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Abstract

We prove ε-closeness of hypersurfaces to a sphere in Euclidean space under the assumption that the
traceless second fundamental form is δ-small compared to the mean curvature. We give the explicit
dependence of δ on ε within the class of uniformly convex hypersurfaces with bounded volume.
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1. Introduction

In this paper we investigate the potential of the traceless second fundamental form,
also called the umbilicity tensor,

Å = A −
tr(A)

n
g,

of a hypersurface embedded in the Euclidean space to pinch other geometric quantities
of the hypersurface. Questions like this arise from the well-known fact that Å = 0
implies that the hypersurface must be a sphere. It is natural to ask if this behaviour
is continuous, in the sense that a small traceless second fundamental form implies
closeness to a sphere. During the last decade, substantial progress has been made
towards a better understanding of this question. In 2005, Camillo De Lellis and Stefan
Müller [7] proved the estimate

inf
λ∈R
‖A − λg‖L2(M) ≤ C‖Å‖L2(M)

for hypersurfaces M ⊂ R3. From this, the authors deduced W2,2-closeness to a sphere.
One year later, in [8], the authors made a step towards uniform closeness and showed
that in addition the metric is C0-close to the standard sphere metric. In 2011, one
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of De Lellis’s PhD students, Daniel Perez, proved in the class of hypersurfaces with
volume 1 and bounded second fundamental form, that for given ε > 0 there exists δ > 0,
such that a δ-small traceless second fundamental form yields ε-closeness to a sphere
(compare [11, Corollary 1.2]). He used an argument via contradiction and it does not
seem possible to extract the ε-dependence of δ from his proof. In [11, page xvi] the
author posed the derivation of a quantitative dependence as an open problem. In this
paper we tackle this problem and prove the following theorem.

Theorem 1.1. Let n ≥ 2 and X : Mn ↪→ Rn+1 be the smooth, isometric embedding of a
closed, connected, orientable and strictly mean-convex hypersurface. Let 0 < α < 1.
Then there exists c > 0, such that whenever we have ε < c|M|1/n and the pointwise
estimate

‖ Å‖ ≤ H|M|−(2+a)/nε2+α (1.1)

holds, then M is strictly convex and

M ⊂ B√(n/λ1(M))+ε(x0)\B√(n/λ1(M))−ε(x0).

The constant c depends on n, α, ‖Ã‖∞ and ‖Ã−1‖∞, where |M| = vol(M), Ã = |M|1/nA,
λ1(M) is the first nonzero eigenvalue of the Laplace–Beltrami operator on M and x0

is the centre of mass of M.

Thus in the class of uniformly convex hypersurfaces of unit volume we obtain ε-
closeness to a sphere, if Å is of order ε2+α and ε is sufficiently small. A more detailed
description of the notation involved here is presented in Section 2.

Note that a similar result by Roth has recently appeared in [13]. In more general
ambient spaces, he proves quasi-isometry of hypersurfaces to the sphere under certain
assumptions, including smallness of the gradient of the second fundamental form.

The author’s motivation to find a quantitative dependence like this arose from his
work on inverse curvature flows in the Euclidean space. In [15, Appendix A] Oliver
Schnürer derived a pinching estimate of the traceless second fundamental form for
hypersurfaces evolving by the inverse Gauss curvature flow in R3. Ben Andrews
applied estimates like this to bound the difference between circumradius r+ and
inradius r− of the surface in [1, Section 4]. However, we are not aware whether those
methods may be transferred to higher dimensions. Clearly, Theorem 1.1 provides
an estimate of r+ − r− in terms of Å. Indeed, we will apply this estimate to prove
asymptotical roundness of hypersurfaces solving an inverse curvature flow equation in
Rn+1 (cf. [14]).

Let us give an overview of the main ingredients in the proof. We need a result which
somehow yields the transition from qualitative to quantitative. We found the following
result due to Julien Roth. We formulate a special case and only the statements which
are of interest to our proof.

Theorem 1.2 [12, Theorem 1]. Let (Mn, g) be a compact, connected and oriented
Riemannian manifold without boundary isometrically immersed in Rn+1. Assume that
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[3] Quantitative oscillation estimates 135

|M| = 1 and H2 > 0. Then for any p ≥ 2 and ε > 0 there exists a constant Cε =

Cε(n, ‖H‖∞, ‖H2‖2p), such that if

λ1(M)
(∫

M
H

)2
− n‖H2‖

2
2p > −Cε (1.2)

is satisfied, then
M ⊂ B√(n/λ1)+ε(x0)\B√(n/λ1)−ε(x0),

where x0 is the centre of mass of M and H2 is the second normalised elementary
symmetric polynomial.

This theorem is a generalisation of [6] to higher kth mean curvatures. There are also
generalisations to ambient spaces of bounded sectional curvature (cf. [10]). At first
glance, it does not seem to be a quantitative result, but a rather tedious scanning of the
proof shows that Cε can be chosen to be of order ε2: compare Section 3 below.

Certainly, this ε2 gives insight into the question of where the order ε2+α comes from
in Theorem 1.1. It is an interesting question whether, and if so how, this could be
improved.

Thus we have to derive (1.2) from (1.1). Firstly, we need to relate the first eigenvalue
of the Laplacian to the traceless second fundamental form. This transition has another
stop at the Ricci tensor. The following result, due to Erwann Aubry, relates the Ricci
tensor to λ1. It was proven in [3], but is accessible more easily in [4, Theorem 1.6].
Again, we only cite the aspects which are relevant to our work.

Theorem 1.3 [4, Theorem 1.6]. For any p > n/2 there exists C(n, p) such that, if Mn is
a complete manifold with ∫

M
(Ric − (n − 1))p

− <
|M|

C(n, p)
, (1.3)

then M is compact and satisfies

λ1(M) ≥ n
(
1 −C

( 1
|M|

∫
M

(Ric − (n − 1))p
−

)1/p)
.

Here, Ric = Ric(x) denotes the smallest eigenvalue of the Ricci tensor at x ∈ M and
for y ∈ R we set y− = max(0,−y).

The other quantities in (1.2) can be controlled with the help of (1.1) quite easily.
Thus the only ingredient left is to control the Ricci tensor in (1.3). The following
result, due to Perez [11], and also to De Lellis and Müller [7] for n = 2, is helpful.

Theorem 1.4 [11, Theorem 1.1]. Let n ≥ 2, p ∈ (n,∞) and c0 > 0. Then there exists
C(n, p, c0) > 0 such that, for any smooth, closed and connected hypersurface M ⊂ Rn+1

with
|M| = 1
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and
‖A‖p ≤ c0,

we have
min
µ∈R
‖A − µg‖p ≤ C‖Å‖p. (1.4)

This result will enable us to move, via the Ricci tensor, to an estimate of λ1 and
to finally provide the estimate (1.2). Then the result follows. The largest technical
difficulty is that we need L∞ bounds, where Theorems 1.3 and 1.4 only make
statements on Lp norms. We show how to handle this in Section 4.

Note that we will not need to know the explicit value of µ0 in (1.4), where the
minimum is attained. However, this is another interesting question with some history.
According to [11, page 50], Gerhard Huisken suggested an inverse mean curvature
flow approach to prove that the minimum is attained at

µ =
1
|M|

∫
M

H.

In [11, page 52, Ch. 3.4], this is proven for n ≥ 2, p = 2 and for closed convex
hypersurfaces. Unfortunately, the case p = 2 is not enough in our case. Hence, we
have to deal with the small technical difficulty that µ0 is not explicitly known.

We wish to mention as well that there is literature on spherical closeness in terms of
lower bounds on the principal curvatures (cf. [5]). This is a somewhat different issue
since we want to provide arbitrary closeness.

Our detailed analysis of the problem at hand begins with an explanation of our
notation.

2. Notation and preliminaries

In this paper we consider closed embedded hypersurfaces Mn ⊂ Rn+1. We follow
the notation as it appears in the references as closely as possible.

g = (gi j) denotes the induced metric of Mn, A = (hi j) the second fundamental form
and κi, i = 1, . . . , n, the principal curvatures ordered pointwise,

κ1 ≤ · · · ≤ κn.

The volume of M is
|M| =

∫
M

1 dµ,

where µ is the canonical surface measure associated to g.
λ1(M) denotes the first nonzero eigenvalue of −∆, where ∆ is the Laplace–Beltrami

operator on (M, g).
For k = 1, . . . , n we define

Hk =

(
n
k

)−1 ∑
1≤i1<···<ik≤n

κi1 · · · κik .
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This includes the definition of the mean curvature,

H =
1
n

n∑
i=1

κi,

which deviates from some of the references. It corresponds to the notation in [12].
Thus the traceless second fundamental form is

Å = A − Hg.

For smooth tensor fields on M, T = (ti1...ik
j1... jl

), we define the pointwise norms to be

‖T‖ =

√
ti1...ik

j1... jl
t j1... jl
i1...ik

,

where indices are lowered or lifted with respect to the induced metric of the
hypersurface the tensor field is defined on. With the help of this definition we may
define Lp norms on a subset Ω ⊂ M to be

‖T‖p,Ω =

(∫
Ω

‖T‖p
)1/p

,

where the surface measure to be used is implicitly included in the set of integration Ω.
Analogously we set

‖T‖∞,Ω = sup
Ω

‖T‖.

The tensor Ric = (Ri j) is the Ricci tensor and R = tr(Ric) = Ri
i the scalar curvature.

Ric(x) denotes the smallest eigenvalue of the Ricci tensor at x ∈ M.
For Mn the symbol M̃n always denotes the normalised manifold

M̃ = |M|−1/nM ↪→ Rn+1

with |M̃| = 1. The corresponding rescaled geometric quantities are denoted with a tilde
as well, for example,

g̃ = (g̃i j), Ã = (h̃i j).

Finally,
Br(x0) ⊂ Rn+1

denotes an (n + 1)-dimensional ball in Rn+1 with radius r and centre x0.

3. Qualitative closeness revisited

In this section we turn our attention to Theorem 1.2 which connects λ1 with
closeness to a sphere. We state how the constant Cε involved here depends on ε,
whereafter we indicate how this can be deduced from the corresponding sequence of
lemmas in [12]. We prove the following proposition.
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Proposition 3.1. In the situation of Theorem 1.2, let 0 < ε < 2/(3‖H‖∞). If (1.2) holds
for

Cε =
1
2

min
(
L
√

n
λ1(M)

ε2, L
)
,

where L is bounded and uniformly positive whenever ‖H‖∞ and ‖H2‖2p range in
compact subsets of (0,∞), then we have

M ⊂ B√(n/λ1(M))+ε(x0)\B√n/λ1(M))−ε(x0).

Proof. We will spot and note the relevant formulae in [12], always showing how they
depend on the geometric quantities and on ε. There is a sequence of constants from
which we arrive at Cε . We start with [12, page 297, Lemma 2.1]. First of all, it is
required that

Cε <
n
2
‖H2‖

2
2p.

Equation (5) in [12] yields

A1 =
2‖H‖2∞
‖H2‖

2
2p

.

Then [12, page 298, Lemma 2.2] yields

A2 =
A1

n‖H2‖
2
2p

.

The proofs of [12, Lemmas 2.4 and 2.5] imply that A3 and A4 are of a similar form.
Finally, the author cites a lemma implying an L∞-estimate on the function

ϕ = |X|
(
|X| −

√
n

λ1(M)

)2
,

where X is the position vector field with respect to the centre of mass, x0, of M. The
lemma is (cf. [12, Lemma 3.1]):

For p ≥ 2 and any η > 0, there exists Kη(n, ‖H‖∞, ‖H2‖2p) such that, if (1.2) holds
with Cε = Kη, then ‖ϕ‖∞ ≤ η.

Essentially, the proof of this lemma is given in [6, page 188, proof of Lemma 3.1]
(also compare [12, Section 6]). Here one sees that this Kη can be chosen to be

Kη = min
(

η

(L′A4)4 , cn

)
> 0,

where L′ is just of the same form as A4. Now, in [12, page 301] the author defines

η(ε) = min
((√ n

λ1(M)
− ε

)
ε2,

1
27‖H‖3∞

)
≥ min

(1
3

√
n

λ1(M)
ε2,

1
27‖H‖3∞

)
,
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[7] Quantitative oscillation estimates 139

since ε < 2/(3‖H‖∞) and

λ1(M) ≤
1

n − 1
‖R‖∞ ≤ n‖H‖2∞

(compare [9, Theorem 3.1]). He concludes that

M ⊂ B√(n/λ1(M))+ε(x0)\B√(n/λ1(M))−ε(x0)

under assumption (1.2) with

Cε =
1
2

min
(n
2
‖H2‖

2
2p, cn,

1
3(L′A4)4

√
n

λ1(M)
ε2,

1
27(L′A4)4‖H‖3∞

)
,

which has the form claimed in the proposition. �

4. Quantitative spherical closeness

Now we come to the proof of the main result. We state it again for convenience.

Theorem 4.1. Let n ≥ 2 and X : Mn ↪→ Rn+1 be the smooth, isometric embedding of
a closed, connected, orientable and mean-convex hypersurface. Let 0 < α < 1. Then
there exists c > 0, such that whenever we have ε < c|M|1/n and the pointwise estimate

‖ Å‖ ≤ H|M|−(2+a)/nε2+α (4.1)

holds, then M is strictly convex and

X(M) ⊂ B√(n/λ1(M))+ε(x0)\B√(n/λ1(M))−ε(x0).

The constant c depends on n, α, ‖Ã‖∞ and ‖Ã−1‖∞, where |M| = vol(M), Ã = |M|1/nA,
λ1(M) is the first nonzero eigenvalue of the Laplace–Beltrami operator on M and x0

is the centre of mass of M.

Proof. In this proof, C̃i, i ∈ N, always denote generic constants which depend at most
on n, α, ‖Ã‖∞ and ‖Ã−1‖∞. Set

p = n + 1

and let

k =
6
α
.

For the rescaled surfaces
M̃ = |M|−1/nM,

we find from Theorem 1.4 that

‖Ã − µ0g̃‖kp ≤ C̃1‖
˚̃A‖kp, (4.2)

where µ0 = µ0(n, α, ‖Ã‖∞, ‖Ã−1‖∞).
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140 J. Scheuer [8]

The first condition we put on the constant c is to satisfy

c <
( 1
√

n(n − 1)

)1/(2+α)
.

Then (4.1) yields the strict convexity of M̃, due to [2, Lemma 2.2]. µ0 is strictly
positive, since obviously we have

inf
M̃
κ̃1 ≤ µ0 ≤ sup

M̃
κ̃n.

Define
M̂ = µ0M̃.

Then

‖Â − ĝ‖kp =

(∫
M̂
µ
−kp
0 ‖Ã − µ0g̃‖kp

)1/kp
= µ

(n/kp)−1
0 ‖Ã − µ0g̃‖kp.

Define the set
P̂ = {x̂ ∈ M̂ : ‖Â(x̂) − ĝ(x̂)‖ < 1}.

Its complement has volume

|P̂c| ≤

∫
P̂c
‖Â − ĝ‖kp ≤ µ

n−kp
0 ‖Ã − µ0g̃‖kp

kp.

In order to apply Theorem 1.3, we need an estimate on the Ricci tensor R̂ic = (R̂i j).
By the Gaussian formula,

R̂i j = nĤĥi j − ĥikĥk
j.

Let x̂ ∈ P̂ and ξ ∈ T x̂M̂. Then

R̂i jξ
iξ j = nĤĥi jξ

iξ j − ĥikĥk
jξ

iξ j

= n(Ĥ − 1)(ĥi j − ĝi j)ξiξ j + n(ĥi j − ĝi j)ξiξ j

+ n(Ĥ − 1)‖ξ‖2 + (n − 1)‖ξ‖2 − 2(ĥi j − ĝi j)ξiξ j

− (ĥik − ĝik)(ĥk
j − δ

k
j)ξ

iξ j, (4.3)

from which we obtain at x̂,

‖R̂ic − (n − 1)ĝ‖ ≤ C̃2‖Â − ĝ‖,

since ‖Â − ĝ‖ < 1. In the notation of Theorem 1.3 we obtain∫
M̂

(R̂ic − (n − 1))kp
− ≤

∫
P̂

C̃kp
2 ‖Â − ĝ‖kp +

∫
P̂c

(R̂ic − (n − 1))kp
−

≤ (C̃kp
2 µ

n−kp
0 + (n − 1)kpµ

n−kp
0 )‖Ã − µ0g̃‖kp

kp

= C̃3‖Ã − µ0g̃‖kp
kp.

Thus Theorem 1.3 will be applicable under condition (4.1) if we choose c small
enough to ensure the last of the following inequalities (note that in the first inequality
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[9] Quantitative oscillation estimates 141

we use (4.2)):
C̃3‖Ã − µ0g̃‖kp

kp ≤ C̃3C̃kp
1 ‖

˚̃A‖kp
kp = C̃3C̃kp

1 |M|
kp/n−1‖Å‖kp

kp

≤ C̃3C̃kp
1 |M|

−((1+α)kp+n)/nε(2+α)kp‖H‖kp
kp

= C̃3C̃kp
1 |M|

−((2+α)kp)/nε(2+α)kp‖H̃‖kp
kp

< C̃3C̃kp
1 c(2+α)kp‖H̃‖kp

kp

!
<

|M̂|
C(n, kp)

=
µn

0

C(n, kp)
,

where C(n, kp) is the constant from Theorem 1.3. Thus c = c(n, α, ‖Ã‖∞, ‖Ã−1‖∞) can
also be chosen, such that this chain of inequalities is true. We may apply Theorem 1.3
to conclude that

(λ1(M̂) ≥ n
(
1 −C(n, kp)

( 1
|M̂|

∫
M̂

(R̂ic − (n − 1))kp
−

)1/kp)
≥ n(1 −C(n, kp)µ−n/kp

0 C̃1C̃1/kp
3 ‖H̃‖kpε̃

2+α),
where ε̃ = |M|−1/nε. We obtain

λ1(M̃) ≥ µ2
0n(1 − C̃4ε̃

2+α), (4.4)
with a new constant C̃4.

We now want to apply Theorem 1.2. Therefore we need estimates of the curvature
integrals. First, note that

H̃2 =
1

n(n − 1)
R̃.

A similar calculation to (4.3) shows that at any point
x̃ ∈ P̃γ = {x̃ ∈ M̃ : ‖Ã − µ0g̃‖ < γ}, 0 < γ < 1,

we have
‖R̃i j − µ

2
0(n − 1)g̃i j‖ ≤ C̃5(n, µ0)‖Ã − µ0g̃‖. (4.5)

Furthermore,

|P̃c
γ|γ

kp ≤

∫
P̃c
γ

‖Ã − µ0g̃‖kp ≤ C̃kp
1 ‖

˚̃A‖kp
kp ≤ C̃6ε̃

(2+α)kp

and thus

|P̃c
γ| ≤ C̃6

(
ε̃2+α

γ

)kp
.

We estimate (∫
M̃

H̃2p
2

)1/p
=

(∫
P̃γ

( R̃
n(n − 1)

)2p
+

∫
P̃c
γ

( R̃
n(n − 1)

)2p)1/p

≤

∥∥∥∥∥ R̃
n(n − 1)

∥∥∥∥∥2

2p,P̃γ
+

∥∥∥∥∥ R̃
n(n − 1)

∥∥∥∥∥2

2p,P̃c
γ

≤ (µ2
0 + C̃5‖Ã − µ0g̃‖2p,P̃γ )

2 + |P̃c
γ|

1/p‖H̃‖4∞, (4.6)

where we use H̃1/2
2 ≤ H̃ and (4.5).
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Furthermore, from (4.5),(∫
M̃

H̃
)2
≥

(∫
P̃γ

( R̃
n(n − 1)

)1/2)2
≥

(
|P̃γ|

√
µ2

0 − C̃5γ
)2

= |P̃γ|
2µ2

0 − |P̃γ|
2C̃5γ (4.7)

for all

0 < γ <
µ2

0

C̃5
.

From (4.4), (4.6) and (4.7) we obtain

λ1(M̃)
(∫

M̃
H̃

)2
− n‖H̃2‖

2
2p ≥ (µ2

0n − µ2
0nC̃4ε̃

2+α)(|P̃γ|
2µ2

0 − |P̃γ|
2C̃5γ)

− nµ4
0 − nC̃2

5γ
2 − 2nµ2

0C̃5γ − n|P̃c
γ|

1/p‖H̃‖4∞

≥ −C̃7|P̃c
γ| − C̃7γ − C̃7ε̃

2+α − C̃7

(
ε̃2+α

γ

)k
,

where C̃7 is a new constant. According to Theorem 1.2 and Proposition 3.1 there exists
Cε̃ , which can be chosen as

Cε̃ =
1
2

min
(
L
√

n
λ1(M̃)

ε̃2, L
)
,

such that whenever ε̃ < 2/(3‖H̃‖∞) and

λ1(M̃)
(∫

M̃
H̃

)2
− n‖H̃2‖

2
2p > −Cε̃ ,

we can conclude that

M̃ ⊂ B√
(n/λ1(M̃))+ε̃

(x̃0)\B√
(n/λ1(M̃))−ε̃

(x̃0).

Now define
γ = ε̃2+(α/2).

Then

C̃7

((
ε̃2+α

γ

)kp
+

(
ε̃2+α

γ

)k
+ γ + ε̃2+α

)
≤ C̃7(ε̃(αkp)/2 + ε̃(αk)/2 + ε̃2+(α/2) + ε̃2+α)

= C̃7(ε̃3p + ε̃3 + ε̃2+(α/2) + ε̃2+α)

<
1
2

min
(
L
√

n
λ1(M̃)

ε̃2, L
)
,

for all 0 < ε̃ < c, if c is small enough in its dependence on n, α, ‖Ã‖∞ and ‖Ã−1‖∞, such
that the requirements for γ, namely

γ < min
(
1,
µ2

0

C̃5

)
,

are fulfilled as well.
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We conclude, rescaling again,

M ⊂ B√(n/λ1(M))+ε(x0)\B√(n/λ1(M))−ε(x0),

the desired result. �

Remark 4.2. The previous result is easier to comprehend if one restricts to the class of
hypersurfaces of bounded volume and modulus of convexity, namely

0 < c ≤ |M| ≤ C

and
0 < cg ≤ A ≤ Cg.

Then, in order to prove ε-closeness, one has to find constants c > 0 and β > 0, such
that

‖A − Hg‖ ≤ cHε2+β,

where c must not depend on ε. Then applying Theorem 4.1 with α = β/2, one
concludes ε-closeness for small 0 < ε < ε0.

5. Concluding remarks and open questions

We must remark that this result is only a first step towards a better understanding
of the stability problem. It helps to control the order of δ with respect to ε which is
sufficient for first applications in geometric flows (compare [14]).

However, two things will be desirable in this context. Firstly, there would be direct
applications to geometric flows if one could improve the order ε2+α. We are not aware
of the existence of such a result. Secondly, pinching results for the first eigenvalue of
the Laplacian are known in other ambient spaces (cf. [10]). It would be interesting,
with immediate applications to curvature flows in those spaces, if results like ours
could be deduced in those settings as well.
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