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MAXIMAL INDEPENDENT SYSTEM OF UNITS
IN FUNCTION FIELDS

HWANYUP JUNG AND JAEHYUN AHN

In this paper, we construct a new maximal independent system of units in cyclotomic
function fields and their subfields. We also calculate its index in the full units group
and show that it is smaller than the index of Feng-Yin's system.

1. INTRODUCTION

In this paper we study maximal independent systems of units in cyclotomic function
fields and their subfields. In the classical case, Ramachandra [7] was the first to study
such systems and his result was improved by Levesque [6]. Recently Greither [3] invent a
general machinery to construct a maximal independent system of units and also found a
system which has smaller index in the full unit group than Ramachandra's and Levesque's
one. Greither's result is generalised to arbitrary Abelian number fields by Kucera [5].
In the function field case, such systems are studied by Feng and Yin [2]. Their result
may be regarded as an analog of Ramachandra and Levesque (even if they worked in
any subfields of cyclotomic function fields). Adapting ideas of Greither and Kucera, we
construct a new maximal independent system of units in cyclotomic function fields and
their subfields. Our system has smaller index in the full unit group than Feng-Yin's one.

The layout of this paper is as follows. In Section 2, we give the notation for cyclo-
tomic function fields and their subfields, and preliminary results needed in this paper.
In Section 3, we generalise Greither's general machinery of constructing a maximal in-
dependent system of units to any subfields of cyclotomic function fields and obtain a
formula for the index (Theorem 3.1 and Theorem 3.2). In Section 4, we introduce Cp a
new maximal independent system of units and calculate its index in the full units group
(Theorem 4.1). In real extension, we also define another system C'p which has smaller
index than C@ (Corollary 4.2). In Section 5, we give a numerical comparison of the index
ig and Feng-Yin's index i{V). Finally in Section 6, we construct an .R-cyclic submodule
of the Sinnott's module U and calculate its index.
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2. BASIC FACTS AND NOTATIONS

Let A = ¥q[T] be the ring of polynomials over a finite field F , with q elements, and
k — Vg(T). For, each monic polynomial M £ A, one uses the Carlitz module p to construct
a field extension KM, called the M-th cyclotomic function field. Let oo be the place of k
associated to (1/T) and k^ be the completion of k at oo. We fix a primitive M-torsion
point AM € KM of the Carlitz module. It is well known that there is an isomorphism
* : (A/MA)* -> Ga\(KM/k), B mod M H-> aB, with aB{AM) = PB(^M)- We write
\M = PB(AM) for simplicity. It is also known that J = ^(F*) is the decomposition group
and the inertia group of oo in KM. Let K^ be the maximal real subfield of KM, that is,
the fixed field of J.

Let F be a subfield of some cyclotomic function field with conductor M, that is, KM

is the smallest cyclotomic function field containing F. Let G = Gal(F/A;) and R = Z[G]
the integral group ring. Let F+ be the maximal real subfield of F, JF = G&\(F/F+)

and 5F = \JF\- We say F is a real extension if JF is trivial. We recall the definition
of cyclotomic numbers and cyclotomic units ([4, Section 3]). For a monic N in A, let
Fpj = KN H F and AN be a primitive iV-torsion point. Let Dp be the subgroup of F*

generated by F* and all elements NKN/FN(X^) and CF = VFDO*F, where OF is the integral
closure of A in F and O*F is the unit group of OF. For any X c G, let s(X) = ^a £ R.

We factor M as M = \\ Pi', where Pi is a monic irreducible in A and let Mo — Yi Pi-
i=i i=i

Let 5 — {1 , . . . , s} and P s be the set of all proper subsets of S. For each i e S, we
let Ti and D, be the inertia group and the decomposition group of Pi in F respectively.
And let U = |T;| (/; = |Df|/|Tj|, and gt = \G\/\Di\ respectively) denote the ramification
degree (inertia, and decomposition degree respectively) of Pi in F. We fix a Frobenius

Si
automorphism Ti e G of P,, which is well-defined modulo Tt and denote vi = Y^, F\ G R-

j=i

For each subset / of 5, we also introduce following notations; Mj = f| Pf, Tj — \\ T,,
»€/ i€I

D, = r j A , vi = n "i, and n} = (l\ t,)/\Tj\. Let G = Hom(G,C) be the character
ie/ ier Ne/ '

group of G. A character \ is called even if x is trivial on JF and called odd otherwise.
For x S G, x can be regarded as a map from A to C by Artin map. Then

0 if T%

As in the classical case the conductor of a character x is defined and we denote by Fx

the conductor of X-

3. T H E GENERAL MACHINERY

In this section, we extend Greither's general machinery of constructing a maximal

independent system of units to any subfields of cyclotomic function fields. For / £ Ps, we
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put A/ = NKlA/M /FM/M (AM/MJ)- We consider functions ft : Ps -> Z[G\. A function /? is
called multiplicative if /?(0) = 1, and P(IUJ) = /?(/)/?(•/) whenever both sides are defined
and the intersection / D J is empty. Clearly, a multiplicative function /? is determined by
the values /?({«}) and these can be assigned arbitrarily. We denote 0({i}) by /3(i) for
simplicity. For any x £ F and a e R, one has a well-defined power xa. Thus we may
define

HP) = n xTm ̂  DF.
/€PS

Let 7£ be a full set of representatives for G/JF containing 1 and let TV = {a G 71: a =£ 1}.
Let C/j be the group generated by F* and {X^)"'1 :o ell*}.

THEOREM 3 . 1 . Let h{OF+) be the ideal class number ofOF+ and Qo = [O*F :

O"F+\. For any function P:FS^ Z[G], we have

[OF : C0) - Q0((q -

where

*H II ( E
Moreover i@ = 0 means that the index ofCg in O*F is infinite.

P R O O F : The logarithm map I : F* ->• Q[G] is defined by l(x) = £ wOo(a;'T)CT"1,

where w^ is the normalised valuation at oo. Since kerZ ("1 C?J. = ker / n Op = F*, we have

l~[F+:k

where e+ = s(JF)/5F, R{F+) the regulator of F+ and i?o is the augmentation ideal of R.

The last equality follows from [1, equation (3.8)]. Now we consider the transition matrix
of the generators {/(A^)""1) : a € Tl*} of l(C0) with respect to the basis {e+ia'1 - 1):
a £ 71*} of e+Ro. Since A^)""1 is unit and JF is the inertia group of oo, we have

T € G

1 - 1).
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Thus by the Dedekind determinant formula (see [8, Lemma 5.26]), we get

n

For x ^ 1, even and / € Ps, by [1, equation (3.5)], we get

where Lk(0,x) is the Artin L-function associated with character %
If Fx \ MjMi (that is, 7} ^ kerx), then x(s(T7)) = 0. Thus, from the analytic class

number formula, we get

(q - l)Lk(0,x)(e+Ro:l(Ce)) =

Since h(OF+) = h(F+)/R(F+), we complete the proof of Theorem.

When ft is multiplicative, the index ip becomes easy to compute.

THEOREM 3 . 2 . If 0 is multiplicative, then

n

D

PROOF: Note that \Tr\nj = YlU and x(P(I)) =

proof of [3, Theorem 1.3] to prove the Theorem.

. Now we follow the

0

4. A SYSTEM OF MAXIMAL INDEPENDENT UNITS

In this section, we make a specific choice of ft to construct a maximal independent
system of units. Define the function 0 : Pc —> %[G] as follows: ft is multiplicative
and ft(i) — i>i for i e S. Since A/ € FM/Mi and 0(1) is uniquely determined modulo
Tj = Gsl(F/FM/Mi)', Cp is independent of the choice of T{. In the remainder of this
paper, ft is fixed to this choice.
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THEOREM 4 . 1 . With the above construction ofCp, we have

if, =

In particular, if F is a real extension, then

PROOF: For s — 1, we have both sides of the theorem equal to 1. Suppose s ^ 2.
Note that the condition Pt \ Fx is equivalent to Tt C ker%. If x{Pi) = 1 (that is,
Di C ker x), then x{P{i)) = /,•• And the condition that x / 1 even, P* \ Fx, x(Pi) = 1 is
equivalent to Jf-Di c kerx, ^ / 1- Thus there are [G : JF-DI] ~ 1 such x-

If x(Pi) ^ 1 (that is, Di <£ kerx), x(/?W) = 0. Thus for all x ^ 1 even with Pt \ Fx,
x{Pi) ifi 1, x(Pi) ranges over all nontrivial |£)i/(^Fn£>i)rj|-th roots of unity and it takes
each values [G : J F A ] times. Since |Di/{JF n Di)T{\ = ft\JF n A / ^ F n TfI"

1, we get

^ = ft ((ti/O101-7"0'1"1) ' ( / . / I ^ F n Di/Jp n Til)101-7'"'1. So it completes the proof. D
i l

When F is a real extension, we can make another subgroup of OF which has smaller
index than C$. If, for a monic divisor TV of M, FN is a real extension, then

because A^"1 € K%. Since F is real, for a € G, A(/3)(T~1 = eq~x with an explicit unit
ea e Op. We define C0 as the subgroup of OF generated by F* U {ea : a 6 G,a ^ 1}.
Then it is easy to see that

COROLLARY 4 . 2 . When F is a reai extension, we have

5. NUMERICAL COMPARISON OF INDEXES

In this section we compare the index ip with Feng-Yin's index ([2, Theorem 4]). For
simplicity suppose F = K^. Then we can simplify i(D) in [2, Theorem 4] as

t e r
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for any subset T of 5 containing To = {i € S : x(-P«) = 1; f°r some \ ^ l } . When
T = S ([2, Theorem 5]), we have

which corresponds to the Ramachandra's unit system in a cyclotomic number field. We
denote this index by iR. As in Greither, it is easy to see that in ^ i(2?) ^ ig. It is easy
to see that To is the set consisting of i e S such that ft > 1. Then /;& = [K^/pCi : k)

= $(M/Pt
ei)/(q - 1). Here $(M) denotes the order of (A/MA)* for any M e A. 'Since

(<7 — 1) | $(P), if s ^ 4, /j can not have the order $(M/P;e')/(g - 1) and so To becomes
5. Therefore i(T>) = in for s ^ 4. Now we show the numerical behaviour of the indexes
iR, i(T>), and ip.

EXAMPLE 1. We consider an example with q = 3, s = 3 and M = T(T2 + 1)(T3+T2 - 1 ) .

Then we get

iR = 212 • 54 • 7 • 41 • 533 • 73 • 47959732613 • 7971613 • 3985813 • 6481(84 digits);

with the optimal choice of T = {1} and

i{p) = 211 • 52 • 13 • 532 • 47959732612 • 7971612 • 3985812(52 digits);

and finally
if, = 211 • 134 (8 digits).

EXAMPLE 2. We take s > 4 and just compare iR and ip. For q = 3 and M — T

(T - 1)(T2 + 1)(T3 + T2 - 1), we get

a ( 2 7 8 - l ) a ( 3 " " - l ) 2

d l g l t S ) ;J« = 2 8 ^ 2 6 2

and
ip = 243 • 1314 (29 digits).

E X A M P L E 3. We take q = 3 and M = T(T + 1)(T - 1)(T2 + 1)(T3 + T2 - 1), then iR

has 738 decimal digits and

«£ = 2125 • 1339 (82 digits).

E X A M P L E 4. Finally, we take q = 3 and M = T(T + 1)(T - 1)(T2 + 1)(T3 + T2 - 1)

(T3 - T - 1), then iR has 20440 decimal digits and

ip = 23105 • 131080 (2138 digits).

Note that with numbers of this size, it is really important to have an explicit prime

factorisation of the index and the index ip is easy to factorise into primes.

https://doi.org/10.1017/S0004972700020426 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020426


[7] Maximal independent system of units 391

6. R-CYCLIC SUBMODULE OF U

Kucera ([5, Section 3]) constructed an i?-cyclic submodule of the Sinnott's module

U using Greither's method in the number field case. In this section, we also construct an

.R-cyclic submodule of U in the rational function field case. First we recall the definition

of U. For i € 5, let ePt = s(Ti)/ti the idempotent associated to Pt. The Sinnott's module

U is defined as the .R-submodule of Q[G] generated by \s{Tr) Y[(l - T~lePi) : / c s ) .

It is well known ([4, Proposition 2.1]) that U is a free Z-module of rank |G|. We put

g = ( )
ICS i$l ICS

Then x(<?) = fl (x(s(A)) + l-x(^t)x(epJ )• Since the condition x(ePj) = 1 is equivalent
t=iv /

to Ti C ker x, we have

= n «*/*• n
Let ei = s(G)/\G\. Then it is easy to see that

(l-el)l(\(0))=uj'Fg,

where u>'F = {q - 1) £ Lk(0, x)ex € Q[G\. We recall e+ = s(JF)/SF and e~ = 1 - e+.

P R O P O S I T I O N 6 . 1 . LetZi = \JFnDi/JFnTi\fori€S.

(1) (fl :5JR) = Y\x(9)=fl €ff9i-

(2) (e+R:ge+R)= n
i=l

(3) (e-ii:ffe-.R)= n x(ff) = ft t^^^f^-^^z^
X<odd i=\

PROOF: (1) is easily proved as Greither ([3, Proof of Proposition 2.1]). The proof
of (2) is almost same as the proof of Theorem 4.1 and (3) follows from (1) and (2). D
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