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Abstract

In this article we establish an estimate for a sum over primes that is the analogue of an esti-
mate for a sum over consecutive integers which has proved to be very useful in applications of
exponential sums to problems in number theory.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 L 40.

1. Notation

Let Co, c\,... denote effectively computable positive absolute constants. For
any real number A, we write min(A, 1/0) = A. For any real number x let
[x] denote the greatest integer less than or equal to x, let {x} = x - [x]
denote the fractional part of x and let ||JC|| = min({jc}, 1 - {x}) denote the
distance from x to the nearest integer. We write e2nix — e(x). Further, for
any positive integer n let <f>(n) denote the number of positive integers less
than or equal to n and coprime with n.
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2. Introduction

In number theoretical applications of exponential sums we often use esti-
mates for sums of the form

(1)

where y and a are real numbers and N is a positive integer (see, for example,
[5, page 24]). The purpose of this paper is to derive similar estimates for sums
of the form

(2)

where the summation is taken over primes instead of consecutive integers.
We expect our estimates will be widely applicable. In fact, a problem in
additive number theory (see [3]) first led us to the study of sums of the form
(2). By using the result below we are able to simplify the proof of the main
theorem of [3].

THEOREM. Let e be a positive real number. There exists an effectively com-
putable positive absolute constant C\ and a positive real number N$ which is
effectively computable in terms of e such that if N is a positive integer with
N > No and y is a real number with

(3) 3<y<N4-e,

then

E - i ii i , - i \ N l o g y log l o g y
min(y , | |pa|| » ) < c , * ' * *y ,

p<N °

for all real numbers a with l/N <a < 1 - l/N.

This paper is devoted to a proof of the above theorem. We shall use some
ideas from [3]. In particular the treatment of the "major arcs" will be nearly
the same as in [3].

3. Preliminary lemmas

LEMMA 1. There exists an effectively computable positive real number C2
such that

4>(n) >c%i—;
log log n

for n > 3.

PROOF. See [2, page 24].

https://doi.org/10.1017/S1446788700030913 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030913


[3] On exponential sums over prime numbers 425

LEMMA 2. There exists an effectively computable positive real number c^
such that for any integers a and b with b > 2,

l<n<b
(n+a,b)=\

PROOF. This is [3, Lemma 5].

LEMMA 3. Let h, a and q be integers with a > 0, q > 1 and (a, q) — 1. Let
p(n) be a real valued function defined for those integers n with h < n < h + q
and(n,q) = 1. Put

A = max p(n) - min p(n)
h<n<h+q h<n<h+q

(n,q)=\ (n,q)=\

and

V(«) = -{an + p(n)).

There is an effectively computable positive absolute constant c* such that if
X < 1 and ifE is a real number satisfying 2 < E < q then

h<n<h+q
(n.q)=\

PROOF. This is [3, Lemma 6].

LEMMA 4. Let 8 be a real number satisfying 0 < 8 < 1/2. Then there exists
a periodic function y/(x,8), with period 1, such that

(i) y(x,8) > 1 in the integral -8 < x <8,
(ii) y/(x,5) >0forallx,
(iii) i//(x, 8) has a Fourier series of the form

ajcos 2njx

where \ao\ < n28 and \aj\ < 2n28 for 0<j< (1/28) - 1.

PROOF. Put N = [1/28] and

n2 ^

https://doi.org/10.1017/S1446788700030913 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030913


426 A. Sarkozy and C. L. Stewart [4]

Then (ii) holds trivially. Certainly 11 - e(a)\ = 2| sin na\ and | sina| < \a\ for
all a, while |sina| > 2\a\/n for |a| < n/2. Therefore for \x\ < S < l/(2N)
we have

4N2
1 - e(Nx)
1 - e(x)

n2 n2 (j-*Nx)2_
— A %n i \? l 'AN2 |sin7rx|2 - AN2 (nx)2

and so (i) also holds.
Finally, we have

where

and

n2 n2

4[1/2<J] - 2(1/2(5)
2

for

which completes the proof of Lemma 4.
We shall also require the Brun-Titchmarsh theorem and a refinement, due

to Vaughan, of Vinogradov's fundamental lemma.
Let JC be a positive real number and let / and k be positive integers. As

usual we denote the number of primes less than or equal to x by n(x), and
the number of primes less than or equal to x and congruent to / modulo k
by n(x,k, I).

LEMMA 5 (Brun-Titchmarsh theorem). Let x and y be positive real num-
bers and let k and I be relatively prime positive integers with y>k. Then

n{x + y, k, I) - n{x, k, 1) < —
<j>{k)\o%{y/k)

PROOF. See [1, Theorem 2].
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LEMMA 6. If a is a real number and a, q, H and N are positive integers
with (a,q)- I, q <N, H< N and \a - a/q\ < q~2 then

E
P<N

< c5(logN)6(HNq-1?2 + + (HNq)1'2

exp(21ogA71oglogiV)),

where cs is an effectively computable positive absolute constant.

PROOF. This follows from [2, Satz 5.2] and [4, Theorem 1] by partial
summation.

4. Further preliminaries

Put P = y2(logN)i4 and Q = N/P.
Let 7*] denote the set of those a in the interval (l/N,l - l/N) for which

there exist positive integers a and b with (a,b)= 1, such that

a — -rb
1

(4)

and

(5) P<b<Q = N/P

Put T' = (l/N, 1 - l/N) -Ti,so that V consists of the real numbers a in
(l/N, 1 - l/N) which are not in Tx. Suppose that a e V. Then by Dirichlet's
theorem there exist integers a and b with

(6) a
a~b

J_
bQ'

0 < a, 0 < b < Q and (a, b) = 1. Plainly

1
(7)

and thus,

(8) 0<b<P.

To each a in V we shall associate a pair of coprime integers a and b with
a > 0 and & > 0 satisfying (6) and (8) and we shall put fi = a - f. Let us
define subsets T2, and T4 of T' in the following way:

= {a€.T':\<b<y,\p\< l/2bN},

= {aeT': l<b<y.\0\> l/2bN},

= {ae V: y<b}.

https://doi.org/10.1017/S1446788700030913 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030913


428 A. Sarkozy and C. L. Stewart [6]

Further put

p<N

Since (l/N,l- l/N) = Tx U T2 U T3 U T4 it suffices to show that

(9) max S(a) < c ^ l o g ^ " l o g l o g ^
(9) max5(a )<c 6 ^ N

for / = 1,2, 3,4 when N > No. For / = 1 ("minor arcs"), (9) will be estab-
lished in Section 5, while cases i — 2,3,4 ("major arcs") will be dealt with in
Section 6.

5. Minor arcs

Assume that a e Tx and let No, N\, N2 denote real numbers which are
effectively computable in terms of e.

For p > 0, put
Z{N,a,l})= £ 1.

p<N
\\\P

Then by the prime number theorem, for N> N\,

(10) S(a)=
p<N

p<N j=2 p<N

[y/2]+i / / • , x

s E »+ E E ™('-(i7i)
p<N j=2 p<N \ v J '
p<N j=2 p<N

\\pa\\<l/y Ll

= yZ(N,a,l/y)+ £ y
j=2 J

Z(n.a,j/y) ( j ^ - jj + ^Z(N,a,([y/2] + \)ly)

*-*> (/ - 1)/
; = 2 U >J p<N
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By Lemma 4 (with j/y in place of d), for N > N2 and 1 < j < y/2 we
have

Z{N,a,j/y)= J2 ^
p<N

p<N \

= aon(N) +
o<

< \ao\n(N) +

/
<2n2j / N

~ n y Uog

E
p<N

I
0<£<(>

,1;
I

0<k<(y

Upc.ily)

~2 ak cos 2nk(pa) j
/2j)-l J

lj)-l P<N

E e(kPa)

Y, e{kpa)
p<N

Thus, by Lemma 6,

1/2

^ ] Ar4/5exp(21ogA71oglogAr)J )

+ c5(logN)6(2yNP-1'2 + yN3'4 +

Since P = y2(logN)u it follows from (3) and (11) that for N > N3 and
i < ; < y/2

oi_u_ + c L_?_<c J N

ylogN 6 ylogN 7 ylogN'

- J N

Thus from (10),

[y/2]

(12) S(a)<yJ^-r.—
U-\)j 'y

+ 5
N

ly/2]

<5
1

log AT ' l o g AT log AT
(forae Tj).
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6. Major arcs

Put

S(a,b)— 2_^ m^n(y>\\Pa\\~)-
p<N

(P.b)=\

In view of (3) for N > N5 we have for any real number a and positive integer
b < N, that

(13) S(a)= £ m i n ( j
p<N

p\b p<N

= y ^2 1 + S(a, b) < c9y log* + S(a, b)
P\b

< c9y logN + S(a, b) < ^ r r + S(a, b).
logiv

Assume first that a e T2. Notice that we may assume that b > 1, since if
b = 1 then |^| < 1/2N and consequently a is not in (I/A7,1 - l/N). Further
since ft/1 we may assume that a ^ 0.

For (p, b) = 1 we have

\ap\\ _ J_ > I||££
b II 2b ~ 2 II b

since b > 1 and (ap, b) = 1. Thus

S{a,b)<
p<N

(P.b)=\

= V^ V 7\\h/h\\~lE
(h,b)=\ap=h (mod 6)

<2

By Lemma 5, (3) and b < y, we have

4A^ ^ 6 ^ UN ^

l ^

(h,b)=l (h,b)=l
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and so, by Lemma 2,

(14) S(a.b)<Ci0

Nlogb N log y
<Cio-logN - lu logW

as required.
We shall assume next that a e r3, whence

( i5) m^^h
Put L = l/2b\0\. It follows from (15) that

(16) Q<L<N.

We have

S(a,b) =

(for a € T2)

p<N
(P.b)=\

[N/L]+\

< V E
j=\ {j-\)L<p<jL

(P.b)=\
[N/L]+l ly

= Y V T
j=\ k=\ (j-l)L<p<jL

(P.b)=i

Since {k - l)/(2y) < {pa} < k/(2y) implies that

1 1 1
< — ^ +\\M

2y 2y

431

where, as before, we write a < 1/0 + 6 and 1/0 < 1/0 + a for all real numbers
a and b, we have

[JV/Z.J+1 ly

(17) S(a,b)< min ly,
j=\ k=l

k- 1
2y

- r

+ min I y, E
(j-\)L<p<jL

(P.b)=l
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If p and po are primes with (j-l)L < p < jL, (k- l)/(2y) < {pa} < (k/2y)
and (j -l)L<po< jL, (k - \)/(2y) < {poa} < k/(2y) then

^ > \\(p - Po)a\\ = \\(p - Po) ( | + fi)\\> \\(P ~ A ) ) f I - \ P ~ Po\\fi\

Thus | |(p-PoW*ll < 1/2^
fore

< l/b, whence p = p0 (mod b). There-

(18) ^ > \\pa - poa\\ = \\(p - p0)^ + (P- po)fi\\ = \\(P - po)fi\\.

Since \(p - po)fi\ < L\fi\ = 1/(26) < 1/2, it follows from (18) that l/(2y) >
\P~ Po\\P\, and hence

Thus, either there are no primes p with (j — \)L < p < jL, (p, b) — 1 and
(k - l)/(2y) < {pa} < k/(2y), or for some p0 we have

(19) E
(j-\)L<p<jL

(P.b)=\
p=Po (mod b)

By (15), l/(\0\y) > bQ/y. Thus, for N> N6, the right-hand side of inequality
(19) is, by (3) and Lemma 5, at most

2
4bL bL

In view of (16) it now follows from (17), that

ly

m i n
l f c - 1 rl

7 = 1 *:=!

< ( [ ? ] • • ) •

I ^y ii ;
• ( II *

+ mm I y, \\y-
\

bL * . { \\ k

1 - 1 '

Cll
bL

y4>{b)\o%N

V(6)logW
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Thus, by Lemma 1, S(a,b) < c^N log y loglogb/ \og N. Since b < y we have

( 2 0 ) S(a,b)<cl5
NlO\llf°^ (far«€r,)

provided that N> N7.
Finally we assume that a e T4. Put M = min(N, l/(\P\y)). Then

(21) S(a,b)=
p<N

(P.b)=\
[N/M]+\

E min(y,\\pa\rl).
j=\ (j-\)M<p<jM

/
< 22

Now if II/HI"1 < y w i t n U - 1)-W < P < jM and n is denned by p = n
(mod b) with jM - b < n < jM then

= \\p (£ - n)fi\\ > U(an + nbp) -\p-n\\p\.

Since b > y it follows from (6) that l/(|/?|y) > Q, and hence, for ./V > N%,
that M > Q. Consequently b < M and so \p - n\ < M and \p - n\\fi\ <
M\0\ < l/y < \\pa\\. Thus 2\\pa\\ > \\(l/b)(an + nb0)\\, and hence

< min I y, 2 \\-r(an + nbfi)

< 2 min I y, nbfi)

Therefore, by (21),
(22)

[N/M]+\
S{a,b)<

j=\ jM-b<n<jM
(n,b)=\

(j-\)M<p<jM
p=n (mod b)

For N> N9 we have, by (3) and (8), that

NM Q N
b b > P2 "

2e

whence, from Lemma 5,

p=n (mod b)
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Combining (22) and (24), we obtain

w I"/'"JT1 / II i — P

7=1 jM-b<n<jM \ "
(n,b)=l

We may estimate the inner sum above by means of Lemma 3 with h —
jM - b + 1, q = b and p{n) = nbfi. Then by (6) and (23),

I = max nbp - min nbp < b2\p\ < 4 < N~le < 1
JM-b<n<jM jM-b<n<)M Q

(n,b)=l (n,b)=l
for N > Nl0. Thus

and, since M < N,

(25) S(a,b)<cl6^^r (foraer4).

If y < ^^^(logA^)"7 then we may replace 2e in (23) by 1/2 and consequently
e in (25) by 1. On the other hand if y > Nl/w(logN)~1 then certainly
1/e < log logy for N> Nu. Thus in either case, we obtain from (25) that

( 2 6 ) S(a,b) < Ci7

Thus (9) follows from (12), (13), (14), (20) and (26), and this completes
the proof of the theorem.

7. Addendum

We would like to thank the referee for his valuable suggestions and re-
marks. In particular, the referee drew our attention to reference [4] which
allowed us to improve our original exponent of ^ in (3) to j .

Further, the referee remarked that our estimate for S(a) is essentially best
possible for a special choice of y. In fact, by means of a slight generalization
of the referee's idea, we shall show that there exist effectively computable
positive constants cis and C19 such that if N > cig then for all real numbers
y with 3 < y < Nl/4 we have

(26) max T min(,, W | - ) > cl9»
U*£*]x*y

Therefore our main theorem gives the correct order of magnitude for S{a).
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We shall now establish (26). Define the integer JC by

p
p<x p<x+l

and put b = Y\p<x P- Note that x > 2 since y > 3. We have

(27) x>c2Q\ogy

and

Thus

"logx'

E /fl 1 \ ^ \ ^ •„ ( \\ap p \\~l\>J \ i— TTT I = > > nun v, k TTT\ * bNJ *-" t-j y \\ b bN\\ )

Emin(,,||f-^|r')

Since % > Nxl* > y2^ >bforN>&,

l<a<b
(a,b)=l

• \\h P \
mm[y'\\b-bN\

m i n

- y - (h,b)=l

b bN\\

[3y/4b] 1 \{N - ibN/y)
N

min I y,
- p

(n(N - (i -

Since n{x + z) - n(x) > C22z/logx, for z > x3/4 and x sufficiently large,
we find that for N> c^,

bN

Thus

- (/ - 1)— - n(N - ibN/y) > c24- ...
y J ylogN

b bN)

[ 3 ^ ] c24bN bNlogy
> / —, T7 > ^25"
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Therefore
-(a 1 \ b Nlogy

max S -r - TTT
(a.b)=\

and so, by (27) and (28),

m a x 5 [ ? - J ^ - " ^ o g 1 0 ^
l<a<6 \ 0 OA^/ logA^
(a,ft)=l

which proves (26).
Finally, the L1 mean of S(a) is asymptotically 2(1 +log(y/2))n(N) and the

referee asked whether S(a) has this size outside of a small set. We remark
that by our proof, we have

(29) max S(a) < c27log>' n(N).
Q6[0,1]

NI>I/JV

Further the measure of T2 u T3 is, by (6), at most

fa bQ ~ Q N •
Thus (29) holds for all a in [0,1] except for a set of measure at most
(2 + y3(logA^)14)/Ar. In fact we can be more precise if we make the mi-
nor arcs slightly smaller. For example, put Pi - y2(logN)20 and Q\ = N/P\.
It is possible to show that S(a) is 2(1 + log(>72))7r(W)(l + o(l)) for all a in
(1/./V, 1 - 1/./V) for which there exist coprime positive integers a and b with
|a - j | < b~2 and P\ < b < Q{. Notice that the complement of this set in
(0,1) has measure at most 2/N + Pi/Qi = (2 +y4{logN)40)/N. To prove this
requires a more careful analysis of S{a) on the minor arcs. In particular we
must replace the function y/{x, S) with its finite Fourier series by a function
that is a better approximation to the function / where

1 for ||.x|| < d,

0 for <J< Hxll < 1/2.

Such a function can be found by an appropriate truncation of the Fourier
series expansion of / .
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