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DUALITY AND LAGRANGE MULTIPLIERS
FOR NONSMOOTH MULTIOBJECTIVE PROGRAMMING

HOUCHUN ZHOU AND WENYU SUN

Without any constraint qualification, the necessary and sufficient optimality condi-
tions are established in this paper for nonsmooth multiobjective programming in-
volving generalised convex functions. With these optimality conditions, a mixed dual
model is constructed which unifies two dual models. Several theorems on mixed
duality and Lagrange multipliers are established in this paper.

1. INTRODUCTION

Consider the non-smooth multiobjective programming problem (MP):

(MP) min (fi{x),f2(x),...,fq(x))

such that gj(x) < 0, j = 1,..., m,

x€X cRn.

where fi,gj,i = l,...,q,j = l , . . . , m are locally Lipschitz functions on X. In the

following, we denote

f(x)=(f1(x),...,fq(x)),g(x) = ((gl(x),...,gm(x)).

Ben-Israel, Ben-Tal and Zlobec [2] gave a necessary and sufficient condition for a
vector to be an optimal solution of a convex programming problem without using a con-
straint qualification. With this necessary and sufficient condition, Mond and Zlobec [4],
Egudo, Weir and Mond [3] defined a dual programming to the (single-objective or multi-
objective) convex programming and established duality theory without any constraint
qualification.

The convexity conditions were weakened by Weir and Mond [5], and the optimality
necessary and sufficient condition for a generalised convex programming problem without
the need of any constraint qualification is established in [5]. Also, some duality results
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involving generalised convex were given in [5]. However, all functions in [5] must be
smooth.

In [6, 7], we established the necessary and sufficient optimality conditions and mixed
duality for the minimax programming and minimax fractional programming without a
constraint qualification.

In 1992, Egudo, Weir and Mond[3] established the dual problems for convex and
generalised convex multiobjective programs without requiring a constraint qualification.

Recently, Zhou, Zhang and Wang in [8] establish the first-order necessary and suffi-
cient optimality conditions for non-smooth generalised convex programming, which uni-
fied the results of Ben-Israel, Ben-Tal and Zlobec [2] and Weir and Mond [5].

The purpose of this paper is to extend the first-order results in [8] to the non-
smooth generalised convex multiobjective programming problem where no constraint
qualification is needed. Based on these necessary and sufficient optimality conditions, we
define a mixed type dual programming of multiobjective programming problem, which
unifies the Mond-Weir type dual programming and Wolfe type dual programming. Some
theorems of duality and existence of Lagrangian saddle point are established without any
constraint qualification.

2. PRELIMINARY CONCEPTS AND RESULTS

Throughout this paper, let Rn be n-dimensional Euclidean space, and iZ" be its
nonnegative orthant.

Let x and y be in i?n, we denote

x < y <=> Xi < yt for i = 1,2,..., n.

x ^ y 4=> Xi ̂  yi for i = 1,2,..., n.

x ^ y <& Xi ̂  yt for i = 1,2,..., n, but x ^ y.

For J = {1,2,. . . , m}, we denote

5 = {x G Rn | 9j{x) £0,j = 1,2,.. . ,m}, Q = {1,2,... ,<?}.

A feasible point x* for a multiobjective programming problem is said to be an efficient
solution if there exists no feasible x for the multiobjective programming problem such
that f(x) ^ f(x')- A feasible point x* for a multiobjective programming problem is
said to be a weak sufficient solution if there exists no feasible x for the multiobjective
programming problem such that f(x) < /(x*). A feasible point x* for a multiobjective
programming problem is said to be a proper efficient solution if there exists a scalar
M > 0 such that for each i, we have

(21) /<(*) - /«(*)
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for some j such that fj(x) > fj{x*) whenever x is feasible for the multiobjective pro-

gramming problem and fi(x) < fi{x*).

For a fixed r e Q, x* € i f , we denote

QT = Q\{r} = {keQ\kjLr};

F(x-) = {x\fi(x)^fi(x'),ieQ'};

Q'=(x') = {i E QT | Mx) = fi(x'),Vx E F'(x')};

Q=(x') = ( J Qr={x') = {i <E Q | x € FT(x') => /<(x) = /i(x') for some r € Q holds}.

Also we denote

J = {1,2,..., m}, J(x) = {j € J | Si(x) = 0},

J= = {j E Jidflj(x) = 0,V x € 5} , 5= = {x € Rn | 9j(x) = 0,j G J=},

J<(x) = J{x) \ J = = {ie J(x) \3xiE S such tha t ft(xj) < 0 } ,

J< = J \ J= = | J J<(x) - {i e J I 3xi € 5 such that ft(x4) < 0}.

First, we give the definitions of quasiconvex, pseudoconvex and regular function.

DEFINITION 2.1: A function / : 5 C BJ1 -¥ R is said to be quasiconvex if

(2.2) / (An + (1 - A)xa) ^ max{/(x1),/(x2)},Vx1,x2 e 5, A £ [0,1].

If the strict inequality "<" holds, then the function / is said to be strictly quasiconvex.

DEFINITION 2.2: A function / : S C R71 -> R is pseudoconvex if for any xi,x2

6S,0O<l,

(2.3) / ( x 2 )< / (x i ) implies /(Ax2 + (1 - A)xx) ^ f{xv) - \P(xux2),

where 0(xux2) > 0,P(xux2) = o(\\x1 - x2||).
If xi is fixed, we say that / is pseudoconvex at xi.

Obviously, if / : i f —> R is pseudoconvex and regular at x*, then we have

f{x) < f(x') => f°(x',x - x*) < 0,

where /"(•, •) is the Clarke directional derivative defined in Definition 2.3.

DEFINITION 2.3: Let / be locally Lipschitzian around x, the directional derivative
f'(x,d) is defined by

the Clarke directional derivative f°(x,d) is defined by

X-¥X, U0
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If f°(x,d) = f'(x,d), then / is said to be regular at x with respect to vector d € X.
When this holds for all d € iJ", one says that / is regular at x.

Now, we give some notations. Let 5 be a convex set in R", a vector d G R" is said
to be a feasible direction for 5 at x* if there is T > 0 such that

x* + td e S for all 0 < t s$ T .

The set of all feasible directions for 5 at x* is denoted by F(S, x*).
For / : Rn -»• R and x* € dom(/), we denote

Df{x*) = {d£Rn\3T>0 such that f(x* + td) < f(x'),Vt e (0,T)},
Dj(x') = {d 6 fln | 3T > 0 such that f{x' + td) = /(x*),Vt e (0,T)},

D^(x') = {d 6 # n | 3T > 0 such that f{x' + td) ^ /(**), Vt 6 (0,T)}.

Let {<?; : i € J} be a set of functions indexed by a set J, we denote

(2.5) £>=(**) = D^{x'),Dj{x') = f] D=(x*).

(2.6) D?(x') = D*(x*),Df(x*) = p l^(x ' ) .

LEMMA 2 . 4 . ([8]) 7f / is pseudoconvex and regular at x*, then

(a) Df(x') = {d | /°(x',d) < 0} = {d | ̂ Td < 0,V£ €

(b) D"f{x*) is a convex cone.

(c) IfDf(x')^<D, then

(Df(x')Y = {rf\i^ 0,Z6df(x')} = -cone(df(x')).

For the following single-objective nonlinear programming (P):

min f(x)

such that gi(x) < 0, i = 1 , . . . , m,

i e i ? n ,

where / , <fc : i?n —> i?, i = 1 , . . . , m, are locally Lipschitz functions, Ben-Israel and Mond
have given the following lemmas.

LEMMA 2 . 5 . ([1]) If f, git i e J, are continuous functions, then

F(S,x')=DJ{x.)(x').
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LEMMA 2 . 6 . ([1]) If f, git i G J, are all pseudoconvex, then

(a) The set S= = {x e R" \ gj=(x) = 0} is convex.

(b) If x is feasible for (P) and u G S=, then

(x-ufy^0 for all ye [Z?J=(u)]'.

In the following, we give a new conclusion for the multiobjective programming prob-
lem.

LEMMA 2 . 7 . If fi,gj,i G Q,j G J, are all regular pseudoconvex, and x is a

feasible solution of the multiobjective programming problem, u G S= and /Q=(U)(X)

= /O=(u)(u)> taeD

(x - ufy > 0 V y € [P^ = ( u ) u J = ( U ) ]* ,

where the cone [-OQ=(U)UJ=(")]* is the polar cone of Og=(u)Uj=(u).

PROOF: For a fixed u, we denote /IQ=(U)(:T) = /Q=(U)(X) — /Q=(«)(U)- Prom the
pseudoconvexity of / j , we know that /ij is also pseudoconvex for all i £ Q~{u). By
Lemma 2.6, the set {x € Rn : gj=(x) = 0} and {x € /?" : /Q=(U)(X) = /Q=(U)(W)} are
convex sets, so the set

{x € Rn : gj=(x) = 0,/Q=(u)(x) = /g=(u)(u)}

is also a convex set.

From the definition of the cone [DQ=(U)KJJ={M)]*, to prove that x — u € •Dg=(u)Uj=(u),
it is enough to show that

9j (u + A(x - u)) = 9j(u) = 0, V A G (0,1), V j G J=,

/i(u + A(x - u)) = fi(u) = 0, V A G (0,1),V i G Q=(u).

If there exist indexes j0 G J = , io G Q=(u) and a positive scalar Ai G (0,1), such that

gj^u + X^x-u)) < 0

or

/io(u + Ai(x-u)) <0,

this contradicts the convexity of the set

{x G Rn : gj=(x) = 0,/Q=(u)(x) = /Q=( U )(U)}.

By the definition of polar cone, our conclusion holds. D

https://doi.org/10.1017/S0004972700040430 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040430


374 H. Zhou and W. Sun [6]

3. OPTIMALITY NECESSARY CONDITION FOR MULTIOBJECTIVE PROGRAMMING

PROBLEM

In this section, we shall establish the necessary and sufficient optimality conditions
for the nondifferential multiobjective generalised convex programming problem where no
constraint qualification is needed.

For the single-objective nonlinear programming (P), we have established the follow-
ing first-order necessary and sufficient optimality conditions in [8].

THEOREM 3 . 1 . ([8]) Let z* be a feasible solution of (P) and

x* e P | int dom (gt) Q int dom (/).

If f,9i,i G JJ a r e a ^ pseudoconvex and regular at x*, then x* is optimal for (P) if and
only if there exist nonnegative scalars Aj ̂  0, i G J<{x*) such that

0 € df(x*) +

The following result is given in [3].

LEMMA 3 . 2 . ([3]) A feasible point x* for the multiobjective programming prob-
lem is an efficient solution if and only if x* is optimal for each of the following single-
objective programs (Fr(x*)):

(Pr(z*)) min fT(x)

such that fi(x) ^ fi(x'),i 6 Qr,

9j(x) ^ 0 , i = l , . . . , m ,

x€X cRn,

where r — 1,2,. . . , q.

Now, we give the first-order necessary and sufficient optimality conditions for mul-
tiobjective programming problem.

THEOREM 3 . 3 . If fi,gj,i G Q,j € J, are all pseudoconvex, and a feasible point
x* for the multiobjective programming problem is an efficient solution, then there exist
vectors A* > 0, i £ Q, £ A? = 1 , ^ > 0, j 6 7<(x*), such that

(3.1) O ^
i€Q j6J<(x')

Conversely, for the feasible point x* of multiobjective programming problem, if there
exist A* > 0,i G Q, £ A* = 1,/^ ^ 0,j 6 ^{x*), such that (3.1) holds, the function

53 A*/,(x) is regular pseudoconvex at x*, and Yl Vj9){x) 1S strictly regular pseudo-
i€Q jeJ<(x-)

convex at x*, then x* is an efficient solution of multiobjective programming problem.
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P R O O F : Suppose that x* is an efficient solution for the multiobjective program-
ming problem. By Lemma 3.2, x* is optimal for each of the following single-objective
programs (P r (x*)) . For each i € Q, applying Theorem 3.1, there exist AJ > 0,/iJ
3J 0,j € J < ( x ' ) , such that

Oed/r(x")+ £
ieQ'\Q'=(z-) jeJ<(x')

Summing the above over r € Q, scaling appropriately, there exist

A' > 0 , i e Q , ^ A ' = 1,M* > 0,j e J<(x')

satisfying (3.1).
Suppose that there exist

A' > 0,i € Q,53 A' = 1,M' > 0,3 € J<(x')
»€Q

such that (3.1) holds, then there exist

& e dfi(x%ie QXi e dgj(x*),j e J<{x*),d e [D^{x.)UJ=(x')Y

such that

(3-2)

Suppose to the contrary that x* is an efficient solution for the multiobjective programming
problem. By the definition of efficient solution, there exists u e 5, such that /*,,(«)
< /jo(x*) for some i0 € Q, and for all i € Q,i ^ io, we have /<(u) ^ /i(x'). So, we have

0.3)

By Lemma 2.7, we have (u — x*)Td ^ 0. Now, from (3.2), we have

Based on the pseudoconvexity of J2 Kfiix) an<^ (3-3), we can conclude that
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Hence

A*;c,->o.
)

Again, by the strict pseudoconvexity of £ lA9j{x)> w e S e t

However, by the definition of the cone J<(x'), we have

E /*&•(«) >o.
>gj<(i-)

This contradicts the feasibility of the point u. Then, x* is an efficient solution of multi-
objective programming problem. Q

Theorems 3.4 and 3.5 in [3] can be deduced from the above result.

4. M I X E D - T Y P E DUAL MODEL FOR MULTIOBJECTIVE PROGRAMMING PROBLEM

In this section, we shall introduce the mixed type duality for multiobjective pro-
gramming problem, and prove the weak dual theorem and strong dual theorem without
any constraint qualification.

The following dual problem is said to be a mixed-type dual problem:

(XDMP) m a x ( ( / i (y ) + ^5,0./, (y ) , . •• ,fq{y)
m

(4.1) such that 0 G ̂ 2^idfi{y) + ^^jdgj{y) - [£>g=(!/)Ui/=(a;*)]*,

(4.2)

(4.3)

(4.4) fij ^ 0,j = l , 2 , . . . , m ,

(4.5) gs-(y) = 0,

where the index set J\ is a subset of J, J2 = J\J\-

In the following, let fiy i = 1,2,..., q, gjt j = 1,2,..., m be all pseudoconvex, and D

the feasible set of (XDMP).

THEOREM 4 . 1 . (Weak duality) Let x G S, {y, A,/x) G D. If ft + £ ^g^i e Q

is strictly pseudoconvex, then the following inequalities

fio(x) < fie(V) + A*3ifl/, (y), 3 to G Q,

;(*) ^ /i(y) + Mj,5J,(y). Vi G <5, i # io,

do not AoW.
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P R O O F : Since {y, A, n) 6 D, we have

0 €
i€Q j=l

t h a t is , t h e r e e x i s t & e dfi(y),i € QXj e dgj{y),j = 1,2,...,m,d e
satifying

m

(4-6)

By Lemma 2.7, we have

(4.7) (x - J2
• J = l

Suppose that there exist x 6 5 and(j/, A, ̂ t) e £> satisfying above inequalities. By the
strict pseudoconvexity of /* + ^D ^i5i>* = 1,2, . . . ,</ and regularity of each function, we
have >€l/l

Multiplying each of these inequalities by Aj and summing over i € Q, we have

(4.8) (x - y)r | E Arf, + E ^ 0 | < 0.

Since x £ S, (y, A, and /i) € D, we have

M_,5i(x) - Hjgj(y) ^ 0 , j € J2.

Since /iy^ is pseudoconvex, hence quasiconvex, then

(x - yfujQ 4 0, j6J2 .

It follows that

(4.9) ( z - y )

Summing (4.8) and (4.9) gives

This is a contradiction to (4.7), therefore, x* is an efficient solution of multiobjective

programming problem. D
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THEOREM 4 . 2 . (Strong Duality) If x* is an e&cient solution of the multiobjec-

tive programming problem, and for VAj > 0, i = 1,2,..., q, [ij; > 0, j = 1,2, . . . , m, i € Q,

each fi+J2 VjQjii € Q is strictly pseudoconvex, then there exist A? > 0,z € Q,n)

^ 0, j = 1,2,. . . , m such that (x*, A*, /x*) is efficient solution of (XDMP), and the objec-

tive values of the multiobjective programming problem at x* and (XDMP) at (x*, A*, fi*)

are equal.

P R O O F : Since x* is an efficient solution of multiobjective programming problem,

then by Theorem3.3, there exist A; > 0,i 6 Q, £ A* = 1, and n* ^ 0,j 6 J < ( x ' ) , such

that

(4.10)

(4.11)

Setting n'j = 0 for j $ J ^ x * ) , we know (i*,A,*,z = 1,2,... ,q,fJ.*, j = 1,2, . . . , m ) is

feasible for (XDMP).

If (x*, A*,/J*) is not efficient for (XDMP), the definition of efficient solution implies

that there exists an efficient solution (y, A, n) of (XDMP) such that

fiO(y) + E m(y) > /*>(**) + E /*;$(*•),

My) + E H9{y) ̂  Mx') + E v'j9(x*),

From (4.11)we have JZ MjSC1*) = 0> it follows that

fio(y) + E N9{y) > fio(
x'), 3io€Q,

My) + E H9{y) > /<(*'), Vi G Q, i ^ i0-'

This is a contradiction to the weak dual theorem. Clearly, the objective values of multi-

objective programming problem at x* and (XDMP) at (x*,A*,^*) are equal. D

5. T H E LAGRANGIAN SADDLE POINT OF THE INCOMPLETE LAGRANGE VECTOR

VALUE FUNCTIONS

In this section, we shall establish the Lagrange saddle point existence theorem with-

out the need of any constraint qualification.

DEFINITION 5.1: The incomplete vector value Lagrange function L{X,HJX) : X

x .ft!/1' -> Rq is defined

where Lj(x,^j,) = Mx) + MJ,5J,W.* = 1.• • •.9-
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DEFINITION 5.2: A point ( I . / Z J , ) G X x i?!^1' is said to be a saddle point of the

incomplete Lagrange function L(x,fj.jl), if the following conditions hold:

(5.1) Lfo/ZjJgifrP*), VxeX,

(5.2) Hx.HjJ * L ^ . M J , ) , VMyi € itf1'.

If (i,/xjj) satisfying the following conditions:

(5.3) £(*,?*) / ^(i.MjJ, Vx € X,

(5.4) LfcHjJ rf L(x,/ij,), V/ij, G Jl!*1,

then the point (x, JlJl) is said to be a weak saddle point of the incomplete Lagrange

function L(x, /xj j .

Clearly, if J2 = 0, then Jx = J, the incomplete Lagrange function L(x,/ijj) just is

the Lagrange function.

THEOREM 5 . 3 . If (x, JijJ is a saddle point of the incomplete Lagrange function

L(x, /i/j), and for the multiobjective programming problem, x satisfyies

(5.5) 9j,(x) ^ 0,

then x is a proper efficient solution of the multiobjective programming problem.

P R O O F : Since ( x , ^ ) is a saddle point of the incomplete Lagrange function L(x,/ij,),

(5.2) implies that for V ^ e R+ , there exists a. i, i = 1,2,... ,q, satisfying Lj(x,//y,)

5s Li(x, JiJl). Now there exists a i, i = 1,2,.. . , q, satisfying

fi(x) + iiT
Jxgjx(x) ^ fi{x) + Mj,</Ji(^)-

It follows that

(5-6) (/,* - M , , ) 7 ^ ) ^ 0, VMJl G itf1'.

For j = jo € Ji, letting

M* = £*, V fe G Ji \ {jo},

Mio = Mi0 + 1,

along with (5.6), we have

ffio(^) ^ 0.

Repeating this course for all j G Ji, we obtain

(5.7) SA(5) i0 .

Along with (5.9), x is feasible for the multiobjective programming problem.
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Again, since JL^ G #+'' and gj^x) ^ 0, hence Mj,5/i(s) = 0- Because
(MJi - P^F^M ^ 0 holds for all HJ, € fl!*1, letting MJ, = 0, we have ^gj^x) g 0.
It follows that

(5.8) /#,&/,(*) = 0.

Now, if x was not an efficient solution of multiobjective programming problem, then there
exists a feasible x for the multiobjective programming problem, satisfying g(x) ^ 0 and
f(x) ^ f(x)- So we have

/(*) + /#,<?./> (*)e < /(*) = /(*) + Ji^gj^e,

where e — (1 ,1 , . . . , 1).
It follows that

This is a contradiction to (5.1).Then x is efficient for multiobjective programming prob-
lem.

If x were not a proper efficient solution of multiobjective programming problem, by
the definition of the proper efficient solution, we can prove that there exists some feasible
x, satisfying

By the artrabiariness of /z, there exists least one io 6 {1,2, . . . , g } , satisfying jio{x)
< fio{x), but for all i € {1,2,. . . , q}, i ^ t0, we have f{(x) g /j(x). Hence / ( i ) ^ /(i).It
follows that

Jij^Jt(x)e < /( i) = f(x) + Ji^gj,(x)e,

that is, L(x, /Zj,) ^ L{x, pj,). This is a contradiction to (5.2). Thus x is a proper efficient
solution of multiobjective programming problem. D

We have the following conclusion about weak efficient solutions.

THEOREM 5 . 4 . If (x ,p j j is a weak saddle point of the incomplete Lagrange
function L(x, jij,), and for the multiobjective programming problem, x satisfyies

(5.9) gJt{x) g 0,

tien x is a weak efficient solution of multiobjective programming problem.

PROOF: The proof is similar to the Theorem 5.3. D

Then we give a necessary condition for a vector to be an efficient for multiobjective
programming problem without using a constraint qualification.
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THEOREM 5 . 5 . Let x he efficient for the multiobjective programming problem.

Suppose for all x G 5,VA G ffl, with Xt > 0 and £ A< = 1,A* € #m> a ^ ^ ^ 0,

If fi + X) /•Ofiji* e Q JS strictly pseudoconvex, then there exist ~p. G i?™,^ ^ 0, such

t ia t (XJ / I J^ is a saddle point of the incomplete Lagrange function L(x,nji).

PROOF: Since x is efficient for multiobjective programming problem, by Theorem
3.3, there exist J{ > 0,i G Q, £ A< = 1,/Z > 0, j 6 J*1^), such that

•60

(5.11) 0 £ ^

(5.12) P ^

For j ^ «/<(x), letting /^ = 0, then

(5.13) 0 €

(5.14) p i f t ( i ) = 0,Vi = l l 2 , . . . ,m .

From the proof of the weak theorem, there exist & e dfi{y),i G Q,Cj S dgj(y),j

= 1,2,... ,m, d € [£>Q=(J,)U./=(2/)]* such that

(5.15) (s - y ) T [ £ A£ + f^M>0] ^ 0.

If there exists a. XQ € X such that

that is,

fio(xo) + MJ.PA(^O) < /io(z) + Mj.ffJi(S), 3 i0 e Q,

k/i(xo) + / i j , ^ ! (*o) ^ /•(«) + jij^A (x), Vi€Q,ijL i0-

Since fi + £ A*>5ji« = 1,2,..., g is strictly pseudoconvex, hence strictly quasiconvex,

along with the regularity of each function, we have

jEJi
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_ m

Multiplying each of these inequalities by A; and summing over i € Q, noting that £ K

= 1, we have

(5-16) (s-vffe^ + E^il <0.
••tec? "

On the other hand, by the condition (5.10),we have

9j(x0) ^ 9j(x), Vj € J2-

Again by the pseudoconvexity of each of g^ we have

(x - y^JljCj < 0, j€ J2.

It follows that

(5.17) (* - W)T 5 > , - < i ** 0.

Summing (5.16) and (5.17) gives

0 i=i

This is a contradiction to (5.15). Then we have

Now suppose that there exists a scalar /iy, e i?!^1' such that

that is,

/(50 + ^ffy, (x) ^ / (x ) + ^ I 5 J I ( X ) .

It follows that

0 = Jij19Ji(x)<^igjl{^)-

This is a contradiction to the feasibility of x. Hence

(5.19) LfaTijJ&Uz,^), VWl € i?!ifl1.

Along with (5.18)-(5.19), (x, /!^) is a saddle point of the incomplete Lagrange function

D
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6. CONCLUSION

In this paper, we have established a mixed dual problem of multiobjective program-
ming problem, which unifies the Mond-Weir type dual and Wolfe type dual. On the
other hand, applications to typical cases including the convex(not necessarily differen-
tiable) and differentiable generalised convex multiobjective programs without requiring
a constraint qualification are provided. Therefore, our work is a natural extension to the
work of Egudo, Weir and Mond [3] to nonsmooth multiobjective programming.

REFERENCES

[1] A. Ben-Israel and B. Mond, 'First order optimality conditions for generalized convex
functions: A feasible directions approach', Utilitas Math. 25 (1984), 249-262.

[2] A. Ben-Israel, A. Ben-Tal, and S. Zlobec, Optimality in nonlinear programming: A fea-
sible dirction approach (John Wiley and Sons, New York, 1981).

[3] R.R. Egudo, T. Weir and B. Mond, 'Duality without a constraint qualification in multi-
objective programming', J. Austral. Math. Soc. Ser. B 33 (1992), 531-544.

[4] B. Mond and S. Zlobec, 'Duality for nondifferentiable programming without a constraint
qualification', Utilitas Math. 15 (1979), 291-302.

[5] T. Weir and B. Mond, 'Duality generalized programming without a constraint qualifica-
tion', Utilitas Math. 31 (1987), 233-242.

[6] H. Zhou and W. Sun, 'Mixed duality without a constraint qualification for minimax
fractional programming', Optimization 52 (2003), 617-627.

[7] H. Zhou and W. Sun, 'Optimality and duality without a constraint qualification for
minimax programming', Bull. Austral. Math. Soc. 67 (2003), 121-130.

[8] H. Zhou, D. Zhang and S. Wang, 'Mixed duality and Lagrangian multiplies without a
constraint qualification for nonsmooth programming', Int. J. Pure Appl. Math. 17 (2004),
527-540.

Department of Mathematics School of Maths and Computer Science
Linyi Teachers College Nanjing Normal University
Linyi 276005 Nanjing 210097
China China
e-mail: zhouhouchun@163.com e-mail: wyusun@publicl.ptt.js.cn
and
School of Maths and Computer Science
Nanjing Normal University
Nanjing 210097
China

https://doi.org/10.1017/S0004972700040430 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040430

