅3), 𝑐6 = 𝑐(𝐿3), 𝑐7 = 𝑐(𝐻in
1 ), 𝑐8 = 𝑐(𝐻out

1 ).

By Lemma 6.3, with 𝒞 = 𝒞+𝔗 , in order to prove Proposition 6.6 it suffices to establish:

Claim 6.9. There exists

1. a cone 𝒞′ ⊆ Z7;
2. a collection of cone points 𝑐′1, . . . , 𝑐

′
8 in 𝒞′;

3. a partition 𝒞′ = (𝒞′)>0 � (𝒞′)<0;
4. a Z�0-linear bijection 𝜓 : 𝒞′ → 𝒞+𝔗;
5. an extension 𝜓 of 𝜓 to a Q-linear isomorphism 𝜓 : Q7 → Q7;

such that

1. we have 𝜓(𝑐′𝑖) = 𝑐𝑖;
2. we have 𝜓((𝒞′)>0) = (𝒞+𝔗)

in and 𝜓((𝒞′)<0) = (𝒞+𝔗)
out;

3. the eight cone points 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
7, 𝑐
′
8 form a weak basis of the cone 𝒞′;
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4. the seven cone points 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
7 are strongly independent over Z�0;

5. the seven cone points 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
8 are strongly independent over Z�0.

We prove the claim. Define 𝒞′ ⊆ Z6
�0 × Z ⊆ Z

7 by

𝒞′ =
{
(𝑟11, 𝑟12, 𝑟21, 𝑟22, 𝑟31, 𝑟32, 𝑥) ∈ Z

6
�0 × Z; −𝑥 � min(𝑟12, 𝑟22, 𝑟32)

}
. (**)

It follows from the definition that 𝒞′ is a cone. Put

𝑐′1 = (1, 0, 0, 0, 0, 0, 0), 𝑐′2 = (0, 1, 0, 0, 0, 0, 0),
𝑐′3 = (0, 0, 1, 0, 0, 0, 0), 𝑐′4 = (0, 0, 0, 1, 0, 0, 0),
𝑐′5 = (0, 0, 0, 0, 1, 0, 0), 𝑐′6 = (0, 0, 0, 0, 0, 1, 0),
𝑐′7 = (0, 0, 0, 0, 0, 0, 1), 𝑐′8 = (0, 1, 0, 1, 0, 1,−1).

One checks that 𝑐′1, . . . , 𝑐
′
8 are in 𝒞′. Define

(𝒞′)>0 = 𝒞′ ∩
(
Z6
�0 × Z�0

)
, (𝒞′)<0 = 𝒞′ ∩

(
Z6
�0 × Z<0

)
.

Then 𝒞′ = (𝒞′)>0 � (𝒞′)<0 is a partition.
First, we show 𝑐′1, . . . , 𝑐

′
6, 𝑐
′
7, 𝑐
′
8 spans 𝒞′. We see that

(𝒞′)>0 = SpanZ�0

(
𝑐′1, . . . , 𝑐

′
6
)
+ Z�0 · 𝑐

′
7

(
= Z6

�0 × Z�0

)
. (†)

If 𝑐′ ∈ (𝒞′)<0, then its last coordinate is 𝑥 � −1. Since −𝑥 > 0 and −𝑥 � min(𝑟12, 𝑟22, 𝑟32),

𝑐′ =
(
𝑟11,−𝑥 + 𝑟 ′12, 𝑟21,−𝑥 + 𝑟 ′22, 𝑟31,−𝑥 + 𝑟 ′32,−𝑥 · −1

)
for some 𝑟11, 𝑟

′
12, 𝑟21, 𝑟

′
22, 𝑟31, 𝑟

′
32 ∈ Z�0 and −𝑥 ∈ Z>0. That is,

𝑐′ = 𝑟11𝑐
′
1 + 𝑟 ′12𝑐

′
2 + 𝑟21𝑐

′
3 + 𝑟 ′22𝑐

′
4 + 𝑟31𝑐

′
5 + 𝑟 ′32𝑐

′
6 + (−𝑥)𝑐

′
8 ∈ SpanZ�0

(
𝑐′1, . . . , 𝑐

′
6
)
+ Z>0 · 𝑐

′
8.

Thus,

(𝒞′)<0 = SpanZ�0

(
𝑐′1, . . . , 𝑐

′
6
)
+ Z>0 · 𝑐

′
8, (††)

where the ⊇ containment follows since SpanZ�0
(𝑐′1, . . . , 𝑐

′
6) + Z>0 · 𝑐

′
8 ⊆ Z

6
�0 × Z<0.

Next, we show 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
7, 𝑐
′
8 are weakly independent over Z�0. Indeed, if 𝑛1𝑐

′
1+· · ·+𝑛7𝑐

′
7+𝑛8𝑐

′
8 =

0, then 𝑛1 = 𝑛3 = 𝑛5 = 0 and 𝑛2 + 𝑛8, 𝑛4 + 𝑛8, 𝑛6 + 𝑛8, 𝑛7 − 𝑛8 = 0. Since all 𝑛𝑖 ∈ Z�0, it follows that
𝑛2 = 𝑛4 = 𝑛6 = 𝑛8 = 0, and so 𝑛7 = 𝑛8 = 0, as desired.

We gather that 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
7, 𝑐
′
8 form a weak basis of 𝒞′.

Next, we show 𝑐′1, . . . , 𝑐
′
6, 𝑐
′
7 are strongly independent over Z�0. This is equivalent to being linearly

independent over Q, which follows from the definitions. Similarly, it follows from the definitions that
𝑐′1, . . . , 𝑐

′
6, 𝑐
′
8 are strongly independent over Z�0.

We now define aZ�0-linear bijection 𝜑 : 𝒞+𝔗 → 𝒞′. Its inverse will be the desired Z�0-linear bijection
𝜓 = 𝜑−1 : 𝒞′ → 𝒞+𝔗 . Let c be a cone point in 𝒞+𝔗 , written as in Equation (*). Put

𝑥 = (𝑎11 − 𝑎12 + 𝑎21 − 𝑎22 + 𝑎31 − 𝑎32)/3

= 𝑟13 − 𝑟12 = 𝑟23 − 𝑟22 = 𝑟33 − 𝑟32

� −𝑟12 and − 𝑟22 and − 𝑟32,
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Figure 36. Four ways to view the tropical Fock–Goncharov X -coordinate.

where the rhombus numbers 𝑟𝑖 𝑗 are in Z�0 since 𝑐 ∈ 𝒞+𝔗; see Figure 36 (we think of x as the tropical
Fock–Goncharov X -coordinate for the triangle). Thus,

𝑥 � max(−𝑟12,−𝑟22,−𝑟32) = −min(𝑟12, 𝑟22, 𝑟32).

Therefore, recalling 𝒞′ ⊆ Z6
�0 × Z (Equation (**)), we may define the function 𝜑 : 𝒞+𝔗 → 𝒞′ by

𝜑(𝑐) = (𝑟11, 𝑟12, 𝑟21, 𝑟22, 𝑟31, 𝑟32, 𝑥).

It follows from the definition that 𝜑 : 𝒞+𝔗 → 𝒞′ is Z�0-linear. One checks that 𝜑(𝑐𝑖) = 𝑐′𝑖 . Since the
𝑐′𝑖 span 𝒞′, we have 𝜑 is surjective. In particular, by Equations (#),(##),(†),(††),

𝜑
(
(𝒞+𝔗)

in
)
= (𝒞′)>0 and 𝜑

(
(𝒞+𝔗)

out) = (𝒞′)<0.

The formula for 𝜑 extends to define a Q-linear isomorphism 𝜑 : Q7 → Q7, and its inverse is the
desired Q-linear isomorphism 𝜓 = (𝜑)−1 : Q7 → Q7. Indeed, the bijectivity of 𝜑 follows by computing
the values on the standard column basis of Q7, giving the invertible matrix

𝜑( �𝑒1, �𝑒2, �𝑒3, �𝑒4, �𝑒5, �𝑒6, �𝑒7) =
1
3
����

0 0 0 1 1 0 −1
−1 0 0 0 −1 1 1
1 0 0 0 0 1 −1
−1 1 −1 0 0 0 1
0 1 1 0 0 0 −1
0 0 −1 1 −1 0 1
1 −1 1 −1 1 −1 0

����.
So 𝜓 = (𝜑)−1 is defined. Since 𝜑 is an injection so is its restriction 𝜑 : 𝒞+𝔗 → 𝒞′. Also, since, as we

argued above, 𝜑 is a surjection, we gather 𝜑 is a bijection. Thus, 𝜓 = 𝜑−1 : 𝒞′ → 𝒞+𝔗 is defined. This
completes the proof of the claim, thereby establishing the proposition. �

6.3. Global Knutson–Tao cone

Given the dotted ideal triangulation 𝜆 on the surface 𝔖, an element c of Z𝑁 corresponds to a function
{dots on 𝜆} → Z; see §5.1. If 𝔗 is a dotted triangle of 𝜆, then an element c of Z𝑁 induces a function
{dots on 𝔗} → Z, which likewise corresponds to an element 𝑐𝔗 of Z7.
Definition 6.10. The global Knutson–Tao positive cone, or just Knutson–Tao cone or global cone,
𝒞+𝜆 ⊆ Z

𝑁
�0 is defined by

𝒞+𝜆 =
{
𝑐 ∈ Z𝑁 ; 𝑐𝔗 is in 𝒞+𝔗 for all triangles 𝔗 of 𝜆

}
.

It follows from Corollary 6.7 that 𝒞+𝜆 ⊆ Z
𝑁
�0 is indeed a positive cone.

In §5, we defined the global coordinate function ΦFG
𝜆 : [𝒲𝔖] → Z

𝑁
�0; see Definition 5.4. Since the

image ΦFG
𝔗 ([𝒲𝔗]) ⊆ 𝒞+𝔗 (which is, in fact, an equality by Corollary 6.7), it follows by the construction

of ΦFG
𝜆 that the image ΦFG

𝜆 ([𝒲𝔖]) ⊆ 𝒞+𝜆 ; recall, for instance, Figure 33.
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Proposition 6.11. Moreover, we have (see §7-8 for a proof)

ΦFG
𝜆 ([𝒲𝔖]) = 𝒞+𝜆 .

7. Main result: global coordinates

We summarize what we have done so far. Consider a punctured surface𝔖 with empty boundary; see §2.
Let [𝒲𝔖] denote the collection of parallel equivalence classes of global nonelliptic webs on𝔖. Assume
that𝔖 is equipped with an ideal triangulation 𝜆. For 𝑁 = −8𝜒(𝔖), in §5 we defined the Fock–Goncharov
global coordinate function ΦFG

𝜆 : [𝒲𝔖] → Z
𝑁
�0, depending on the choice of the ideal triangulation 𝜆.

Proposition 5.5, which still needs to be proved, says that the mapping ΦFG
𝜆 is injective. In §6, we defined

the global Knutson–Tao positive cone 𝒞+𝜆 ⊆ Z
𝑁
�0, which also depends on the ideal triangulation 𝜆. By

construction, the image ΦFG
𝜆 ([𝒲𝔖]) ⊆ 𝒞+𝜆 . According to Proposition 6.11, which also still needs to be

proved, ΦFG
𝜆 maps [𝒲𝔖] onto 𝒞+𝜆 . Therefore, assuming Propositions 5.5 and 6.11, we have proved:

Theorem 7.1. The Fock–Goncharov global coordinate function

ΦFG
𝜆 : [𝒲𝔖]

∼
−→ 𝒞+𝜆 ⊆ Z

𝑁
�0

is a bijection of sets. �

Remark 7.2. In §9, we generalize Theorem 7.1 to the setting of surfaces-with-boundary �̂�.

7.1. Inverse mapping

Our strategy for proving Propositions 5.5 and 6.11 (equivalently, Theorem 7.1) is to construct an explicit
inverse mapping

ΨFG
𝜆 : 𝒞+𝜆 −→ [𝒲𝔖],

namely a function that is both a left and a right inverse for the function ΦFG
𝜆 . The definition of the

mapping ΨFG
𝜆 is relatively straightforward, and it will be automatic that it is an inverse for ΦFG

𝜆 . The
more challenging part will be to show that ΨFG

𝜆 is well defined.

7.2. Inverse mapping: ladder gluing construction

Recall that for a triangle 𝔗 we denote by 𝒲𝔗 the collection of rungless essential local webs 𝑊𝔗 in 𝔗;
see Definition 3.19. We will once again make use of the split ideal triangulation 𝜆; see §4.3.

Definition 7.3. A collection {𝑊𝔗}𝔗∈𝜆 of local webs 𝑊𝔗 ∈ 𝒲𝔗 , varying over the triangles 𝔗 of 𝜆, is
compatible if for each biangle 𝔅, with boundary edges 𝐸 ′ and 𝐸 ′′, sitting between two triangles 𝔗′ and
𝔗′′, respectively, the number of out-strands (resp. in-strands) of 𝑊𝔗′ on 𝐸 ′ is equal to the number of
in-strands (resp. out-strands) of 𝑊𝔗′′ on 𝐸 ′′.

For example, see the third row of Figure 37, an example on a once-punctured torus.
To a compatible collection {𝑊𝔗}𝔗∈𝜆 of local webs, we will associate a global web W on𝔖 that need

not be nonelliptic and that is in good position with respect to 𝜆; recall Definition 4.5. The global web W
is well defined up to ambient isotopy of 𝔖 respecting 𝜆.

Construction of W. Consider a biangle 𝔅 sitting between two triangles 𝔗′ and 𝔗′′. The local webs
𝑊𝔗′ and 𝑊𝔗′′ determine strand sets 𝑆′ and 𝑆′′ on the boundary edges 𝐸 ′ and 𝐸 ′′, respectively. By
the compatibility property, the strand-set pair 𝑆 = (𝑆′, 𝑆′′) is symmetric; see Definition 3.12. Let
𝑊𝔅 = 𝑊𝔅 (𝑆) be the induced ladder-web in 𝔅; see Definition 3.14.
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Figure 37. Ladder gluing construction (on the once-punctured torus). Shown are two different ways of
assigning the local webs, differing by permutations of corner arcs. On the left, the result of the gluing
is a nonelliptic web. On the right, the result is an elliptic web, which has to be resolved by removing a
square before becoming a nonelliptic web. The two nonelliptic webs obtained in this way are equivalent.

Define W to be the global web obtained by gluing together the local webs {𝑊𝔗}𝔗∈𝜆 and {𝑊𝔅}𝔅∈𝜆
in the obvious way; see the fourth row and the left side of the fifth row of Figure 37.

Definition 7.4. We say that the global web W has been obtained from the compatible collection {𝑊𝔗}𝔗∈𝜆
of local webs by applying the ladder gluing construction.

The following statement is immediate.
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Figure 38. Resolving a square-face.

Lemma 7.5. A global web W obtained via the ladder gluing construction is in good position with respect
to 𝜆. Conversely, if W is a global web in good position, then W can be recovered as the result of applying
the ladder gluing construction to {𝑊𝔗 = 𝑊 ∩ 𝔗}𝔗∈𝜆. �

If the global web W is obtained via the ladder gluing construction, then W could be (1) nonelliptic,
for example, see the left side of the fifth row of Figure 37, or (2) elliptic, for example, see the fourth row
of Figure 37.

7.3. Inverse mapping: resolving an elliptic web

Recall the notion of a local parallel-move; see Figure 21. Note that if {𝑊 ′𝔗}𝔗∈𝜆 is a compatible collection
of local webs and if 𝑊𝔗 is related to 𝑊 ′𝔗 by a sequence of local parallel-moves, then {𝑊𝔗}𝔗∈𝜆 is also
compatible.

Lemma 7.6. Given a compatible collection {𝑊 ′𝔗}𝔗∈𝜆 of local webs, there exist local webs {𝑊𝔗}𝔗∈𝜆
such that 𝑊𝔗 is related to 𝑊 ′𝔗 by a sequence of local parallel-moves and the global web W obtained by
applying the ladder gluing construction to {𝑊𝔗}𝔗∈𝜆 is nonelliptic.

Proof. Suppose that the global web 𝑊 ′ obtained by applying the ladder gluing construction to the local
webs {𝑊 ′𝔗}𝔗∈𝜆 is elliptic.

Step 1. We show that the elliptic global web 𝑊 ′ has no disk- or bigon-faces. If there were a disk- or
bigon-face, then it could not lie completely in a triangle 𝔗 or biangle 𝔅 of 𝜆, for this would violate that
the local web restriction 𝑊 ′𝔗 or 𝑊 ′𝔅 is essential (in particular, nonelliptic) by Lemma 7.5. Consequently,
there is a cap- or fork-face lying in some 𝔗 or 𝔅, contradicting that the local web restriction 𝑊 ′𝔗 or 𝑊 ′𝔅
is essential (in particular, taut).

Step 2. We consider the possible positions of square-faces relative to the split ideal triangulation 𝜆.
We claim that a square-face can only appear as demonstrated at the top of Figure 38, namely having two
H-faces in two (possibly identical) biangles 𝔅 and, in between, having opposite sides traveling parallel
through the intermediate triangles 𝔗 and biangles 𝔅. Indeed, otherwise there would be a square-, cap-,
or fork-face, similar to Step 1.

Step 3. We remove a square-face. Since the square-faces are positioned in this way, given a fixed
square-face there is a well defined state into which the square-face can be resolved, illustrated in
Figure 38. The resulting global web 𝑊1 is in good position with respect to 𝜆. Also, 𝑊1 is less complex
than 𝑊 ′, where the complexity of a global web in good position is measured by the total number of
vertices lying in the union ∪𝔅𝔅 of all of the biangles 𝔅. Note that resolving a square-face decreases
the complexity by four.

The effect of resolving a square-face is to perform, in each triangle 𝔗, some number (possibly zero)
of local parallel-moves, replacing the original local webs {𝑊 ′𝔗}𝔗∈𝜆 with new local webs {(𝑊1)𝔗}𝔗∈𝜆
such that (𝑊1)𝔗 is equivalent to 𝑊 ′𝔗 up to corner-ambiguity; see Figure 38.

Step 4. By a complexity argument, we can repeat the previous step until we obtain a sequence
𝑊 ′ = 𝑊0,𝑊1,𝑊2, . . . ,𝑊𝑛 = 𝑊 of global webs in good position such that {(𝑊𝑖+1)𝔗}𝔗∈𝜆 is related to
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Figure 39. Elliptic web resulting from the ladder gluing construction (top) and two different applications
of the square removing algorithm, yielding different, but parallel equivalent, nonelliptic webs (bottom).

{(𝑊𝑖)𝔗}𝔗∈𝜆 by a sequence of local parallel-moves and such that W has no square-faces. By Lemma 7.5,
W is recovered by applying the ladder gluing construction to {𝑊𝔗}𝔗∈𝜆. By Step 1, W has no disk- or
bigon-faces. Thus, W is nonelliptic. �

We refer to the algorithm used in the proof of Lemma 7.6 as the square removing algorithm. For
example, see the fourth row and the right side of the fifth row of Figure 37.

Note that the algorithm removes the square-faces at random, thus the local webs {𝑊𝔗}𝔗∈𝜆 satisfying
the conclusion of Lemma 7.6 are not necessarily unique. For example, see Figure 39.

7.4. Inverse mapping: definition

Let c be a point in the global cone 𝒞+𝜆 ; see Definition 6.10. Our goal is to associate to c a parallel
equivalence class ΨFG

𝜆 (𝑐) ∈ [𝒲𝔖] of global nonelliptic webs on 𝔖. Equivalently, we want to associate
to c a nonelliptic web Ψ̃FG

𝜆 (𝑐) on 𝔖 well defined up to parallel equivalence; see Definition 2.3. Recall
that we identify the triangles 𝔗 of the ideal triangulation 𝜆 with the triangles 𝔗 of the split ideal
triangulation 𝜆.

Construction of Ψ̃FG
𝜆 (𝑐). The global cone point c determines a local cone point 𝑐𝔗 in the local cone

𝒞+𝔗 for each triangle 𝔗 of 𝜆; see just before Definition 6.10. By the triangle identifications between 𝜆

and 𝜆, the local cone point 𝑐𝔗 ∈ 𝒞
+
𝔗 is assigned to each triangle 𝔗 of 𝜆; see the first and second rows

of Figure 37.
Note, by construction, corresponding edge-coordinates located across a biangle 𝔅 take the same

value. More precisely, if 𝔅 sits between two triangles 𝔗′ and 𝔗′′ and if the boundary edges of 𝔅 are
𝐸 ′ and 𝐸 ′′, respectively, then the coordinate 𝑎𝐿𝐸′ (resp. 𝑎𝑅𝐸′) lying on the left-edge-dot (resp. right-edge-
dot) as viewed from 𝔗′ agrees with the coordinate 𝑎𝑅𝐸′′ (resp. 𝑎𝐿𝐸′′) lying on the right-edge-dot (resp.
left-edge-dot) as viewed from 𝔗′′; see Figure 37.

By Corollaries 6.7 and 6.8, for each local cone point 𝑐𝔗 ∈ 𝒞+𝔗 assigned to a triangle 𝔗 of 𝜆, there
exists a unique corner-ambiguity class [𝑊𝔗] of local webs 𝑊𝔗 in 𝒲𝔗 such that ΦFG

𝔗 (𝑊𝔗) = 𝑐𝔗 for any
representative 𝑊𝔗 of [𝑊𝔗].

We now make a choice of such a representative 𝑊𝔗 for each 𝔗. Two different choices 𝑊𝔗 and 𝑊 ′𝔗 of
local webs representing [𝑊𝔗] = [𝑊 ′𝔗] are, by definition, related by local parallel-moves; see the third
row of Figure 37.

Since corresponding edge-coordinates across biangles agree, the collection {𝑊𝔗}𝔗∈𝜆 of local webs is
compatible (Definition 7.3). This follows by Figure 30. (There is also a general argument, by properties
(2) and (3) in Definition 5.1, which uses the fact that if 𝑊𝔗 ∈𝒲𝔗 , then the opposite web 𝑊

op
𝔗 obtained

by reversing all of the orientations of 𝑊𝔗 is also in 𝒲𝔗).
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By Lemma 7.6, this choice of a compatible collection {𝑊𝔗}𝔗∈𝜆 of local webs can be made (in a
nonunique way) such that the global web W on 𝔖 obtained by applying the ladder gluing construction
to {𝑊𝔗}𝔗∈𝜆 is nonelliptic. Finally, we define Ψ̃FG

𝜆 (𝑐) = 𝑊 . In order for the global web Ψ̃FG
𝜆 (𝑐) to be

well defined up to parallel equivalence, we require:

Main Lemma 7.7. Assume that each of {𝑊𝔗}𝔗∈𝜆 and {𝑊 ′𝔗}𝔗∈𝜆 is a compatible collection of rungless
essential webs in the 𝒲𝔗 , satisfying

1. for each triangle 𝔗, the local webs 𝑊𝔗 and 𝑊 ′𝔗 are equivalent up to corner-ambiguity;
2. both global webs W and 𝑊 ′, obtained from the compatible collections {𝑊𝔗}𝔗∈𝜆 and {𝑊 ′𝔗}𝔗∈𝜆,

respectively, by applying the ladder gluing construction, are nonelliptic.

Then, the nonelliptic webs W and 𝑊 ′ represent the same parallel equivalence class in [𝒲𝔖].

Definition 7.8. The inverse mapping

ΨFG
𝜆 : 𝒞+𝜆 −→ [𝒲𝔖]

is defined by sending a cone point c in the global Knutson–Tao cone 𝒞+𝜆 to the parallel equivalence
class in [𝒲𝔖] of the global nonelliptic web Ψ̃FG

𝜆 (𝑐) on 𝔖.

Proof of Propositions 5.5 and 6.11. Assuming Main Lemma 7.7 to be true, it follows immediately from
the constructions that the well defined mapping ΨFG

𝜆 : 𝒞+𝜆 → [𝒲𝔖] is the set-functional inverse of the
Fock–Goncharov global coordinate function ΦFG

𝜆 : [𝒲𝔖] → 𝒞+𝜆 . �

In summary, we have reduced the proof of Theorem 7.1 to proving the main lemma.

8. Proof of the main lemma

In this section, we prove the main Lemma 7.7. In particular, we provide an explicit algorithm taking one
web to the other by a sequence of modified H-moves and global parallel-moves.

The strategy of the proof is simple, whereas its implementation is more complicated due to the
combinatorics. The key idea is to think of a web W not as a graph, but as a multicurve 〈𝑊〉, which
we call a web picture; see Figure 40. We have already previewed web pictures at the local level, in
Definitions 3.16 and 3.20 (see also the second paragraph of §5.3).

If W and 𝑊 ′ are two nonelliptic webs as in the main Lemma 7.7, we show that their associated
multicurves 〈𝑊〉 and 〈𝑊 ′〉 satisfy a fellow traveler property; see Lemma 8.3. As a consequence of this
fellow traveler lemma, the intersection points 𝒫 ⊆ 〈𝑊〉 are in natural bijection with those 𝒫′ ⊆ 〈𝑊 ′〉;
here, the nonelliptic hypothesis is necessary. To finish, we can use modified H-moves (Figures 25 and
41) to push around these intersection points in both webs until they are in the same configuration,
establishing that W and 𝑊 ′ are equivalent.

8.1. Preparation: web pictures on the surface

For a web W on 𝔖 in good position with respect to the split ideal triangulation 𝜆, the restrictions
𝑊𝔅 = 𝑊 ∩ 𝔅 and 𝑊𝔗 = 𝑊 ∩ 𝔗 in the biangles 𝔅 and triangles 𝔗 of 𝜆 are essential and rungless
essential local webs, respectively. By Definitions 3.16 and 3.20, we may consider the corresponding
local pictures 〈𝑊𝔅〉 and 〈𝑊𝔗〉, which are in particular immersed multicurves in the biangle 𝔅 and the
holed triangle 𝔗0, respectively; see Definition 3.11 and Figures 15 and 18.

Definition 8.1. The holed surface 𝔖0 is the surface 𝔖 minus one open disk per triangle 𝔗 of 𝜆. The
global picture 〈𝑊〉 corresponding to a web W in good position with respect to 𝜆 is the multicurve on
the holed surface 𝔖0 obtained by gluing together in the obvious way the collection of local pictures
{〈𝑊𝔅〉}𝔅∈𝜆 and {〈𝑊𝔗〉}𝔗∈𝜆 associated to the biangles 𝔅 and triangles 𝔗 of 𝜆, well defined up to
ambient isotopy of 𝔖0 respecting 𝜆. See Figure 40.
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Figure 40. (Parts of) two webs W and 𝑊 ′ in good position on the surface, and their corresponding
global pictures 〈𝑊〉 and 〈𝑊 ′〉 on the holed surface. Note that, over triangles, W and 𝑊 ′ differ by a
permutation of corner arcs.

Figure 41. Modified H-move from the perspective of web pictures.

Figure 41 depicts how a modified H-move between webs W and 𝑊 ′ in good position looks when
viewed from the perspective of the global pictures 〈𝑊〉 and 〈𝑊 ′〉; see Figure 25.

Note the global picture 〈𝑊〉 has no U-turns on any edge of 𝜆, meaning there are no bigons formed
between a component 𝛾 of 〈𝑊〉 and 𝜆. We call this the no-switchbacks property.

Definition 8.2. A based multicurve (Γ, {𝑥 𝑗0}) on the holed surface𝔖0 is a multicurve Γ = {𝛾𝑖} equipped
with a base point 𝑥

𝑗
0 ∈ 𝛾 𝑗 for each loop component 𝛾 𝑗 of Γ such that the base points 𝑥

𝑗
0 do not lie on

any edges of the split ideal triangulation 𝜆; see Definition 3.11.

8.2. Preparation: sequences

A convex subset 𝐼 ⊆ Z of the integers is a subset such that if 𝑛, 𝑚 ∈ 𝐼 are integers, then all the integers
between n and m are in I.

A sequence (𝑎𝑖)𝑖∈𝐼 valued in a set 𝒜 is a function 𝐼 → 𝒜, 𝑖 ↦→ 𝑎𝑖 , where 𝐼 ⊆ Z is a convex subset
of the integers.

Given a sequence (𝑎𝑖)𝑖∈𝐼 , a subsequence (𝑎𝑖𝑘 )𝑘∈𝐾 is the sequence 𝐾 → 𝒜 determined by a convex
subset 𝐾 ⊆ Z together with an order-preserving injective function 𝐾 → 𝐼, 𝑘 ↦→ 𝑖𝑘 .

Given a sequence (𝑎𝑖)𝑖∈𝐼 , a convex subsequence (𝑎𝑖𝑘 )𝑘∈𝐾 is a subsequence such that the image 𝐼 ′ of
K in I under the function 𝐾 → 𝐼 is a convex subset of Z.

Given two sequences (𝑎𝑖)𝑖∈𝐼 and (𝑏 𝑗 ) 𝑗∈𝐽 taking values in the same set, a common subsequence
{(𝑎𝑖𝑘 )𝑘∈𝐾 , (𝑏 𝑗𝑘 )𝑘∈𝐾 } is a pair of subsequences having the same indexing set K such that 𝑎𝑖𝑘 = 𝑏 𝑗𝑘 for
all 𝑘 ∈ 𝐾 .

A convex common subsequence {(𝑎𝑖𝑘 )𝑘∈𝐾 , (𝑏 𝑗𝑘 )𝑘∈𝐾 } is a common subsequence such that both
subsequences (𝑎𝑖𝑘 )𝑘∈𝐾 and (𝑏 𝑗𝑘 )𝑘∈𝐾 are convex.
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Figure 42. Route and past-route.

A maximal convex common subsequence {(𝑎𝑖𝑘 )𝑘∈𝐾 , (𝑏 𝑗𝑘 )𝑘∈𝐾 } is a convex common subsequence
such that there does not exist: 𝐾 � 𝐾 ′ and a convex common subsequence {(𝑎𝑖′

𝑘
)𝑘∈𝐾 ′ , (𝑏 𝑗′

𝑘
)𝑘∈𝐾 ′ },

satisfying 𝑖′𝑘 = 𝑖𝑘 and 𝑗 ′𝑘 = 𝑗𝑘 for all 𝑘 ∈ 𝐾 .

8.3. Preparation: edge-sequences and the fellow traveler lemma

Let W be a web on𝔖 in good position with respect to 𝜆 such that its global picture (〈𝑊〉, {𝑥 𝑗0}) is based.
Let 𝛾 be a loop or arc in 〈𝑊〉. Associated to the component 𝛾 is an edge-sequence (𝐸𝑖)𝑖∈𝐼 , where

𝐸𝑖 is an edge of the split ideal triangulation 𝜆. More precisely, the sequence (𝐸𝑖)𝑖∈𝐼 describes the i-
th edge crossed by 𝛾 listed in order according to 𝛾’s orientation. In the case where 𝛾 is an arc, we
put 𝐼 = {0, 1, . . . , 𝑛} ⊆ Z, and the edge-sequence is well defined. In the case where 𝛾 is a loop with
base point 𝑥0, we put 𝐼 = Z, and the edge-sequence is well defined by sending 0 to the first edge 𝐸0
encountered by 𝛾 after passing 𝑥0.

We also associate an inverse edge-sequence (𝐸−1
𝑖 )𝑖∈𝐼−1 to the inverse curve 𝛾−1, defined as follows.

In the case of an arc put 𝐼−1 = {−𝑛, . . . , 1, 0}, and in the case of a loop put 𝐼−1 = Z. Then the inverse
edge-sequence is defined by 𝐸−1

𝑖 = 𝐸−𝑖 for all 𝑖 ∈ 𝐼−1.
Another name for a loop or arc 𝛾 in the global picture 〈𝑊〉 is a traveler. Another name for an

inverse curve 𝛾−1 is a past-traveler. The edge-sequence (𝐸𝑖)𝑖∈𝐼 associated to a traveler 𝛾 is called its
route, and the edge-sequence (𝐸−1

𝑖 )𝑖∈𝐼−1 associated to a past-traveler 𝛾−1 is called its past-route; see
Figure 42. Two travelers 𝛾 in 〈𝑊〉 and 𝛾′ in 〈𝑊 ′〉 are called fellow travelers if they have the same routes
(𝐸𝑖)𝑖∈𝐼 = (𝐸 ′𝑖 )𝑖∈𝐼 ′ , 𝐼 = 𝐼 ′. In particular, if 𝛾 is a loop (resp. arc), then 𝛾′ is also a loop (resp. arc of the
same length).

The following statement is the key to proving the main lemma.

Lemma 8.3 (Fellow traveler lemma). Fix compatible local webs {𝑊𝔗}𝔗∈𝜆 and {𝑊 ′𝔗}𝔗∈𝜆 in the 𝒲𝔗

satisfying hypothesis (1) of the main Lemma 7.7, and let W and 𝑊 ′ be the induced global webs obtained
by the ladder gluing construction. Then, there exists a natural one-to-one correspondence

𝛾 ←→ 𝛾′ = 𝜑(𝛾)

between the collection of travelers 𝛾 in the global picture 〈𝑊〉 and the collection of travelers 𝛾′ = 𝜑(𝛾)
in 〈𝑊 ′〉, and there exists a choice of base points 𝑥0 and 𝑥 ′0 for the loops 𝛾 and 𝛾′ in 〈𝑊〉 and 〈𝑊 ′〉,
respectively, such that 𝛾 and 𝛾′ = 𝜑(𝛾) are fellow travelers for all travelers 𝛾.

For an example of the fellow traveler lemma on the once punctured torus, see Figure 43.

Proof of Lemma 8.3. Let E be an edge of 𝜆. This is associated to a unique triangle 𝔗 of 𝜆 containing E in
its boundary. Let 𝑆 (𝐸)out = (𝑠 (𝐸)out

𝑖 )𝑖=1,...,𝑛out
𝐸

(resp. 𝑆′(𝐸)out = (𝑠′(𝐸)out
𝑖 )𝑖=1,...,𝑛′out

𝐸
) denote the sequence

of out-strands of the global picture 〈𝑊〉 (resp. 〈𝑊 ′〉) lying on the edge E, ordered, say, from left to
right as viewed from 𝔗. By hypothesis (1) of the main lemma, 𝑛out

𝐸 = 𝑛′out
𝐸 . Let 𝛾 (𝐸)𝑖 denote the unique
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Figure 43. Fellow traveler lemma.

traveler in 〈𝑊〉 containing the strand 𝑠 (𝐸)out
𝑖 . Similarly, define travelers 𝛾′(𝐸)𝑖 with respect to 〈𝑊 ′〉. The

mapping 𝜑 is defined by

𝜑
(
𝛾 (𝐸)𝑖

)
= 𝛾′(𝐸)𝑖

(
𝑖 = 1, 2, . . . , 𝑛out

𝐸 = 𝑛′out
𝐸

)
.

Note every traveler 𝛾 in 〈𝑊〉 (resp. 𝛾′ in 〈𝑊 ′〉) is of the form 𝛾 (𝐸)𝑖 (resp. 𝛾′(𝐸)𝑖 ) for some E.
To establish that 𝜑 is well defined, we show that 𝛾 (𝐸1)

𝑖1
= 𝛾 (𝐸2)

𝑖2
implies 𝛾′(𝐸1)

𝑖1
= 𝛾′(𝐸2)

𝑖2
. This property

follows immediately from:

Claim 8.4. For some 𝑘 ∈ {1, 2, . . . , 𝑛out
𝐸 = 𝑛′out

𝐸 }, let 𝑠 (𝐸)out
𝑘 ∈ 𝑆 (𝐸)out and 𝑠′(𝐸)out

𝑘 ∈ 𝑆′(𝐸)out be out-
strands of 〈𝑊〉 and 〈𝑊 ′〉, respectively, lying on an edge E of a triangle 𝔗 of 𝜆. Note that each of these
strands, according to its orientation, enters via the edge E into a biangle 𝔅, exits via an edge 𝐸2 into a
triangle 𝔗2 and then either

1. turns left in 𝔗2, ending as a strand s or 𝑠′, respectively, lying on an edge 𝐸3;
2. turns right in 𝔗2, ending as a strand s or 𝑠′, respectively, lying on an edge 𝐸3;
3. terminates in a honeycomb 𝐻𝑛.

The claim is that if the forward motion of the strand 𝑠 (𝐸)out
𝑘 is described by item (𝑖) above for 𝑖 ∈ {1, 2, 3},

then the forward motion of the strand 𝑠′(𝐸)out
𝑘 is also described by item (𝑖). Consequently, in cases (1)

or (2), there exists some 𝑘3 ∈ {1, 2, . . . , 𝑛out
𝐸3

= 𝑛′out
𝐸3
} such that

𝑠 = 𝑠 (𝐸3)out
𝑘3

∈ 𝑆 (𝐸3)out and 𝑠′ = 𝑠′(𝐸3)out
𝑘3

∈ 𝑆′(𝐸3)out.

The claim is true since, by hypothesis, on each corner of each triangle, 〈𝑊〉 and 〈𝑊 ′〉 have the same
number of clockwise-oriented (resp. counterclockwise-oriented) corner arcs, together with the fact that
only oppositely oriented arcs cross in the biangles; see Figure 44.

Having established that 𝜑 is well defined, it follows by the definition that 𝜑 is a bijection. Another
consequence of Claim 8.4 is that if 𝛾 is an arc, then 𝛾′ = 𝜑(𝛾) is an arc such that 𝛾 and 𝛾′ are fellow
travelers. Also, if 𝛾 = 𝛾 (𝐸)𝑖 is a loop, then 𝛾′ = 𝜑(𝛾) = 𝛾′(𝐸)𝑖 is a loop. Choosing base points 𝑥0 and 𝑥 ′0
on the out-strands 𝑠 (𝐸)out

𝑖 and 𝑠′(𝐸)out
𝑖 , respectively, just before, say, the strands cross the edge E makes

the loops 𝛾 and 𝛾′ into fellow travelers. �

8.4. Preparation: shared-routes

As in the previous subsection, let W be a web on𝔖 in good position with respect to 𝜆 such that its global
picture (〈𝑊〉, {𝑥 𝑗0}) is based.

Let 𝛾 be a traveler in 〈𝑊〉 having route (𝐸𝑖)𝑖∈𝐼 . For some 𝑖 ∈ 𝐼 indexing an edge 𝐸𝑖 , by definition
of the route there is a corresponding point 𝑦𝑖 of 𝛾 lying on 𝐸𝑖 . Consider the associated segment 𝛾𝑖 of 𝛾
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Figure 44. Cases (1) (top) and (3) (bottom) in Claim 8.4.

Figure 45. Crossing shared-route.

Figure 46. Noncrossing shared-routes.

lying between the points 𝑦𝑖 and 𝑦𝑖+1. Similarly, define segments (𝛾−1)𝑖 associated to the past-traveler
𝛾−1 with respect to its past-route (𝐸−1

𝑖 )𝑖∈𝐼−1 .

Definition 8.5. Let 𝛾1, 𝛾2 be travelers in 〈𝑊〉 and 𝛾−1
1 , 𝛾−1

2 the corresponding past travelers, with routes
(𝐸1
𝑖 )𝑖∈𝐼 and (𝐸2

𝑗 ) 𝑗∈𝐽 and past routes ((𝐸1)−1
𝑖 )∈𝐼−1 and ((𝐸2)−1

𝑗 )∈𝐽−1 .
An oppositely oriented shared-route, or just shared-route, 𝑆𝑅 for the ordered pair (𝛾1, 𝛾2) of travelers

is a maximal convex common subsequence (§8.2) 𝑆𝑅 = {(𝐸1
𝑖𝑘
)𝑘∈𝐾 , ((𝐸2)−1

𝑗𝑘
)𝑘∈𝐾 } for the route (𝐸1

𝑖 )𝑖∈𝐼

of 𝛾1 and the past-route ((𝐸2)−1
𝑗 )∈𝐽−1 of 𝛾−1

2 .
A shared-route is open (resp. closed) if its domain K is not equal to (resp. equal to) Z.
A shared-route is crossing if there exists an index 𝑘 ∈ 𝐾 such that the associated segments (𝛾1)𝑖𝑘

and (𝛾2)
−1
𝑗𝑘

intersect, say at a point 𝑝𝑘 . We call 𝑝𝑘 an intersection point of the crossing shared-route.
Note that an intersection point must lie inside a biangle 𝔅 of 𝜆. A shared-route is noncrossing if it has
no intersection points.

For some examples, see Figures 45 and 46. Our pictures for shared-routes are only schematics, since
the actual shared-routes on 𝔖0 might cross the same edge multiple times. That is, there might exist
𝑘 ≠ 𝑘 ′ such that 𝐸1

𝑖𝑘
= (𝐸2)−1

𝑗𝑘
= 𝐸1

𝑖𝑘′
= (𝐸2)−1

𝑗𝑘′
. Alternatively, one could think of these pictures at

the level of the universal cover 𝔖0. Note that travelers in open shared-routes may end in honeycombs
(Figure 44), but this will not affect our arguments.
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Figure 47. Immersed bigons do not exist: 1 of 2.

Lemma 8.6. Assume in addition that W is nonelliptic. Then any shared-route 𝑆𝑅 has at most one
intersection point p. In particular, a crossing shared-route is necessarily open.

Proof. The second statement follows from the first since otherwise the oriented holed surface𝔖0 would
contain a Möbius strip.

Suppose, for an ordered pair (𝛾1, 𝛾2) of travelers, there were a crossing shared-route
{(𝐸1

𝑖𝑘
)𝑘∈𝐾 , ((𝐸2)−1

𝑗𝑘
)𝑘∈𝐾 } that has more than one intersection point. There are only finitely many

intersection points, denoted 𝑝𝑘1 , 𝑝𝑘2 , . . . , 𝑝𝑘𝑚 with 𝑘𝑖 < 𝑘𝑖+1. The intersection points 𝑝𝑘1 and 𝑝𝑘2

form the tips of an immersed bigon B, which we formalize as the convex common subsequence
𝐵 = {(𝐸1

𝑖𝑘
)𝑘1�𝑘�𝑘2+1, ((𝐸

2)−1
𝑗𝑘
)𝑘1�𝑘�𝑘2+1}; see the bottom of Figure 47. Alternatively, we think of B

as bounded by the segments of 𝛾1 and 𝛾2 between 𝑝𝑘1 and 𝑝𝑘2 .
Let 𝜋 be the projection map from the universal cover 𝔖0 to the holed surface 𝔖0. Equip 𝔖0 with

the lifted split ideal triangulation ˜̂
𝜆 = 𝜋−1 (𝜆). For a traveler 𝛾, consider one of its lifts �̃� in 𝔖0. By the

no-switchbacks property (§8.1), and the fact that the dual graph of ˜̂
𝜆 in 𝔖0 is a tree, the lifted curve

�̃� does not cross the same edge 𝐸 in the universal cover 𝔖0 more than once. Therefore, the immersed
bigon B lifts to an embedded topological bigon 𝐵 in 𝔖0, bounded by segments of lifts �̃�1 and 𝛾2 of the
curves 𝛾1 and 𝛾2; see Figure 47.

The preimage 𝑊 = 𝜋−1 (𝑊) of the web W is an (infinite) web in𝔖0. Moreover, 𝑊 is in good position
with respect to ˜̂

𝜆. Since W is nonelliptic, so is 𝑊 (compare the proof of Lemma 7.6). Let
〈
𝑊

〉
be the

global picture associated to 𝑊 . Note that the lifted curves �̃�1 and �̃�2 are in
〈
𝑊

〉
. Observe that it is

possible for int(𝐵) ∩
〈
𝑊

〉
≠ ∅ to be nonempty; see Figure 48. However, by the no-switchbacks property,

there are no closed curves of
〈
𝑊

〉
in this interior.

The rest of the proof is similar to the proof of Proposition 3.15; see Figure 16. Here, the web
orientation is important. Specifically, since only (locally) oppositely oriented (with respect to biangles)
curves in the global picture

〈
𝑊

〉
can intersect, it follows by the no-switchbacks property that if a curve �̃�

enters the embedded bigon 𝐵 via a boundary edge 𝐸 , then �̃� must leave through 𝐸 as well. Consequently,
there exists an innermost embedded bigon 𝐵′ ⊆ 𝐵 whose interior does not intersect

〈
𝑊

〉
; see Figure 48.

But then 𝐵′ corresponds to a square-face 𝐷 in the lifted nonelliptic web 𝑊 , which is a contradiction. �
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Figure 48. Immersed bigons do not exist: 2 of 2.

Lemma 8.7. If the web W is nonelliptic, then there are no intersection points of 〈𝑊〉 along any closed
noncrossing shared-route (as opposed to open noncrossing shared-routes). In particular, each closed
noncrossing shared-route 𝑆𝑅 is embedded, namely its travelers 𝛾1 and 𝛾2 bound an embedded annulus
𝐴 ⊆ 𝔖; see Figure 46b.

Proof. If there were an intersection point of 〈𝑊〉 along either traveler, then an argument similar to that
depicted in Figure 48 implies there would exist an immersed bigon in 〈𝑊〉. �

Definition 8.8. Consider an open shared-route 𝑆𝑅 for an ordered pair (𝛾1, 𝛾2) of travelers in 〈𝑊〉. We
say that the source-end ℰ of the open shared-route 𝑆𝑅 is the unique end ℰ of 𝑆𝑅 such that the traveler
𝛾1 enters the shared-route 𝑆𝑅 through the end ℰ.

Assuming W is nonelliptic, we say that the unique intersection point p in a crossing shared-route 𝑆𝑅,
which is necessarily open by Lemma 8.6, lies in the i-th shared-route-biangle 𝔅𝑖 , denoted 𝑝 ∈𝑆𝑅 𝔅𝑖 ,
𝑖 � 0, if 𝛾1 crosses 𝛾−1

2 (at the point p) inside the i-th biangle through which 𝛾1 travels after entering
𝑆𝑅 through the source-end ℰ.

For example, in Figure 45, the source-end ℰ of 𝑆𝑅 is the end labeled L.
Also, in Figure 45, p is in the shared-route-biangle 𝑝 ∈𝑆𝑅 𝔅2. Note that there is a unique index i

such that 𝑝 ∈𝑆𝑅 𝔅𝑖 . This definition is specially designed to circumvent the situation where 𝔅𝑖 and 𝔅 𝑗

represent the same biangle 𝔅 on the surface for different indices 𝑖 ≠ 𝑗 . For example, in Figure 45, even
if, say, 𝔅5 represented the same biangle 𝔅 as 𝔅2, we would say 𝑝 ∈𝑆𝑅 𝔅2 and 𝑝 ∉𝑆𝑅 𝔅5. Alternatively,
one could think of this distinction at the level of the universal cover.

8.5. Preparation: oriented shared-routes

As previously, let W be a web on 𝔖 in good position with respect to 𝜆 such that its global picture
(〈𝑊〉, {𝑥

𝑗
0}) is based.

Definition 8.9. We say that a noncrossing shared-route 𝑆𝑅 for an ordered pair (𝛾1, 𝛾2) of travelers in
〈𝑊〉 is left-oriented (resp. right-oriented) if for either of the travelers 𝛾1 or 𝛾2, call it 𝛾, the other traveler
appears on the left (resp. right) of 𝛾 with respect to 𝛾’s orientation; see Figure 46.

The web W is closed-left-oriented (resp. closed-right-oriented) if all of 〈𝑊〉’s closed noncrossing
shared-routes are left-oriented (resp. right-oriented); see Figure 46b.

Note, by Lemma 8.7, a nonelliptic web W can always be replaced with a closed-left-oriented or
closed-right-oriented nonelliptic web by performing global parallel-moves (Definition 2.3); see Figure 3.

We also want to define a notion of orientation for crossing shared-routes. Unlike for noncrossing
shared-routes, this will depend on the ordering of the pair (𝛾1, 𝛾2). Since we will be dealing with
nonelliptic webs, by Lemma 8.6 it suffices to think about open shared-routes.

Definition 8.10. We say that an end ℰ of an open shared-route 𝑆𝑅 is left-oriented or right-oriented in
the same way as in Definition 8.9 for noncrossing shared routes.
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Figure 49. Natural one-to-one correspondence between intersection points.

Assuming W is nonelliptic, a crossing shared-route 𝑆𝑅 for an ordered pair (𝛾1, 𝛾2) of travelers in
〈𝑊〉, which is necessarily open by Lemma 8.6, is left-oriented (resp. right-oriented) if its source-endℰ
(Definition 8.8) is left-oriented (resp. right-oriented).

For example, the crossing shared-route shown in Figure 45 is left-oriented.

8.6. Proof of the main lemma: intersection points

We now begin the formal proof of the main Lemma 7.7. Fix local webs {𝑊𝔗}𝔗∈𝜆 and {𝑊 ′𝔗}𝔗∈𝜆 in the
𝒲𝔗 satisfying the hypotheses of the main lemma, and let W and 𝑊 ′ be the induced nonelliptic global
webs obtained by the ladder gluing construction. By applying global parallel-moves, we may assume
that both W and 𝑊 ′ are closed-left-oriented, say (Definition 8.9). Assume that the global pictures
(〈𝑊〉, {𝑥

𝑗
0}) and (〈𝑊 ′〉, {𝑥 ′ 𝑗0 }) are based and that the base points 𝑥

𝑗
0 and 𝑥

′ 𝑗
0 satisfy the conclusion of the

fellow traveler Lemma 8.3. Throughout, for each traveler 𝛾 in 〈𝑊〉 we denote by 𝛾′ the corresponding
traveler in 〈𝑊 ′〉 as provided by the fellow traveler lemma.

Let 𝒫 (resp. 𝒫′) denote the set of intersection points p of all travelers in 〈𝑊〉 (resp. 〈𝑊 ′〉).

Corollary 8.11. There is a natural bijection 𝜑 : 𝒫 ∼
→ 𝒫′. We write 𝑝′ = 𝜑(𝑝).

For the proof, we will need the following notion.
Definition 8.12. Let 𝑝 ∈ 𝒫. We define the left-oriented crossing shared-route generated by p, denoted
𝑆𝑅(𝑝), to be the unique left-oriented crossing shared-route (Definition 8.10) in 〈𝑊〉 whose intersection
point is p. Note, in particular, that the left-orientation condition determines the order (𝛾1, 𝛾2) of
the involved travelers. (Technically speaking, we choose K starting at 0, and then the shared-route
𝑆𝑅(𝑝) = {(𝐸1

𝑖𝑘
)𝑘∈𝐾 , ((𝐸2)−1

𝑗𝑘
)𝑘∈𝐾 } is only uniquely determined after choosing the two indices 𝑖0 and

𝑗0 assigned by 0 ∈ 𝐾; this ambiguity only occurs when the shared-route has – part of – a loop traveler.)
Proof of Corollary 8.11. Consider the left-oriented crossing shared-route 𝑆𝑅(𝑝) in 〈𝑊〉 with travelers
(𝛾1, 𝛾2) generated by the intersection point p. By the fellow traveler lemma, there is a corresponding
shared-route 𝑆𝑅′ in 〈𝑊 ′〉 with the travelers (𝛾′1, 𝛾

′
2), which must also be open; see Figures 45 and 46a.

Moreover, the endsℰ′ of 𝑆𝑅′ have orientations (Definition 8.10) matching those of the endsℰ of 𝑆𝑅(𝑝).
It follows that 𝑆𝑅′ is crossing. Its unique intersection point 𝑝′ is the desired image of p; see Figure 49.
(Note for later that since 𝑆𝑅(𝑝) is left-oriented, so is 𝑆𝑅′, thus 𝑆𝑅′ = 𝑆𝑅′(𝑝′).) �

Recall that a crossing shared-route 𝑆𝑅 for the ordered pair (𝛾1, 𝛾2) comes with an ordering of the
shared-route-biangles 𝔅𝑖 appearing along 𝛾1’s route, starting from the source-endℰ; see Definition 8.8.
If p and 𝑝′ are intersection points as in Corollary 8.11 and its proof, then the left-oriented crossing shared-
routes 𝑆𝑅(𝑝) and 𝑆𝑅′(𝑝′) have the same associated sequence of shared-route-biangles 𝔅𝑖 . However, if
𝑝 ∈𝑆𝑅 (𝑝) 𝔅𝑖 and 𝑝′ ∈𝑆𝑅′ (𝑝′) 𝔅 𝑗 (see again Definition 8.8), it need not be true that 𝑖 = 𝑗 ; see Figure 49.
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Figure 50. Identical oriented strand-sequences on each edge E.

Definition 8.13. We say that two corresponding intersection points p and 𝑝′, as in Corollary 8.11, lie
in the same shared-route-biangle if there is an index i such that 𝑝 ∈𝑆𝑅 (𝑝) 𝔅𝑖 �𝑆𝑅′ (𝑝′) 𝑝′, where the
sequence of shared-route-biangles {𝔅𝑖} is defined with respect to the left-oriented crossing shared-
routes 𝑆𝑅(𝑝) and 𝑆𝑅′(𝑝′) generated by p and 𝑝′, respectively.

For example, in Figure 49, even if it were true that 𝔅0 and 𝔅2 represented the same biangle 𝔅 on
the surface, we would not say that p and 𝑝′ lie in the same shared-route-biangle.
Lemma 8.14. There is a sequence of modified H-moves (Figure 41) applicable to the web W and a
sequence of modified H-moves applicable to 𝑊 ′, after which the bijection 𝒫 ↔ 𝒫′ from Corollary
8.11 satisfies the property that each intersection point p in the global picture 〈𝑊〉 and its corresponding
intersection point 𝑝′ in 〈𝑊 ′〉 lie in the same shared-route-biangle 𝔅𝑖 .

Before giving a proof (§8.8), we reduce the proof of the main lemma to that of Lemma 8.14.

8.7. Proof of the main lemma: finishing the argument

Assuming corresponding intersection points lie in the same shared-route-biangle, we claim that we are
done, 𝑊 = 𝑊 ′.

By the proof of the fellow traveler lemma, not only is there a natural bijection of travelers 𝛾 ↔ 𝛾′,
moreover for each edge E of 𝜆 there is a natural bijection of oriented strands 𝑠 ↔ 𝑠′ of 〈𝑊〉 and 〈𝑊 ′〉,
respectively, on E. Namely, the k-th out-strand (resp. in-strand) s, measured from left to right, say, with
respect to 𝔗, is matched with the k-th out-strand (resp. in-strand) 𝑠′. This satisfies that s lies in 𝛾 if and
only if 𝑠′ lies in 𝛾′.

Fix an edge E adjacent to a triangle 𝔗. Let 𝑆 = (𝑠𝑖) (resp. 𝑆′ = (𝑠∗𝑖 )) be the full sequence of oriented
strands for 〈𝑊〉 (resp. 〈𝑊 ′〉) on the edge E, measured from left to right. In particular, both in- and
out-strands occur in S (resp. 𝑆′).
Lemma 8.15. Assuming corresponding intersection points lie in the same shared-route-biangle, we
have that 𝑆 = 𝑆′, for every edge E of 𝜆; see Definition 8.13. (That is, 𝑠∗𝑖 = 𝑠′𝑖 for all i.)
Proof. It suffices to prove the following statement.
Claim 8.16. If 𝑠out is an out-strand of S and if 𝑠in is an in-strand of S, then

𝑠out lies to the left of 𝑠in ⇐⇒ 𝑠′out lies to the left of 𝑠′in.

See Figure 50. To prove the forward direction of the claim, suppose otherwise, that is suppose 𝑠′out

lies to the right of 𝑠′in. Let 𝑆𝑅 (resp. 𝑆𝑅′) be a shared-route containing 𝑠out and 𝑠in (resp. 𝑠′out and 𝑠′in)
(there are two possibilities for each, determined by the order of the pair of involved travelers). By the
fellow traveler lemma, 𝑆𝑅 is crossing (resp. open/closed noncrossing) if and only if 𝑆𝑅′ is crossing
(resp. open/closed noncrossing).

Suppose 𝑆𝑅 and 𝑆𝑅′ are crossing. Then we may assume that 𝑆𝑅 = 𝑆𝑅(𝑝) and 𝑆𝑅′ = 𝑆𝑅′(𝑝′) have
been chosen as the left-oriented crossing shared-routes generated by their unique intersection points p
and 𝑝′, respectively; see Definition 8.12. By hypothesis, p and 𝑝′ lie in the same shared-route-biangle,
call it 𝔅𝑖 , that is 𝑝 ∈𝑆𝑅 (𝑝) 𝔅𝑖 �𝑆𝑅′ (𝑝′) 𝑝′. Letting 𝔅 𝑗 denote the shared-route-biangle containing the
edge E with the strands 𝑠out and 𝑠in (and 𝑠′in and 𝑠′out), let us say that the strands are on the close (resp.
far) side if they are on the first (resp. last) edge of 𝔅 𝑗 hit while traveling from the source-end of the
shared-route. Similarly, it makes sense to say that the crossing comes before (resp. after) the strands
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Figure 51. Proof of Claim 8.16, by contradiction.

with respect to the source-end. Our first observation is that since the source-end is left-oriented, and
since 𝑠out lies to the left of 𝑠in, it cannot be true that the crossing comes after the strands. So let Case
1 (resp. Case 2) be the case that the crossing comes before the strands and that the strands are on the
close (resp. far) side. Since 𝑠′in lies to the left of 𝑠′out (by contradiction hypothesis), both Case 1 and
Case 2 lead to a contradiction, namely that both ends of the crossing shared-route 𝑆𝑅′ are left-oriented
(Definition 8.10); see Figure 51.

Similarly, if 𝑆𝑅 and 𝑆𝑅′ are noncrossing, the contradiction is that one of the shared-routes is left-
oriented, and the other is right-oriented; see Definition 8.9. Indeed, in the open case (Figure 46a),
this violates their matching end orientations (by the fellow traveler lemma), and in the closed case
(Figure 46b), this violates that both W and 𝑊 ′ are closed-left-oriented; see the beginning of §8.6.

The backward direction of the claim is proved by symmetry. �

Proof of main Lemma 7.7. By Lemma 8.14, we may assume that corresponding intersection points lie
in the same shared-route-biangle. By hypothesis, the webs W and 𝑊 ′ may differ over triangles 𝔗 by
permutations of corner arcs. However, we gather from Lemma 8.15 that they in fact have the same
orderings of corner arcs in each triangle 𝔗. Also, since the ladder-webs in the biangles 𝔅 are uniquely
determined by their boundary-edge sequences, it follows that W and 𝑊 ′ have the same ladder-web in
each biangle 𝔅; see Proposition 3.15. �

8.8. Proof of the main lemma: proof of Lemma 8.14

We have reduced the proof of the main lemma to proving Lemma 8.14. We begin by laying some
groundwork.

Let 𝔅 be a biangle, and let 𝒫𝔅 = 𝒫 ∩𝔅 be the set of intersection points of 〈𝑊〉 in 𝔅. Let E be a
boundary edge of the biangle 𝔅, and let 𝔅1 and 𝔅2 be the two biangles opposite 𝔅 across the triangle
𝔗 adjacent to the edge E; see Figure 52.

Definition 8.17. Let 𝑝 ∈ 𝒫𝔅 be an intersection point in 𝔅 of two travelers 𝛾1 and 𝛾2 in 〈𝑊〉. We denote
by 𝛾1(𝑝, 𝐸) the half-segment of 𝛾1 connecting p to E. Define similarly 𝛾2 (𝑝, 𝐸). The pyramid Δ (𝑝, 𝐸)
bounded by p and E is the triangular subset of the biangle 𝔅 bordered by the boundary edge E and the
two half-segments 𝛾1 (𝑝, 𝐸) and 𝛾2(𝑝, 𝐸); see Figure 52.

Let 𝑃 ⊆ 𝒫𝔅 be a subset of intersection points. We call P saturated with respect to E if

𝒫𝔅 ∩

(⋃
𝑝∈𝑃

Δ (𝑝, 𝐸)

)
= 𝑃.
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Figure 52. Pushing a saturated movable subset P into adjacent biangles. (Two rounds of pushes are
required to go from the second to third picture.).

In other words, there are no intersection points in the pyramids Δ (𝑝, 𝐸), 𝑝 ∈ 𝑃, that are not
already in P.

An intersection point 𝑝 ∈ 𝒫𝔅 is movable with respect to E if, after crossing E, the half-segments
𝛾1 (𝑝, 𝐸) and 𝛾2 (𝑝, 𝐸) extend parallel to each other across the adjacent triangle 𝔗, thus landing in the
same opposite biangle, either 𝔅1 or 𝔅2; see Figure 52, where on the left, six points are movable; in
the middle, four points are movable and on the right, none are movable. We say a subset 𝑃 ⊆ 𝒫𝔅 is
movable with respect to E if each 𝑝 ∈ 𝑃 is movable.

Claim 8.18. Let 𝑃 ⊆ 𝒫𝔅 be a subset of intersection points that is saturated and movable with respect
to E. Then, there exists a sequence 𝑊 = 𝑊0, 𝑊1, . . . ,𝑊𝑛 of webs and a sequence 𝑃−1 = ∅ � 𝑃0 �
𝑃1 � · · · � 𝑃𝑛−1 = 𝑃 ⊆ 𝒫𝔅 of intersection points of 〈𝑊〉 in the biangle 𝔅, such that 𝑊𝑖+1 is obtained
from 𝑊𝑖 by a finite number of modified H-moves (Figure 41) in such a way that the points 𝑃𝑖 − 𝑃𝑖−1 are
carried into the two biangles 𝔅1 ∪𝔅2 and no other intersection points are moved. After this process is
complete, P has been moved into 𝔅1 ∪𝔅2 and all the other intersection points 𝒫 − 𝑃 remain unmoved
in their original biangles.

Claim 8.18 will first be used in the proof of Claim 8.22. We now prepare to prove Claim 8.18.
We say that 𝑝 ∈ 𝒫𝔅 is immediately movable with respect to E if it is movable and there are

no other intersection points in the pyramid Δ (𝑝, 𝐸), that is Δ (𝑝, 𝐸) ∩ 𝒫𝔅 = {𝑝}. Equivalently,
Int(Δ (𝑝, 𝐸)) ∩ 〈𝑊〉 = ∅, hence a modified H-move can be applied to carry p across the edge E, across
the adjacent triangle 𝔗 and into one of the opposite biangles 𝔅1 or 𝔅2; see Figure 52, where on the left
and in the middle, two and three points are immediately movable.

The following statement is evident from the ladder-web structure in the biangle 𝔅.

Fact 8.19 (Nested pyramids). If 𝑞 ∈ 𝒫𝔅 ∩ Δ (𝑝, 𝐸) is an intersection point in the pyramid Δ (𝑝, 𝐸),
then Δ (𝑞, 𝐸) ⊆ Δ (𝑝, 𝐸). Consequently, if p is movable, then so is q. Therefore, if p is movable, then
there exists an innermost q in Δ (𝑝, 𝐸) that is immediately movable. �

Proof of Claim 8.18. By induction, assume 𝑊𝑖 and 𝑃𝑖−1 are given. At this stage, the intersection points
𝑃𝑖−1 have been moved into 𝔅1 ∪𝔅2, and the intersection points 𝑃 − 𝑃𝑖−1 ≠ ∅ are still in 𝔅. Note that,
since P is saturated in 〈𝑊〉, 𝑃 − 𝑃𝑖−1 is saturated in 〈𝑊𝑖〉, that is,

𝑃 − 𝑃𝑖−1 = 𝒫
(𝑖)
𝔅 ∩

(
∪𝑝∈𝑃−𝑃𝑖−1Δ

(𝑖) (𝑝, 𝐸)
)
⊆ 〈𝑊𝑖〉.

Since by hypothesis each 𝑝 ∈ 𝑃 − 𝑃𝑖−1 is movable, by Fact 8.19 the subset

𝑄𝑖 = {𝑞 ∈ 𝒫
(𝑖)
𝔅 ∩ (∪𝑝∈𝑃−𝑃𝑖−1Δ

(𝑖) (𝑝, 𝐸)); 𝑞 is immediately movable} ≠ ∅,

is nonempty. In particular, 𝑄𝑖 ⊆ 𝑃 − 𝑃𝑖−1. We can thus apply modified H-moves to 𝑊𝑖 to move the
intersection points 𝑄𝑖 from the biangle 𝔅 into the two biangles 𝔅1 ∪𝔅2, yielding the new web 𝑊𝑖+1.
Putting 𝑃𝑖 = 𝑃𝑖−1 ∪𝑄𝑖 finishes the induction step; see Figure 52, where 𝑛 = 3. �
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The following statement is immediate from Fact 8.19.

Fact 8.20 (Saturation of a subset of intersection points). For any subset 𝑄 ⊆ 𝒫𝔅, the set

𝑃 = 𝒫𝔅 ∩
���
⋃
𝑞∈𝑄

Δ (𝑞, 𝐸)
��� ⊆ 𝒫𝔅

is saturated with respect to E. �

We continue moving toward the proof of Lemma 8.14. We are now dealing with two webs W and
𝑊 ′. Let E, 𝔗, 𝔅, 𝔅1, 𝔅2 be as before. We begin by setting some notation.

Given a subset 𝑃 ⊆ 𝒫𝔅, put

𝑃′(𝑃, 𝐸) = 𝒫′𝔅 ∩
���

⋃
{𝑝∈𝑃; 𝑝 and 𝑝′ lie in the same shared-route-biangle}

Δ (𝑝′, 𝐸)
��� ⊆ 𝒫′𝔅.

In other words, 𝑃′(𝑃, 𝐸) consists of the points in 𝒫′𝔅 lying in the pyramids Δ (𝑝′, 𝐸) generated by those
intersection points 𝑝′ in 𝒫′𝔅 whose corresponding intersection point p lies in the same shared-route-
biangle as 𝑝′ and satisfies 𝑝 ∈ 𝑃. Symmetrically, given a subset 𝑃′ ⊆ 𝒫′𝔅, put

𝑃(𝑃′, 𝐸) = 𝒫𝔅 ∩
���

⋃
{𝑝′ ∈𝑃′; 𝑝′ and 𝑝 lie in the same shared-route-biangle}

Δ (𝑝, 𝐸)
��� ⊆ 𝒫𝔅.

Note that (1) the above shared-route-biangles necessarily coincide with the biangle 𝔅, and (2) generally,
either of the sets 𝑃′(𝑃, 𝐸) or 𝑃(𝑃′, 𝐸) may be empty.

Fact 8.21. The union of movable sets is movable. Let 𝑃 ⊆ 𝒫𝔅 (resp. 𝑃′ ⊆ 𝒫′𝔅) be movable with respect
to E. Then 𝑃′(𝑃, 𝐸) ⊆ 𝒫′𝔅 (resp. 𝑃(𝑃′, 𝐸) ⊆ 𝒫𝔅) is movable with respect to E.

Proof. The first statement is obvious. For the second, if 𝑝 ∈ 𝑃 is movable and if 𝑝′ lies in the
same shared-route-biangle as p, then, by the fellow traveler Lemma 8.3, 𝑝′ is movable. By Fact 8.19,
𝒫′𝔅 ∩ Δ (𝑝

′, 𝐸) ⊆ 𝒫′𝔅 is movable. By the first statement, 𝑃′(𝑃, 𝐸) is movable. �

We are now prepared to prove Lemma 8.14, which we restate here for convenience.

Lemma 8.14. There is a sequence of modified H-moves (Figure 41) applicable to the web W and a
sequence of modified H-moves applicable to 𝑊 ′, after which the bijection 𝒫 ↔ 𝒫′ from Corollary
8.11 satisfies the property that each intersection point p in the global picture 〈𝑊〉 and its corresponding
intersection point 𝑝′ in 〈𝑊 ′〉 lie in the same shared-route-biangle.

Proof. Step 1. Let N equal the cardinality 𝑁 = |𝒫 | = |𝒫′ |. Define

𝑁 (𝑊,𝑊 ′) = |{𝑝 ∈ 𝒫; 𝑝 and 𝑝′ lie in the same shared-route-biangle}| ∈ Z�0.

If 𝑁 (𝑊,𝑊 ′) = 𝑁 , then we are done. So assume 𝑁 (𝑊,𝑊 ′) < 𝑁 .
The strategy is simple. If two intersection points 𝑝 ∈ 𝒫𝔅 and 𝑝′ ∈ 𝒫𝔅′ do not lie in the same shared-

route-biangle, then we choose sufficiently large saturated movable sets 𝑝 ∈ 𝑃 ⊆ 𝒫𝔅 and 𝑝′ ∈ 𝑃′ ⊆ 𝒫𝔅′

such that pushing P and 𝑃′ into adjacent biangles via Claim 8.18 does not decrease 𝑁 (𝑊,𝑊 ′). This can
be done in a controlled way so that eventually 𝑁 (𝑊,𝑊 ′) increases.

Step 2. Let E, 𝔗, 𝔅, 𝔅1, 𝔅2 be as above.
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Claim 8.22. Let 𝑝0 ∈ 𝒫𝔅 be movable with respect to E. Then, there exist subsets 𝑝0 ∈ 𝑃(𝑝0) ⊆ 𝒫𝔅

and 𝑃′(𝑝0) ⊆ 𝒫′𝔅, and webs 𝑊1 and 𝑊 ′1 obtained by applying finitely many modified H-moves to W
and 𝑊 ′, respectively, such that: in 〈𝑊1〉 and

〈
𝑊 ′1

〉
the subsets 𝑃(𝑝0) and 𝑃′(𝑝0) have been moved into

𝔅1 ∪𝔅2; also 𝒫 − 𝑃(𝑝0) and 𝒫′ − 𝑃′(𝑝0) are unmoved; and

𝑁 � 𝑁 (𝑊1,𝑊
′
1) � 𝑁 (𝑊,𝑊 ′) ∈ Z�0. (*)

We prove the claim. Our main task is to define two subsets 𝑝0 ∈ 𝑃(𝑝0) ⊆ 𝒫𝔅 and 𝑃′(𝑝0) ⊆ 𝒫′𝔅
that are saturated and movable with respect to E, satisfying the property that

𝑝 ∈ 𝑃(𝑝0), 𝑝 and 𝑝′ lie in the same shared-route-biangle

⇐⇒ (**)

𝑝′ ∈ 𝑃′(𝑝0), 𝑝′ and 𝑝 lie in the same shared-route-biangle.

We do this simultaneously by a ping-pong procedure.
Put 𝑃1 = 𝒫𝔅 ∩ Δ (𝑝0, 𝐸) and 𝑃′1 = 𝑃′(𝑃1, 𝐸) ⊆ 𝒫′𝔅. Having defined 𝑃𝑖 ⊆ 𝒫𝔅 and 𝑃′𝑖 ⊆ 𝒫′𝔅,

put 𝑃𝑖+1 = 𝑃𝑖 ∪ 𝑃(𝑃′𝑖 , 𝐸) and 𝑃′𝑖+1 = 𝑃′𝑖 ∪ 𝑃′(𝑃𝑖+1, 𝐸). This defines two nested infinite sequences
𝑃1 ⊆ 𝑃2 ⊆ · · · ⊆ 𝒫𝔅 and 𝑃′1 ⊆ 𝑃′2 ⊆ · · · ⊆ 𝒫′𝔅. Since 𝒫𝔅 and 𝒫′𝔅 are finite, these sequences stabilize:
𝑃𝑖 = 𝑃𝑖+1 and 𝑃′𝑖 = 𝑃′𝑖+1 for all 𝑖 � 𝑖0. Set 𝑃(𝑝0) = 𝑃𝑖0 � 𝑝0 and 𝑃′(𝑝0) = 𝑃′𝑖0 .

Note that, by construction, there exists 𝑄 ⊆ 𝒫𝔅 and 𝑄 ′ ⊆ 𝒫′𝔅 such that

𝑃(𝑝0) = 𝒫𝔅 ∩
���
⋃
𝑞∈𝑄

Δ (𝑞, 𝐸)
��� and 𝑃′(𝑝0) = 𝒫′𝔅 ∩

���
⋃
𝑞′ ∈𝑄′

Δ (𝑞′, 𝐸)
���.

By Fact 8.20, 𝑃(𝑝0) and 𝑃′(𝑝0) are saturated with respect to E.
Observe also that since 𝑝0 ∈ 𝒫𝔅 is movable by hypothesis, 𝑃1 = 𝒫𝔅 ∩Δ (𝑝0, 𝐸) is movable by Fact

8.19, hence 𝑃(𝑝0) ⊆ 𝒫𝔅 and 𝑃′(𝑝0) ⊆ 𝒫′𝔅 are movable by Fact 8.21.
To check Equation (**), by symmetry it suffices to check one direction. Assume 𝑝 ∈ 𝑃(𝑝0) and that

p and 𝑝′ lie in the same shared-route-biangle. Let i be such that 𝑝 ∈ 𝑃𝑖 . Then

𝑝′ ∈ 𝒫′𝔅 ∩ Δ (𝑝
′, 𝐸) ⊆ 𝑃′(𝑃𝑖 , 𝐸) ⊆ 𝑃′𝑖 ⊆ 𝑃′(𝑝0).

To prove Equation (*), we use Claim 8.18 to move the saturated and movable sets 𝑃(𝑝0) and 𝑃′(𝑝0),
and only these sets, into the opposite biangles 𝔅1 ∪𝔅2 via finitely many modified H-moves applied to
W and 𝑊 ′, yielding the desired webs 𝑊1 and 𝑊 ′1 (note what we are here calling 𝑊1 was called 𝑊𝑛 in the
statement of Claim 8.18). If 𝑝 ∈ 𝑃(𝑝0) moves into the biangle 𝔅1 (resp. 𝔅2), and if 𝑝′ lies in the same
shared-route-biangle as p so that 𝑝′ ∈ 𝑃′(𝑝0) by Equation (**), then by the fellow traveler Lemma 8.3
𝑝′ also moves into the biangle 𝔅1 (resp. 𝔅2) and similarly if the roles of p and 𝑝′ are reversed.

Step 3. To finish the proof, assume that p and 𝑝′ do not lie in the same shared-route-biangle. Then
it makes sense to talk about which of p or 𝑝′ is farther away from the source-end ℰ or ℰ′ of the left-
oriented crossing shared-route 𝑆𝑅(𝑝) or 𝑆𝑅′(𝑝′) which it generates, respectively. More precisely, if
𝑝 ∈𝑆𝑅 (𝑝) 𝔅𝑖 and 𝑝′ ∈𝑆𝑅′ (𝑝′) 𝔅 𝑗 , 𝑖, 𝑗 � 0, then 𝑖 ≠ 𝑗 and p being farther away is equivalent to 𝑖 > 𝑗 .

Assume p is farther away, so 𝑖 > 𝑗 . By Claim 8.22, we can push p one step closer to the source-endℰ,
that is we can push p into 𝔅𝑖−1. For this step, 𝑝′ either (1) stays in 𝔅 𝑗 , (2) is pushed into 𝔅 𝑗−1, or (3) is
pushed into 𝔅 𝑗+1; see Figure 53. Notice since no two adjacent edges in a shared-route can represent the
same edge in the split ideal triangulation 𝜆 (by the no-switchbacks property), case (3) can only happen
if 𝑗 < 𝑖 − 1. Also, again by Claim 8.22, as a result of this step the number 𝑁 (𝑊,𝑊 ′) only increases or
stays the same.
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Figure 53. Moving intersection points into the same shared-route-biangle.

Since the indices i,j are bounded below, after multiple applications of this step eventually p and
𝑝′ fall into the same shared-route-biangle, at which point 𝑁 (𝑊,𝑊 ′) strictly increases. Repeating this
procedure for each pair p and 𝑝′ completes the proof of Lemma 8.14. �

9. Webs on surfaces-with-boundary

We generalize Theorem 7.1 to the case of surfaces-with-boundary �̂�. More precisely, we give two
distinct, but complementary, versions of the result. The first version, where we think of the surface �̂�
as generalizing punctured surfaces 𝔖, originates in the geometry and topology of SL3(C)-character
varieties. The second version, where we think of the surface �̂� as generalizing ideal polygons 𝔇𝑘 ,
originates in the representation theory of the Lie group SL3(C). The proof of either statement is
essentially the same as in the empty boundary case.

9.1. Essential webs

9.1.1. Surfaces-with-boundary
Our surfaces, now denoted �̂� = 𝔖 − 𝑃, are obtained by removing a finite set P of punctures from a
compact oriented surface𝔖. We require that there is at least one puncture, that each boundary component
of 𝔖 contains a puncture, and that the resulting punctured surface �̂� admits an ideal triangulation 𝜆;
this last property is equivalent to the Euler characteristic condition 𝜒(�̂�) < 𝑑/2, where d is the number
of components of 𝜕�̂�. The boundary edges of �̂� count as edges in an ideal triangulation 𝜆.

Once again, for simplicity, we assume that 𝜆 does not contain any self-folded triangles; however, our
results should extend to this setting essentially without change.

The split ideal triangulation 𝜆 associated to an ideal triangulation 𝜆 is defined as in §4.3. In particular,
the boundary edges of �̂� are split as well.

9.1.2. Essential webs
A global web, or just web, W on the surface �̂� is defined as in Definition 3.1, except ‘𝔇𝑘 ’ is replaced by
‘�̂�’ and ‘local’ is replaced by ‘global’.

The internal and external faces of a web W on �̂� are defined as in Definition 3.2, except with the
appropriate replacements as above. As usual, a web W on �̂� is nonelliptic if all of its internal faces have
at least six sides; compare Definition 3.4.

An essential web W on �̂� is defined as in Definition 3.8, where in addition the arc 𝛼 needs to be
isotopic (respecting boundary) in �̂� to the segment 𝐸 .

The good position of a web W with respect to a split ideal triangulation 𝜆 is defined exactly as in
Definition 4.5, without change.
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9.2. Rungless essential webs; first version of the boundary result

9.2.1. Rungless essential webs
As usual, a rungless web W on the surface �̂� is a web that does not have any H-faces; compare
Definition 3.9.

The parallel equivalence class of a rungless web W is defined as in Definition 2.3, except we have to
include another global parallel-move exchanging two arcs that together with segments in 𝜕�̂� form the
boundary of an embedded rectangle R in the surface �̂�; for instance, this would be the case in Figure 3
had we not identified the top and bottom edges of the surface.

The property of being essential is preserved by parallel equivalence. The collection of parallel
equivalence classes of rungless essential webs is denoted by [𝒲𝔖]. (Note, by definition, the empty class
[𝑊] = [∅] is in [𝒲𝔖].)

9.2.2. Knutson–Tao cone associated to an ideal triangulation
To an ideal triangulation 𝜆 of the surface �̂� we associate a dotted ideal triangulation, also denoted 𝜆, as
in §5.1. In particular, there are dots located on the boundary edges of �̂�, as, for example, in Figure 27b,
where �̂� = 𝔗 is an ideal triangle. The number N of dots in the dotted triangulation 𝜆 can be computed
as 𝑁 = 2 ∗ #{edges 𝐸 of 𝜆} + #{triangles 𝔗 of 𝜆}. (Since each ideal triangulation 𝜆 has −3𝜒(�̂�) + 2𝑑
edges and −2𝜒(�̂�) + 𝑑 triangles, note N is independent of 𝜆.)

To the dotted triangulation 𝜆 we associate the Knutson–Tao cone 𝒞+𝜆 ⊆ Z
𝑁
�0, as in §6.3.

9.2.3. Coordinates for rungless essential webs
The minimal position of a rungless web W with respect to an ideal triangulation 𝜆 is defined as in
Definition 4.2. Then, Proposition 4.3 holds word for word, except ‘nonelliptic’ is replaced by ‘rungless
essential’.

Modified H-moves take rungless essential webs in good position to webs of the same type. Proposition
4.7 holds verbatim, except ‘nonelliptic’ is replaced by ‘rungless essential’.

Given an ideal triangulation 𝜆, we define the Fock–Goncharov global coordinate function ΦFG
𝜆 :

[𝒲𝔖] → 𝒞+𝜆 as in §5.4; see Definition 5.4.

Theorem 9.1 (First boundary result). The Fock–Goncharov global coordinate function

ΦFG
𝜆 : [𝒲𝔖]

∼
−→ 𝒞+𝜆 ⊆ Z

𝑁
�0

is a bijection of sets, identifying parallel equivalence classes of rungless essential webs on the surface
�̂� with points of the Knutson–Tao cone associated to the ideal triangulation 𝜆.

Proof. As in the proof of Theorem 7.1, the strategy is to construct an explicit inverse

ΨFG
𝜆 : 𝒞+𝜆 −→ [𝒲𝔖] .

The mapping ΨFG
𝜆 is defined via the ladder gluing construction followed by removing internal elliptic

faces, as explained in §7.2-7.3. Because of the rungless condition, we also need to remove external
H-faces, which can be done at the cost of swapping two strands of the web lying on the boundary 𝜕�̂�.
For two examples of this procedure, see Figures 54 and 55 (compare Figures 37 and 39). As before, the
resulting rungless essential web is not unique in general.

In order to deal with this ambiguity, we need the analogue of the main Lemma 7.7, saying that two
rungless essential webs resulting from the ladder gluing construction are parallel equivalent. The proof
of the main lemma is essentially unchanged from §8. To say a word about it, the proof of Corollary 8.11
requires the fact that there are no crossing shared-routes terminating on the boundary 𝜕�̂�. This follows
from the rungless condition. �

Remark 9.2. Theorem 9.1 is closely related to [Kim20, Proposition 1.12].
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Figure 54. Ladder gluing construction for rungless essential webs: 1 of 2 (on the ideal square).

Figure 55. Ladder gluing construction for rungless essential webs: 2 of 2.

9.3. Application: geometry and topology of SL3 (C)-character varieties

As a consequence of the first version of the result, Theorem 9.1, we give an alternative geometric proof
of the Sikora–Westbury theorem [SW07, Theorem 9.5] (see also [FS22, Proposition 4]), whose original
proof in [SW07] assumes the diamond lemma from noncommutative algebra.

Corollary 9.3 (Application of the first boundary result). The collection [𝒲𝔖] of parallel equivalence
classes of rungless essential webs on the surface �̂� indexes a natural linear basis for the algebra
C[ℛSL3 (C) (�̂�)] of regular functions on the SL3 (C)-character variety.

Here, the character variety ℛSL𝑛 (C) (�̂�), for general n, was discussed in the introduction for surfaces
�̂� = 𝔖 with empty boundary. When 𝜕�̂� ≠ ∅, there is not a mainstream definition for ℛSL𝑛 (C) (�̂�).
Possible models may be found in [FP14, GS15, CL22, KQ19, FS22, Hig23]. In order for Corollary
9.3 to be well posed, we make use of a purely topological model, via skein algebras, which has the
advantage of admitting a natural deformation quantization.

Definition 9.4. Following Frohman–Sikora [FS22, §1,12], for a surface-with-boundary �̂� we define the
algebra C[ℛSL3 (C) (�̂�)] of regular functions on the SL3(C)-character variety to be the commutative
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(reduced skein) algebra 𝒮1 (�̂�) of [FS22, §3], where we have taken the specialization 𝑞 = 𝑎 = 1 of their
deformation parameters.

In particular, a web W on �̂� represents an element of 𝒮1 (�̂�).

Remark 9.5. When �̂� = 𝔖, Sikora [Sik01] proved that the trace functions Tr𝑊 on the character variety
ℛSL3 (C) (𝔖) furnish a natural isomorphism 𝒮1 (𝔖) � C[ℛSL3 (C) (𝔖)].

Proof of Corollary 9.3. We prove a more general statement. Let 𝒮𝑞,𝑎 (�̂�) be the reduced SL3-skein
algebra of [FS22, §3] for deformation parameters 𝑞, 𝑎 ∈ C − {0}. So, 𝒮1 (�̂�) = 𝒮1,1 (�̂�).

Higgins [Hig23] defined a SL3-stated skein algebra 𝒮
𝑞
st (�̂�) generalizing the SL2-stated skein algebra

of [CL22]. More precisely, we define 𝒮
𝑞
st (�̂�) to be Kim’s [Kim20, §5] adaptation of Higgins’ stated

skein algebra.
When 𝑎 = 1, inclusion provides a natural algebra homomorphism 𝜄 : 𝒮𝑞,1 (�̂�) → 𝒮

𝑞
st (�̂�) from

the Frohman–Sikora reduced skein algebra to the Higgins stated skein algebra; in fact, the mapping
𝜄 is onto the subalgebra 𝒮

𝑞
st=top (�̂�) generated by webs with all-top-states on the boundary 𝜕�̂�. Put

𝒮𝑞 (�̂�) := 𝒮𝑞,1 (�̂�). In summary, 𝜄 : 𝒮𝑞 (�̂�) � 𝒮
𝑞
st=top (�̂�) ⊆ 𝒮

𝑞
st (�̂�).

Using the boundary orientation of 𝜕�̂� induced by the orientation of �̂�, a web W on �̂� lifts to an
element of the skein algebra 𝒮𝑞 (�̂�). Moreover, parallel equivalent rungless webs 𝑊 ∼ 𝑊 ′ determine
the same element of 𝒮𝑞 (�̂�) (by [FS22, Figure 6] since 𝑎 = 1). We prove [𝒲𝔖] forms a basis for 𝒮𝑞 (�̂�).
It is immediate by construction that [𝒲𝔖] is spanning.

We mimic the strategy of [BW11, §8] in the SL2-case. Fix an ideal triangulation 𝜆 of �̂�. Building on
[Dou20, Dou21a, Dou21b], Kim [Kim20] defined a SL3-quantum trace map, which in particular is an
algebra homomorphism Tr𝑞𝜆 : 𝒮𝑞st (�̂�) → 𝒯

𝑞
𝜆 from the stated skein algebra 𝒮

𝑞
st (�̂�) to a quantum torus

𝒯
𝑞
𝜆 depending on 𝜆. More precisely, 𝒯𝑞

𝜆 = C[𝑍±1
1 , 𝑍±1

2 , . . . , 𝑍±1
𝑁 ]

𝑞 is a noncommutative q-deformation
of the algebra of Laurent polynomials in variables 𝑍𝑖 , which no longer commute but q-commute
(according to a quiver drawn on the triangulated surface). Here, N is the number of coordinates in
Theorem 9.1. (When 𝑞 = 1, the variables 𝑍𝑖 = 𝑋1/3

𝑖 can be thought of as formal cube roots of the
Fock–Goncharov coordinates 𝑋𝑖 .)

By [Kim20, Proposition 5.80] (and [Kim21, Proposition 3.15]), the quantum trace map Tr𝑞𝜆 satisfies
the property that the polynomial Tr𝑞𝜆 (𝜄(𝑊)), obtained by evaluating a rungless essential web W in
[𝒲𝔖], has a highest term 𝑍𝑎1

1 𝑍𝑎2
2 · · · 𝑍

𝑎𝑁
𝑁 (omitting the power of q coefficient) whose exponents are the

coordinates (𝑎1, 𝑎2, . . . , 𝑎𝑁 ) = ΦFG
𝜆 (𝑊) ∈ Z

𝑁
�0 of Theorem 9.1. (Here, by highest term, we mean that

if a monomial 𝑍
𝑎′1
1 𝑍

𝑎′2
2 · · · 𝑍

𝑎′𝑁
𝑁 also appears in Tr𝑞𝜆 (𝜄(𝑊)), then 𝑎′𝑖 � 𝑎𝑖 for all 𝑖 = 1, 2, . . . , 𝑁 .)

It follows that each W is nonzero in 𝒮𝑞 (�̂�), that 𝜄 is injective on [𝒲𝔖], that 𝜄([𝒲𝔖]) is linearly
independent in 𝒮

𝑞
st (�̂�), and lastly that 𝜄 : 𝒮𝑞 (�̂�)

∼
→ 𝒮

𝑞
st=top(�̂�) ⊆ 𝒮

𝑞
st (�̂�) is an isomorphism. In

particular, we gather [𝒲𝔖] is independent, hence a basis of 𝒮𝑞 (�̂�). �

9.4. Boundary-fixed essential webs; second version of the boundary result

9.4.1. Boundary-fixed essential webs
For a boundary edge E of the surface �̂�, a strand-set 𝑆𝐸 is a (possibly empty) set 𝑆𝐸 = {𝑠} of disjoint
oriented strands s located on E (compare Definition 3.12); see Figures 56 and 57, where the strands
are indicated by white-headed arrows. A strand-set 𝑆

𝜕�̂� = {𝑆𝐸 } for �̂� is a collection of strand-sets 𝑆𝐸

varying over all 𝐸 ⊆ 𝜕�̂�.

Definition 9.6. A boundary-fixed web W with respect to a strand-set 𝑆
𝜕�̂� for the surface �̂� is a web W

whose end-strands match the strand-set 𝑆
𝜕�̂�; see Figures 56 and 57.
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Figure 56. Ladder construction for boundary-fixed essential webs: 1 of 2 (on the ideal square).

Figure 57. Ladder construction for boundary-fixed essential webs: 2 of 2.

If W is boundary-fixed for a strand-set 𝑆
𝜕�̂�, then W is not boundary-fixed for any strand-set 𝑆′

𝜕�̂�
obtained by swapping two oppositely oriented strands of 𝑆

𝜕�̂� on a boundary edge.
For boundary-fixed webs, global parallel-moves can only be performed across embedded annuli, in

contrast to rungless webs (§9.2.1). Global parallel-moves preserve the property of being essential. We
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denote by [𝒲𝔖] (𝑆𝜕�̂�) the collection of parallel equivalence classes of boundary-fixed essential webs
for the strand-set 𝑆

𝜕�̂�. (Note, by definition, [𝑊] = [∅] ∈ [𝒲𝔖] (𝑆𝜕�̂�) if and only if 𝑆
𝜕�̂� = ∅.)

9.4.2. Boundary-fixed Knutson–Tao cone
By Figure 30 (recall also property (2) of Definition 5.1), a strand-set 𝑆𝐸 determines two local coordinates
on a boundary edge E of�̂�. More generally, a strand-set 𝑆

𝜕�̂� for the surface fixes 2∗#{boundary edges 𝐸}

coordinates on the boundary 𝜕�̂�. See Figure 56, for an example, where the fixed coordinates are colored
red.

Definition 9.7. The boundary-fixed Knutson–Tao cone 𝒞+𝜆 (𝑆𝜕�̂�) ⊆ 𝒞+𝜆 ⊆ Z
𝑁
�0 with respect to a strand-

set 𝑆
𝜕�̂� is the subset of 𝒞+𝜆 (as defined in §9.2.2) consisting of points whose boundary coordinates agree

with those determined by 𝑆
𝜕�̂�.

Note that, in contrast to boundary-fixed webs (§9.4.1), the boundary-fixed Knutson–Tao cone
𝒞+𝜆 (𝑆𝜕�̂�) ⊆ 𝒞+𝜆 is independent of permuting the boundary strands of 𝑆

𝜕�̂�. This is because the co-
ordinates on a boundary component only depend on the number of in- and out-strands, not on their
ordering along the edge (see property (2) in Definition 5.1).

9.4.3. Coordinates for boundary-fixed essential webs
The minimal position of a boundary-fixed web W with respect to an ideal triangulation 𝜆 is defined as in
Definition 4.2. Proposition 4.3 holds word for word, except ‘nonelliptic’ is replaced by ‘boundary-fixed
essential’.

Modified H-moves take boundary-fixed essential webs in good position to webs of the same type.
Proposition 4.7 holds, except ‘nonelliptic’ is replaced by ‘boundary-fixed essential’.

Given a strand-set 𝑆
𝜕�̂� and an ideal triangulation 𝜆, we define the Fock–Goncharov global coordinate

function ΦFG
𝜆 (𝑆𝜕�̂�) : [𝒲𝔖] (𝑆𝜕�̂�) → 𝒞+𝜆 (𝑆𝜕�̂�) ⊆ 𝒞+𝜆 as in §5.4; see Definition 5.4.

Theorem 9.8 (Second boundary result). The Fock–Goncharov global coordinate function

ΦFG
𝜆 (𝑆𝜕�̂�) : [𝒲𝔖] (𝑆𝜕�̂�)

∼
−→ 𝒞+𝜆 (𝑆𝜕�̂�) ⊆ 𝒞+𝜆 ⊆ Z

𝑁
�0

with respect to the strand-set 𝑆
𝜕�̂� is a bijection of sets, identifying parallel equivalence classes of

boundary-fixed essential webs with points of the boundary-fixed Knutson–Tao cone.

Proof. As in the proof of Theorem 7.1, the strategy is to construct an explicit inverse

ΨFG
𝜆 (𝑆𝜕�̂�) : 𝒞+𝜆 (𝑆𝜕�̂�) −→ [𝒲𝔖] (𝑆𝜕�̂�).

The mapping ΨFG
𝜆 (𝑆𝜕�̂�) is defined via the ladder gluing construction followed by removing internal

elliptic faces, as explained in §7.2-7.3. In contrast to the rungless setting (§9.2.3), no new reductions
are required. For examples, see Figures 56 and 57; compare the empty-boundary case, Figures 37 and
39, and the rungless boundary case, Figures 54 and 55.

We also need the analogue of the main Lemma 7.7, saying that two boundary-fixed essential webs
resulting from the ladder gluing construction are parallel equivalent. The proof of the main lemma is
essentially unchanged from §8. To say a word about it, for the proof of Corollary 8.11, if a shared-
route for W ending on the boundary 𝜕�̂� is crossing, then the corresponding shared-route for 𝑊 ′ is also
crossing, by the boundary-fixed condition. �

Corollary 9.9. Let two strand-sets 𝑆
𝜕�̂� and 𝑆′

𝜕�̂�
be the same up to permuting strands lying on the same

boundary edge. Then, there is a natural one-to-one correspondence

ΦFG
𝜆 (𝑆

′

𝜕�̂�
)−1 ◦ΦFG

𝜆 (𝑆𝜕�̂�) : [𝒲𝔖] (𝑆𝜕�̂�)
∼
−→ 𝒞+𝜆 (𝑆𝜕�̂�) = 𝒞+𝜆 (𝑆

′

𝜕�̂�
)
∼
−→ [𝒲𝔖] (𝑆

′

𝜕�̂�
)
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sending parallel equivalence classes of boundary-fixed essential webs W for 𝑆
𝜕�̂� to parallel equivalence

classes of boundary-fixed essential webs 𝑊 ′ for 𝑆′
𝜕�̂�

. Here, natural means that the resulting bijection
[𝒲𝔖] (𝑆𝜕�̂�) → [𝒲𝔖] (𝑆

′

𝜕�̂�
) is independent of the choice of triangulation 𝜆.

Proof. Let W be a boundary-fixed essential web for 𝑆
𝜕�̂�, and let 𝜆1 and 𝜆2 be two ideal triangulations.

We claim that there are webs 𝑊𝜆1 and 𝑊𝜆2 isotopic to W and in good position for the split ideal
triangulation 𝜆1 and 𝜆2, respectively, such that 𝑊𝜆1 and 𝑊𝜆2 have the same ladders in the boundary
biangles 𝔅 facing 𝜕�̂�.

Indeed, by pushing as many H’s of W as possible into the boundary biangles 𝔅, we may assume that
the web 𝑊 obtained from W by chopping off the boundary biangles 𝔅 is rungless essential. By §9.2.3
there exist webs 𝑊𝜆1 and 𝑊𝜆2 isotopic to 𝑊 that are in good position for 𝜆1 and 𝜆2, respectively. Let
𝑊𝜆1 and 𝑊𝜆2 be obtained by reattaching the ladders from the cut-off boundary biangles 𝔅 to 𝑊𝜆1 and
𝑊𝜆2 , respectively. This proves the claim.

To finish, the map [𝒲𝔖] (𝑆𝜕�̂�) → [𝒲𝔖] (𝑆
′

𝜕�̂�
) for 𝜆1 is computed via the following steps: (1) erase

the ladders of 𝑊𝜆1 from the boundary biangles 𝔅; (2) replace 𝑆
𝜕�̂� with 𝑆′

𝜕�̂�
by permuting boundary

strands; (3) insert the unique ladders into the boundary biangles 𝔅 matching this new boundary data;
(4) eliminate elliptic faces. A similar computation holds for the map with respect to 𝜆2. By the claim,
the webs for 𝜆1 and 𝜆2 resulting after step (3) are isotopic. �

9.5. Application: representation theory of the Lie group SL3 (C)

As a consequence of the second version of the result, Theorem 9.8, we make a connection to Kuperberg’s
famous theorem relating webs in the disk to the representation theory of SL3(C).

The finite-dimensional irreducible representations of SL3(C) are in one-to-one correspondence with
ordered pairs (𝑛in, 𝑛out) ∈ Z2

�0. For example, we may say that (1, 0) corresponds to the defining vector
representation V and (0, 1) corresponds to its dual representation 𝑉∗.

We assign to each strand-set 𝑆
𝜕�̂� a tensor product 𝑉 (𝑆

𝜕�̂�) = ⊗𝐸𝑉𝐸 of finite-dimensional irreducible
representations 𝑉𝐸 of SL3(C), varying over boundary edges E of �̂�, as follows. If 𝑛in

𝐸 (resp. 𝑛out
𝐸 ) is

the number of in-strands (resp. out-strands) of 𝑆𝐸 , where 𝑆
𝜕�̂� = {𝑆𝐸 }𝐸 , then we define 𝑉𝐸 to be the

irreducible representation corresponding to (𝑛in
𝐸 , 𝑛out

𝐸 ).
Note 𝑉 (𝑆

𝜕�̂�) = 𝑉 (𝑆′
𝜕�̂�
) if 𝑆

𝜕�̂� and 𝑆′
𝜕�̂�

are the same up to permuting strands on an E.
For a representation V of SL3(C), let 𝑉SL3 (C) ⊆ 𝑉 be the subspace of invariant vectors.

Theorem 9.10 [Kup96, Theorem 6.1]. For �̂� = 𝔇𝑘 (𝑘 � 1) the ideal polygon with k boundary edges
(§3.1), the collection [𝒲𝔇𝑘 ] (𝑆𝜕𝔇𝑘 ) of classes [𝑊] of boundary-fixed essential webs with respect to a
strand-set 𝑆𝜕𝔇𝑘 indexes a linear basis for the invariant space 𝑉 (𝑆𝜕𝔇𝑘 )

SL3 (C) .

Note that, for �̂� = 𝔇𝑘 , a parallel equivalence class [𝑊] ∈ [𝒲𝔇𝑘 ] (𝑆𝜕𝔇𝑘 ) is an isotopy class.
From Kuperberg’s theorem, together with Theorem 9.8, we immediately obtain:

Corollary 9.11 (Application of the second boundary result). For �̂� = 𝔇𝑘 (𝑘 � 3), a strand-set 𝑆𝜕𝔇𝑘 ,
and an ideal triangulation 𝜆 of 𝔇𝑘 , the boundary-fixed Knutson–Tao cone 𝒞+𝜆 (𝑆𝜕𝔇𝑘 ) ⊆ 𝒞+𝜆 ⊆ Z

𝑁
�0

indexes a linear basis for the invariant space 𝑉 (𝑆𝜕𝔇𝑘 )
SL3 (C) . �

Remark 9.12.

1. This corollary is reminiscent of results about the Knutson–Tao hive model [KT99, Buc00] for
the general linear group GL𝑛 (C), where the Littlewood–Richardson coefficients 𝑐𝜈𝜆𝜇 associated
to highest weights 𝜆, 𝜇, 𝜈 provide the multiplicities of irreducible representations 𝑉𝜈 in 𝑉𝜆 ⊗ 𝑉𝜇.
Certain multiplicities 𝑐𝜈𝜆𝜇 can be computed as the number of solutions of the Knutson–Tao rhombus
inequalities, without n-congruence conditions (see Remark 6.5(1)), on the dotted n-triangle matching
certain fixed boundary conditions determined by the weights 𝜆, 𝜇, 𝜈. (Possibly related, see [Mag20].)
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2. Corollary 9.11 was the result of Kuperberg’s theorem combined with Theorem 9.8. We would like
to have gone in the other direction. That is, we would like to give an alternative geometric proof
of Kuperberg’s theorem, as a consequence of Theorem 9.8 and Corollary 9.11. Indeed, this was the
spirit of Kuperberg’s proof for the SL2(C)-version of his result [Kup96, Theorem 2.4], where the
SL2(C)-analogue of Corollary 9.11 is a simple consequence of the Clebsch–Gordan theorem. It is
natural then to ask:

Question 9.13. Is there an alternative purely representation theoretic proof of Corollary 9.11?

Question 9.14. Is there a representation theoretic interpretation of Theorem 9.8 for any surface-with-
boundary �̂�, generalizing Kuperberg’s theorem in the case �̂� = 𝔇𝑘? (We ask this question also for
SL2 (C).) Possible clues may lie in [FP14, CL22, GS19].

Acknowledgements. This research would not have been possible without the help and support of many people, whose time and
patience often seem limitless. In particular, we are profoundly grateful to Dylan Allegretti for his involvement during the early
stages of this project; Charlie Frohman for his guidance from the very beginning; Francis Bonahon and Viktor Kleen for helping
us refine our ideas and for technical assistance; Tommaso Cremaschi for his invaluable feedback after reading way too many
drafts; as well as Vijay Higgins, Hyun Kyu Kim, Linhui Shen and Adam Sikora for helpful conversations. Much of this work was
completed during very enjoyable visits to Tsinghua University in Beijing (supported by a GEAR graduate internship grant) and
the University of Southern California in Los Angeles. We would like to take this opportunity to extend our enormous gratitude to
these institutions for their warm hospitality and many tasty dinners (the first author was especially fond of the sōngshǔ guìyú).
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