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Abstract
We study the computational complexity of approximating the partition function of the ferromagnetic Ising model
with the external field parameter 𝜆 on the unit circle in the complex plane. Complex-valued parameters for the
Ising model are relevant for quantum circuit computations and phase transitions in statistical physics but have also
been key in the recent deterministic approximation scheme for all |𝜆 | ≠ 1 by Liu, Sinclair and Srivastava. Here,
we focus on the unresolved complexity picture on the unit circle and on the tantalising question of what happens
around 𝜆 = 1, where, on one hand, the classical algorithm of Jerrum and Sinclair gives a randomised approximation
scheme on the real axis suggesting tractability and, on the other hand, the presence of Lee–Yang zeros alludes
to computational hardness. Our main result establishes a sharp computational transition at the point 𝜆 = 1 and,
more generally, on the entire unit circle. For an integer Δ ≥ 3 and edge interaction parameter 𝑏 ∈ (0, 1), we show
#P-hardness for approximating the partition function on graphs of maximum degree Δ on the arc of the unit circle
where the Lee–Yang zeros are dense. This result contrasts with known approximation algorithms when |𝜆 | ≠ 1 or
when 𝜆 is in the complementary arc around 1 of the unit circle. Our work thus gives a direct connection between
the presence/absence of Lee–Yang zeros and the tractability of efficiently approximating the partition function on
bounded-degree graphs.

1. Introduction

The Ising model is a classical model from statistical physics that arises in multiple sampling and
inference tasks across computer science. The model has an edge interaction parameter b and a vertex
parameter 𝜆, known as the external field. For a graph 𝐺 = (𝑉, 𝐸) (all graphs considered in this article
are finite), configurations of the model are all possible assignments of two spins +, - to the vertices of
G. Each configuration 𝜎 : 𝑉 → {+, -} has weight 𝜆 |𝑛+ (𝜎) |𝑏𝛿 (𝜎) , where 𝑛+ (𝜎) is the set of vertices that
get the spin + under 𝜎 and 𝛿(𝜎) is the number of edges that get different spins.1 The partition function

1The parametrisation of the Ising model in terms of 𝛿 (𝜎) follows the closely related works [35, 42]; if instead the model is
defined in terms of the number of edges with the same spins, the edge interaction parameter 1/𝑏 ∈ (1,∞) is obtained, whose
logarithm corresponds to the inverse temperature in the physics literature.
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is the aggregate weight of all configurations; that is,

𝑍𝐺 (𝜆, 𝑏) =
∑

𝜎:𝑉→{+,-}

𝜆 |𝑛+ (𝜎) |𝑏𝛿 (𝜎) .

In this article, we consider the problem of approximating the partition function when 𝑏 ∈ (0, 1], known
as the ferromagnetic case, and when the parameter 𝜆 is in the complex plane. Complex parameters for
the Ising model have been studied in the computation of probability amplitudes of quantum circuits;
see, for example, [12, 36, 8]. Somewhat surprising – and this is one of the main motivations behind this
work – complex parameters are also fundamental in understanding the complexity of approximation
even for real-valued parameters.

In particular, many of the recent advances on the development of approximation algorithms for
counting problems have been based on viewing the partition function as a polynomial of the underlying
parameters in the complex plane and using refined interpolation techniques from [1, 39] to obtain fully
polynomial time approximation schemes (FPTAS; see Subsection 1.1 below for the technical definition),
even for real values [23, 24, 33, 5, 2, 34, 44, 42, 41]. The bottleneck of this approach is establishing zero-
free regions in the complex plane of the polynomials, which in turn requires an in-depth understanding
of the models with complex-valued parameters. This framework of designing approximation algorithms
aligns with the classical statistical physics perspective on phase transitions, where zeros in the complex
plane have long been studied in the context of phase transitions (see, e.g., [29, 25]), and several of these
classical results have recently been used to obtain efficient approximation algorithms ([35, 39]).

In particular, the celebrated Lee–Yang theorem [30] says that, when regarding the partition function
of the ferromagnetic Ising model as a polynomial in the external field parameter 𝜆, all of its zeros,
referred to as Lee–Yang zeros, lie on the unit circle in the complex plane. (These Lee–Yang zeros have
actually been observed in quantum experiments [40].) The Lee–Yang theorem was recently used by
Liu, Sinclair and Srivastava [35] to obtain an FPTAS for approximating the partition function for values
𝜆 ∈ C that do not lie on the unit circle. This result can be viewed as a derandomisation of the Markov
chain–based randomised algorithm by Jerrum and Sinclair [26] for 𝜆 > 0 (see also [22, 11]), solving a
longstanding problem.2

As noted in [35, Remark p. 290], the ‘no-field’ case |𝜆 | = 1 is unclear, since, on the one hand, we
have the algorithm by [26] for 𝜆 = 1 and, on the other hand, it is known that Lee–Yang zeros are dense
on the unit circle. The density picture was further explored in [42] for graphs of bounded maximum
degree Δ , by establishing for each 𝑏 ∈ (0, 1) a symmetric arc around 𝜆 = 1 on the unit circle where the
partition function does not vanish for all graphs of maximum degree at most Δ and showing density of
the Lee–Yang zeros on the complementary arc. See also [10] for the density result.

In this article, we resolve the complexity picture of the ferromagnetic Ising model. We show that for
graphs of maximum degree Δ , approximately computing the partition function is #P-hard,3 on the arc of
the unit circle where the Lee–Yang zeros are dense. See Theorem 1 for a precise statement of our main
results. Since on the complementary arc there exists an FPTAS, by the results of [42] (in combination
with [1, 39]), this gives a direct connection between hardness of approximation and the presence of
Lee–Yang zeros. Combined with the results of [26, 35], our work therefore classifies the complexity of
approximating the partition function of the ferromagnetic Ising model on the complex plane.

It should be noted that the existence of zeros does not imply hardness in a straightforward manner.4
We obtain the connection between the Lee–Yang zeros and computational complexity via tools from

2Notably, the correlation decay approach, which also yields deterministic approximation algorithms and was key in the
full classification of antiferromagnetic 2-spin systems [31, 45, 46, 16], somewhat surprisingly does not perform as well for
ferromagnetic systems; see [21] for the state-of-the-art on this front.

3Roughly, #P is the counting version of problems in NP; see, for example, [47] for details.
4For example, the graphs in [42] whose partition function is shown to be zero are trees and these can be clearly detected

in polynomial time. More generally, it is hard to imagine a construction of graphs with vanishing partition function which can
directly yield hardness. In any case, our results, following the framework of [20, 6, 7], show hardness for a relaxed version of the
problems where zeros do not need to be detected, making all of these considerations irrelevant.

https://doi.org/10.1017/fms.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.4


Forum of Mathematics, Sigma 3

complex dynamical systems. The partition function on trees naturally gives rise to a dynamical system;
cf. Subsection 2.1. Both the hardness of approximating the partition function as well as the density of
the Lee–Yang zeros originate from chaotic behavior of the dynamics, while normal behavior is linked
to absence of zeros and hence the existence of efficient approximation algorithms [42].

Our work falls into the broader context of showing how zeros in the complex plane actually relate
to the existence and design of approximation algorithms. This connection has been well studied for
general graphs, see, for example, [20, 18, 15]; for bounded-degree graphs, the picture is less clear, but
the key seems to lie in understanding the underlying complex dynamical systems [6, 9, 10, 42, 4, 7].
A general theory is so far elusive, but it seems that the chaotic behavior of the underlying complex
dynamical system is linked to the presence of zeros of the partition function and to the #P-hardness of
approximation.

Establishing hardness results for ferromagnetic spin systems is notoriously challenging [32, 21]. We
therefore expect our techniques to be applicable in a wider framework. We will explain in Section 2 the
obstacles that arise relative to previous works for antiferromagnetic spin systems.

1.1. Our results

To state our inapproximability results, we first formally define the computational problems that we
consider. For 𝑧 ∈ C, we let |𝑧 | be the norm of z, Arg(𝑧) be its argument in the interval [0, 2𝜋) and
arg(𝑧) = {Arg(𝑧) + 2𝑘𝜋 | 𝑘 ∈ Z} be the set of all of its arguments. We will consider the problems
of approximating the norm of the partition function 𝑍𝐺 (𝜆, 𝑏) within a rational factor 𝐾 > 1 and its
argument within an additive rational constant 𝜌 > 0. For the computational problems, we moreover
assume that 𝑏 ∈ (0, 1) is rational and 𝜆 has rational real and imaginary parts. The rationality assumption
is mainly for convenience (representation issues) and simplifies some of the proofs.

Name #IsingNorm(𝜆, 𝑏,Δ , 𝐾).
Instance A graph 𝐺 = (𝑉, 𝐸) with maximum degree ≤ Δ .
Output If 𝑍𝐺 (𝜆, 𝑏) = 0, the algorithm may output any rational. Otherwise, it must return a rational
𝑁 such that 𝑁/𝐾 ≤ |𝑍𝐺 (𝜆, 𝑏) | ≤ 𝐾𝑁 .

We remark here that the explicit constant 𝐾 > 1 in the problem definition above is only for conve-
nience, having 𝐾 = 2𝑛1−𝜖 for any constant 𝜖 > 0 and with n the number of vertices of the graph does
not change the complexity of the problem using standard powering arguments.

Name #IsingArg(𝜆, 𝑏,Δ , 𝜌).
Instance A graph 𝐺 = (𝑉, 𝐸) with maximum degree ≤ Δ .
Output If 𝑍𝐺 (𝜆, 𝑏) = 0, the algorithm may output any rational. Otherwise, it must return a rational
𝐴 such that |𝐴 − 𝑎 | ≤ 𝜌 for some 𝑎 ∈ arg(𝑍𝐺 (𝜆, 𝑏)).

A fully polynomial time approximation scheme ( FPTAS) for approximating 𝑍𝐺 (𝜆, 𝑏) for given 𝜆 and
b and positive integer Δ is an algorithm that for any n-vertex graph G of maximum degree at most Δ
and any rational 𝜀 > 0 solves both probems #IsingNorm(𝜆, 𝑏,Δ , 1+ 𝜀) and #IsingArg(𝜆, 𝑏,Δ , 𝜀) in time
polynomial in 𝑛/𝜀.

We use Q to denote the set of rational numbers and CQ to denote the set of complex numbers with
rational real and imaginary part. We denote by S the unit circle in the complex plane and SQ = S ∩ CQ.
It is well-known that numbers in SQ are dense on the unit circle.5 For 𝜃 ∈ (0, 𝜋) we denote

𝐼 (𝜃) := {𝑒𝑖𝜗 | −𝜃 < 𝜗 < 𝜃}.

For Δ ≥ 3 and 𝑏 ∈ ( Δ−2
Δ , 1) we denote by 𝜃𝑏 ∈ (0, 𝜋) the angle from [42, Theorem A] for which the

following hold:

5See, for example, the upcoming Lemma 35.
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(i) For any graph G of maximum degree at most Δ and any 𝜆 ∈ 𝐼 (𝜃𝑏), 𝑍𝐺 (𝜆, 𝑏) ≠ 0.
(ii) For each 𝜆 ∈ S \ 𝐼 (𝜃𝑏) there exists 𝜆′ ∈ S arbitrarily close to 𝜆 and a tree T of maximum degree Δ

for which 𝑍𝑇 (𝜆′, 𝑏) = 0.

Our main result is as follows.

Theorem 1. Let Δ ≥ 3 be an integer and let 𝐾 = 1.001 and 𝜌 = 𝜋/40.

(a) Let 𝑏 ∈
(
0, Δ−2

Δ

]
be a rational and 𝜆 ∈ SQ such that 𝜆 ≠ ±1. Then the problems

#IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) are #P-hard.
(b) Let 𝑏 ∈

(Δ−2
Δ , 1

)
be a rational. Then the collection of complex numbers 𝜆 ∈ SQ for which

#IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) are #P-hard is dense in the arc S \ 𝐼 (𝜃𝑏).

Combined with [35], part (a) of our main theorem completely classifies the hardness of approximating
the partition function 𝑍𝐺 (𝜆, 𝑏) (as per the two computational problems stated above), for 𝑏 ∈ (0, Δ−2

Δ ].
Combined with [42, Corollary 1], part (b) of our main theorem ‘essentially’ classifies the hardness of
approximating the partition function for 𝑏 ∈ ( Δ−2

Δ , 1) and answers a question from [42]. Technically,
we do not rule out that there may be an efficient algorithm for these problems for some 𝜆 ∈ SQ \ 𝐼 (𝜃𝑏),
but such an algorithm must be specifically tailored to such a particular 𝜆 (unless, of course, P = #P).
We in fact conjecture that, when 𝑏 ∈ ( Δ−2

Δ , 1), approximating the partition function (as in Theorem
1) is #P-hard for all non-real 𝜆 ∈ SQ \ 𝐼 (𝜃𝑏). See Remark 2 for a discussion of the antipodal case
𝜆 = −1.

We should further remark that the open interval 𝑏 ∈
(
0, Δ−2

Δ

)
for positive 𝜆 corresponds to the so-

called nonuniqueness region of the infinite Δ-regular tree. For the antiferromagnetic Ising model and
positive 𝜆, nonuniqueness leads to computational intractability [46, 17], in contrast to the ferromagnetic
case. As we explain in Section 2, the phenomenon which underpins our proofs for |𝜆 | = 1 with 𝜆 ≠ ±1
is the chaotic behaviour of the underlying complex dynamical system, which resembles in rough terms
a complex-plane analogue of nonuniqueness. Interestingly, at criticality – that is, when 𝑏 = Δ−2

Δ – while
the model is in uniqueness for 𝜆 = 1, the chaotic behaviour is nevertheless present for non-real 𝜆 and
we show #P-hardness for this case, too.

Remark 2. We further discuss the real cases 𝜆 = ±1 which are not explicitly covered by Theorem 1. The
case 𝜆 = 1 admits an FPRAS [26, 22, 11], but the existence of a deterministic approximation scheme
is open. We study the case 𝜆 = −1 in more detail in Section 9, where we show that the problem is not
#P-hard (assuming #P ≠ NP): using the ‘high-temperature’ expansion of the model, we show an odd-
subgraphs formulation of the partition function (Lemma 39), which is then used to conclude (Theorem
40) that the sign of the partition function can be determined trivially, while the problem of approximating
the norm of the partition function for all Δ ≥ 3 is equivalent to the problem of approximately counting
the number of perfect matchings (even on unbounded-degree graphs); the complexity of the latter is
an open problem in general, but it can be approximated with an NP-oracle [27], therefore precluding
#P-hardness.

In the next section, we give an outline of the key pieces to obtain our inapproximability results; the
details of these pieces will be provided in the forthcoming sections (see also Subsection 2.5 for the
organisation of the article).

2. Proof outline

Let Δ ≥ 3 be an integer, 𝑏 ∈ (0, Δ−2
Δ ] and 𝜆 ∈ SQ with 𝜆 ≠ ±1. It will be convenient to work sometimes

with 𝑑 = Δ − 1. For 𝑧1, 𝑧2 ∈ S, let Arc [𝑧1, 𝑧2] and Arc (𝑧1, 𝑧2) denote the counterclockwise arc in S
from 𝑧1 to 𝑧2 including and excluding the endpoints, respectively. For an arc A on the unit circle S, we
let ℓ(𝐴) denote the length of A. We use 𝑧 to denote the conjugate of z.
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2.1. Rooted-tree gadgets and complex dynamical systems

Our reductions are based on gadgets that are rooted trees, whose analysis will be based on understanding
the dynamical behaviour of certain complex maps on the unit circle, given by6

𝑓𝜆,𝑘 : 𝑧 ↦→ 𝜆 ·
( 𝑧 + 𝑏
𝑏𝑧 + 1

) 𝑘
, for integers 𝑘 = 1, . . . , 𝑑. (1)

We will sometimes drop 𝜆 when it is clear from the context. To connect these maps with rooted-tree
gadgets, for a graph 𝐺 = (𝑉, 𝐸) and a vertex u of G, we let 𝑍𝐺,+𝑢 be the contribution to the partition
function from configurations with 𝜎(𝑢) = +; that is,

𝑍𝐺,+𝑢 (𝜆, 𝑏) :=
∑

𝜎:𝑉→{+,-};𝜎 (𝑢)=+

𝜆 |𝑛+ (𝜎) |𝑏𝛿 (𝜎) ,

and we define analogously 𝑍𝐺,-𝑢 .
Definition 3. Let 𝜆, 𝑏 be arbitrary numbers and T be a tree rooted at r. We say that T implements the
field 𝜆′ if 𝑍𝑇 ,-𝑟 (𝜆, 𝑏) ≠ 0 and 𝜆′ = 𝑍𝑇 ,+𝑟 (𝜆,𝑏)

𝑍𝑇 ,-𝑟 (𝜆,𝑏)
. We call 𝜆′ the field of T.

The next lemma explains the relevance of the maps 𝑓𝜆,1, . . . , 𝑓𝜆,𝑑 for implementing fields.
Lemma 4. Let 𝑏 ∈ (0, 1) and 𝜆 ∈ S. Let 𝑇1, 𝑇2 be rooted trees with roots 𝑟1, 𝑟2 and fields 𝜉1, 𝜉2 ∈ S,
respectively. Then, the tree T rooted at 𝑟2 consisting of 𝑇2 and k distinct copies of 𝑇1 which are attached
to 𝑟2 via an edge between 𝑟2 and 𝑟1 implements the field 𝜉 = 𝑓𝜉2 ,𝑘 (𝜉1) ∈ S.
Proof. Omitting for convenience the arguments 𝜆, 𝑏 from the partition functions, we have

𝑍𝑇 ,+𝑟2 = 𝑍𝑇2 ,+𝑟2 (𝑍𝑇1 ,+𝑟1 + 𝑏𝑍𝑇1 ,-𝑟1)
𝑘 , 𝑍𝑇 ,-𝑟2 = 𝑍𝑇2 ,-𝑟2 (𝑏𝑍𝑇1 ,+𝑟1 + 𝑍𝑇1 ,-𝑟1)

𝑘 .

Dividing these yields the result (note, 𝑍𝑇2 ,-𝑟2 ≠ 0 and 𝜉1 =
𝑍𝑇1 ,+𝑟1
𝑍𝑇1 ,-𝑟1

∈ S, so 𝑍𝑇 ,-𝑟2 ≠ 0); the fact that
𝜉 ∈ S follows from footnote 6. �

Note, in particular, that all fields implemented by trees lie on the unit circle S; cf. footnote (6). The
following theorem, which lies at the heart of the construction of the gadgets, asserts that throughout the
relevant range of the parameters we can in fact implement a field arbitrarily close to any number in S. We
use T𝑑+1 to denote the set of all rooted trees with maximum degree ≤ 𝑑+1 whose roots have degree ≤ 𝑑.
Definition 5. Given 𝑏 ∈ (0, 1) and 𝑑 ≥ 2, we denote by SQ(𝑑, 𝑏) the collection of 𝜆 ∈ SQ for which the
set of fields implemented by trees in T𝑑+1, whose roots have degree 1, is dense in S.
Theorem 6. Let 𝑑 ≥ 2 be an integer.
(a) Let 𝑏 ∈

(
0, 𝑑−1

𝑑+1
]

be a rational. Then SQ (𝑑, 𝑏) = SQ \ {±1}.
(b) Let 𝑏 ∈

(
𝑑−1
𝑑+1 , 1

)
be a rational. Then SQ(𝑑, 𝑏) is dense in S \ 𝐼 (𝜃𝑏).

Theorem 6 (b) is in stark contrast to what happens for 𝜆 ∈ 𝐼 (𝜃𝑏), where it is known that fields
are confined in an arc around 1 [42]. We conjecture that in part (b) it is true that SQ(𝑑, 𝑏) = SQ \

(𝐼 (𝜃𝑏) ∪ {−1}). Moreover, while in Theorem 6 we focus on rational b, which is most relevant for our
computational problems, we note that for any real 𝑏 ∈ (0, 1), SQ (𝑑, 𝑏) is dense in S in case (a) and dense
in S\ 𝐼 (𝜃𝑏) in case (b). We suspect that case (a) is true when SQ is replaced by the collection of algebraic
numbers on the unit circle and 𝑏 ∈ (0, 𝑑−1

𝑑+1 ] is algebraic, but this seems to be challenging to prove.
Later, in Section 7, we bootstrap Theorem 6 to obtain fast algorithms to implement fields with

arbitrarily small error; see Lemma 32 for the exact statement. Roughly, these fields are then used as
‘probes’ in our reductions to compute exactly the ratio 𝑍𝐺,+𝑣 (𝜆,𝑏)

𝑍𝐺,-𝑣 (𝜆,𝑏)
for any graph G and vertex v; we say

more about this in Subsection 2.4. For now, we focus on the key Theorem 6 and the ideas behind its proof.

6Note that, for real b and 𝜆 ∈ S, if 𝑧 ∈ S, then 𝑓𝜆,𝑘 (𝑧) ∈ S as well.
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2.2. Hardness via Julia-set density

To prove Theorem 6, we will be interested in the set of values obtained by successive composition of
the maps 𝑓𝜆,𝑘 in (1) starting from the point 𝑧 = 1; the main challenge in our setting is to prove that, for
𝜆, 𝑏 as in Theorem 6, these values are dense on the unit circle S. Part (b) is relatively easy to prove, but
the real challenge lies in proving part (a).

To understand the reason that this is challenging, let us consider the properties of the map 𝑓𝜆,𝑘 for
some root degree 𝑘 ≥ 1 viewed as a dynamical system; cf. the upcoming Lemmas 8 and 10 for details.
Then, for all 𝑏 ∈ (0, 1) the following hold:
1. The ‘well-behaved’ regime: When 𝑏 ∈ ( 𝑘−1

𝑘+1 , 1), there exists 𝜆𝑘 = 𝜆𝑘 (𝑏) ∈ S with Im𝜆𝑘 > 0 such
that for all 𝜆 in an arc around 1 given by Arc[𝜆𝑘 , 𝜆𝑘 ], the iterates of the point 𝑧 = 1 under the map
𝑓𝜆,𝑘 converge to a value 𝑅𝑘 (𝜆) ∈ S. In fact, the map 𝑓𝜆,𝑘 has nice convergence/contracting properties
in an arc around 𝑧 = 1: the iterates of any point in Arc [1, 𝑅𝑘 (𝜆)] converge to 𝑅𝑘 (𝜆).

2. The ‘chaotic’ regime: Instead, when 𝑏 ∈ ( 𝑘−1
𝑘+1 , 1) and 𝜆 ∈ Arc(𝜆𝑘 , 𝜆𝑘 ) or 𝑏 ∈ (0, 𝑘−1

𝑘+1 ], all points in
S belong to the so-called Julia set of the map; roughly, this means that the iterates under 𝑓𝜆,𝑘 of two
distinct but arbitrarily close points in S will be separated by some absolute constant infinitely many
times. In other words, the map 𝑓𝜆,𝑘 has a chaotic behaviour on S.

For 𝑏 ∈ (0, 1), we use Λ𝑘 (𝑏) to denote the set of 𝜆 ∈ S where the degree-k map 𝑓𝜆,𝑘 exhibits the
behaviour in (2); see the relevant Definition 7 and Lemma 8. Based on item (1), it was shown in [42]
that the iterates of the point 𝑧 = 1 under the successive composition of the maps in (1) stay ‘trapped’ in
a small arc around 1 when 𝑏 ∈ ( 𝑑−1

𝑑+1 , 1) and 𝜆 ∈ Arc(𝜆𝑑 , 𝜆𝑑).
Instead, our goal is to tame the chaotic behaviour in item (2) to get density on S for fixed 𝑏 ∈ (0, 𝑑−1

𝑑+1 ]
and 𝜆 ∈ S\{±1}. We should emphasise here that, in the range of 𝑏, 𝜆 we consider, the map 𝑓𝜆,𝑑 has the
chaotic behaviour described in item (2) throughout S, so by default it is hopeless to aim for any fine
analytical understanding, and this is the major technical obstacle we need to address.

An analogous setting has been previously considered in [6], in the context of approximating the
independent set polynomial. The bottleneck of showing the desired density is to first argue density
around a point 𝑥∗ in the Julia set of the degree-d map. Once this is done, the chaotic behaviour of
the degree-d map around the Julia-set point 𝑥∗ can be utilised to bootstrap the density to the whole
complex plane. The key challenge here is arguing the initial density around the Julia-set point of the
degree-d map, since the degree-d map itself is useless for creating density in the Julia set. In [6], an
auxiliary Fibonacci-style recursion was used to converge to such a point 𝑥∗; the density around 𝑥∗

was then achieved by utilising the convergence to further obtain a set of contracting maps around a
neighbourhood N of 𝑥∗, such that the images of N under the maps formed a covering of N.

While the contracting/covering maps framework can be adapted to our setting (see Lemma 19), the
bottleneck step of obtaining the initial density around the Julia-set point requires a radically different
argument: the convergence of the recursion in [6] relies on a certain linearisation property, which is not
present in the case of the ferromagnetic Ising model; even worse, the recursion does not converge for
all the relevant range of 𝑏, 𝜆.7

2.3. Our approach to obtain density around a Julia-set point

We devise a new technique to tackle the problem of showing density around a point in the Julia set of
𝑓𝜆,𝑑 . The main idea is to exploit the chaotic behaviour of the iterates of 𝑓𝜆,𝑘 when 𝜆 ∈ Λ𝑘 (𝑏) to obtain an
iterate 𝜉 of 1 with an expanding derivative; that is, | 𝑓 ′𝜆,𝑘 (𝜉) | > 1. The existence of 𝜉 follows by general
arguments from the theory of complex dynamical systems; see the relevant Lemma 15. The lower bound
on the derivative is then used in careful inductive constructions to obtain families of contracting maps
that cover an appropriate arc of the circle.

7In fact, determining the range of 𝜆s where the corresponding recursion for the Ising model converges to a Julia-set point is, to
the best of our knowledge, beyond known complex dynamics methods.
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To illustrate the main idea of this inductive construction, let us assume that the degree 𝑑 + 1 is odd.
Then, using Lemma 15 and the fact that 𝜆 ∈ Λ𝑑 (𝑏), we obtain an iterate of the point 𝑧 = 1 under the
map 𝑓𝜆,𝑑 , say 𝜉, so that | 𝑓 ′𝜆,𝑑 (𝜉) | > 1. The key point is to consider the map 𝑓𝜉 ,𝑘 for 𝑘 = 𝑑/2. On one
hand, if it happens that 𝜉 ∉ Λ𝑘 (𝑏) lies in the ‘well-behaved’ regime of the degree-k map, it can be
shown that the maps 𝑓𝜉 ,𝑘 , 𝑓𝜉 ,𝑘+1 are contracting/covering maps in an appropriate arc of S, yielding the
required density as needed (details of this argument can be found in Lemma 21). On the other hand, if
𝜉 ∈ Λ𝑘 (𝑏) lies in the ‘chaotic’ regime of the degree-k map, then we can proceed inductively by finding
an iterate 𝜈 of 1 under the map 𝑓𝜉 ,𝑘 with expanding derivative | 𝑓 ′𝜉 ,𝑘 (𝜈) | > 1 and recurse.

Technically, to carry out this inductive scheme we have to address the various integrality issues,
while at the same time being careful to maintain the degrees of the trees bounded by Δ . More important,
we need to consider pairs/triples/quadruples of maps to ensure the contraction/covering property in the
inductive step; to achieve this, we need to understand the dependence of the derivative at the fixpoint of
the k-ary map with k. Here, things turn out to be surprisingly pleasant, since it turns out that | 𝑓 ′𝜆,𝑘 (𝑧) |
depends linearly on the degree k and is independent of 𝜆; see item (i) of Lemma 10. This fact is exploited
in the arguments of Subsection 4.2. These considerations cover almost all cases, but a few small degrees
d remain, which we cover by a Cantor-style construction; see Section 5.2 for details.

2.4. The reduction

The arguments discussed so far can be used to show that rooted trees in T𝑑+1 implement any field 𝜉 on
the unit circle S within arbitrarily small error 𝜖 > 0; see Lemma 32 for the form that we actually need.
We now discuss in a bit more detail the high-level idea behind the final reduction argument in Section 8.

The key observation to utilise the gadgets is that for any graph G and vertex v with 𝑍𝐺,-𝑣 (𝜆, 𝑏) ≠ 0,
the ‘field’ at a vertex v satisfies 𝑍𝐺,+𝑣 (𝜆,𝑏)

𝑍𝐺,-𝑣 (𝜆,𝑏)
∈ S (cf. Lemma 34), and hence we can use our rooted-

tree gadgets as probes to compute exactly the ratio 𝑄𝐺,𝑣 := 𝑍𝐺,+𝑣 (𝜆,𝑏)
𝑍𝐺,-𝑣 (𝜆,𝑏)

. The straightforward way to
do this would be to attach a tree on v which implements a field 𝑥 ∈ S and use oracle calls to either
#IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) and look for 𝑥 = 𝑥∗ that makes the partition function
of the resulting graph equal to zero; from the key observation earlier, we know that such an 𝑥∗ exists,
namely, 𝑥∗ = −1/𝑄𝐺,𝑣 and, to determine it, we can use binary search.

This is the main idea behind the reduction, though there are a couple of caveats. First of all, there is
no way to know whether the ratio 𝑄𝐺,𝑣 is well-defined; that is, whether 𝑍𝐺,-𝑣 (𝜆, 𝑏) ≠ 0, even using
oracle calls to the approximation problems we study: 𝑍𝐺,-𝑣 (𝜆, 𝑏) is not a partition function of a graph
(since v’s spin is fixed), and even if we managed to cast this as a partition function, the oracles cannot
detect zeros (cf. Subsection 1.1). The second caveat is that attaching the tree increases the degree of
v which is problematic when, for example, G is Δ-regular and the peeling-vertices argument does not
quite work since there is no simple way to utilise the oracles after the first step.

The first point is addressed by replacing the edges of G with paths of appropriate length, which has
the effect of ‘changing’ the value of the parameter b to some value �̂� close but not equal to 1 where the
partition function is zero-free (we actually need to attach to internal vertices of the paths rooted trees
with fields close to 1/𝜆 so that the complex external field 𝜆 is almost cancelled). Then, using oracle
calls to #IsingNorm(𝜆, 𝑏,Δ , 𝐾) or #IsingArg(𝜆, 𝑏,Δ , 𝜌), our algorithm aims to determine the value of
𝑍𝐺 (𝜆, �̂�), which is a #P-hard problem ([28], Theorem 1.1); the key point is that now we have zero-
freeness of the partition function, which allows us to assert that the quantities we compute during the
course of the algorithm are actually well-defined.

The second point is addressed by doing the peeling argument at the level of edges by trying to figure
out, for an edge e of G, the value of the ratio �̂�𝐺,𝑒 = 𝑍𝐺 (𝜆,�̂�)

𝑍𝐺,\𝑒 (𝜆,�̂�)
. We do this by subdividing the edge and

use a field gadget on the middle vertex; this has the benefit that it does not increase the maximum degree
of the graph, but certain complications arise since instead of �̂�𝐺,𝑒, we retrieve a slightly different ratio
(see Lemma 37 in Subsection 8.2), and some extra work is required to finish off the proof of Theorem 1;
see Subsection 8.3 for details.
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2.5. Outline

The next section details the dynamical properties of the maps 𝑓𝜆,𝑘 and elaborates on the inductive
proof of Theorem 6, which is based on the upcoming Lemma 17. Section 4 explains in more detail
the contracting/covering maps framework and how we utilise the degree/derivative interplay to cover
the bulk of the cases in Lemma 17. Section 5 contains the remaining pieces needed to complete the
proof of Lemma 17, which is given in Section 6. In Section 7, we bootstrap Theorem 6 to obtain fast
algorithms to implement fields on the unit circle with arbitrarily small precision error, which is used in
the reduction arguments of Section 8, where the proof of Theorem 1 is completed. Finally, in Section 9,
we study the case 𝜆 = −1 (cf. Remark 2) and show the equivalence with the problem of approximately
counting perfect matchings.

3. Complex Dynamics Preliminaries and the Inductive Step in Theorem 6

In this section, we set up some preliminaries about the maps 𝑓𝜆,𝑘 in (1) that will be used to prove
Theorem 6. We first consider the general case 𝑘 ≥ 1 in Subsection 3.1 and then further study the
𝑘 = 1 case separately in Subsection 3.2. In Subsection 3.3, we use these properties to obtain points with
expanding derivatives using tools from complex dynamics. Then, in Subsection 3.4, we give the main
lemma that lies at the heart of the inductive proof of Theorem 6 and conclude the proof of the latter.

3.1. Results on 𝑓𝜆,𝑘 for general k

This section contains relevant properties of the maps 𝑓𝜆,𝑘 : 𝑧 ↦→ 𝜆 ·
( 𝑧+𝑏
𝑏𝑧+1
) 𝑘 that we will need; these

were discussed informally in Subsection 2.2, and here we formalise them. Almost all results of this
section follow from arguments in [42].

We begin by formally defining the set Λ𝑘 (𝑏).

Definition 7. Let 𝑘 ≥ 1 be an integer and 𝑏 ∈ (0, 1). We let Λ𝑘 (𝑏) be the set of 𝜆 ∈ S such that all fixed
points z of the map 𝑓𝜆,𝑘 with 𝑧 ∈ S are repelling; that is, | 𝑓 ′𝜆,𝑘 (𝑧) | > 1.

The following lemma gives a description of the set Λ𝑘 (𝑏) and characterises the Julia set of 𝑓𝜆,𝑘 . We
have described informally the dynamical properties of the map 𝑓𝜆,𝑘 that the Julia set captures; see item
(2) in Subsection 2.2. The reader is referred to [38, Chapter 4] for more details on the general theory.

Lemma 8. Let 𝑘 ≥ 1 be an integer. Then,

◦ if 𝑏 ∈ (0, 𝑘−1
𝑘+1 ), Λ𝑘 (𝑏) = S. For 𝑏 = 𝑘−1

𝑘+1 , Λ𝑘 (𝑏) = S\{+1}.
◦ if 𝑏 ∈ ( 𝑘−1

𝑘+1 , 1), there is 𝜆𝑘 = 𝜆𝑘 (𝑏) ∈ S with Im (𝜆𝑘 ) > 0 such that Λ𝑘 (𝑏) = Arc(𝜆𝑘 , 𝜆𝑘 ).

Moreover, if 𝑘 > 1, then for all 𝜆 ∈ Λ𝑘 (𝑏), the Julia set of 𝑓𝜆,𝑘 is equal to the unit circle S.

Proof. For 𝑏 ∈ ( 𝑘−1
𝑘+1 , 1), the range of Λ𝑘 (𝑏) follows from [42, Theorem 14]. For 𝑏 ∈ (0, 𝑘−1

𝑘+1 ], the range
of Λ𝑘 (𝑏) follows from item (i) in Lemma 10. The characterisation of the Julia set for 𝜆 ∈ Λ𝑘 (𝑏) is
shown in [42, Proof of Proposition 17]. �

Remark 9. The 𝜆𝑘 (𝑏) of the lemma is equal to 𝑒𝑖 𝜃𝑏 from the statement of Theorem 1 (where we replace
Δ by 𝑘 + 1).

Let A be an arc of S. A map 𝑓 : 𝐴 → S is orientation-preserving if for any 𝑧, 𝑧1, 𝑧2 ∈ 𝐴 with
𝑧 ∈ Arc [𝑧1, 𝑧2] it holds that 𝑓 (𝑧) ∈ Arc [ 𝑓 (𝑧1), 𝑓 (𝑧2)]. The orbit of a point 𝑧0 ∈ S under the map
𝑓𝜆,𝑘 is the sequence of the iterates { 𝑓 𝑛𝜆,𝑘 (𝑧0)}𝑛≥0. A fixed point z of the map 𝑓𝜆,𝑘 is called attracting if
| 𝑓 ′𝜆,𝑘 (𝑧) | < 1 and parabolic if | 𝑓 ′𝜆,𝑘 (𝑧) | = 1.

The following lemma captures properties of the maps 𝑓𝜆,𝑘 when 𝑘 ∈ {1, . . . , 𝑑 − 1} in the regime
𝑏 ∈
(
𝑑−2
𝑑 , 𝑑−1

𝑑+1
]
, which turns out to be the hard part of the proof of Theorem 6 (the lemma is stated more

generally for 𝑏 ∈
(
𝑑−2
𝑑 , 1

)
).

https://doi.org/10.1017/fms.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.4


Forum of Mathematics, Sigma 9

Lemma 10. Let 𝑑 ∈ Z≥2 and let 𝑏 ∈
(
𝑑−2
𝑑 , 1

)
. Then the following hold:

(i) For all 𝜆 ∈ S and 𝑘 ∈ Z≥1, the map 𝑓𝜆,𝑘 : S → S is orientation-preserving. Also, the magnitude
of the derivative at a point 𝑧 ∈ S does not depend on 𝜆 and equals | 𝑓 ′𝑘 (𝑧) |, where

		 𝑓 ′𝑘 (𝑧)		 = 𝑘 ·
		 𝑓 ′1 (𝑧)		 = 𝑘 (1 − 𝑏2)

𝑏2 + 2𝑏 · Re (𝑧) + 1
. (2)

(ii) For 𝑘 ∈ {1, . . . , 𝑑 − 1}, let 𝜆𝑘 = 𝜆𝑘 (𝑏) ∈ S be as in Lemma 8. Then,
◦ if 𝜆 ∈ Arc (𝜆𝑘 , 𝜆𝑘 ), then 𝑓𝜆,𝑘 has a unique attracting fixed point 𝑅𝑘 (𝜆) ∈ S.
◦ if 𝜆 = 𝜆𝑘 or 𝜆𝑘 , then 𝑓𝜆,𝑘 has a unique parabolic fixed point 𝑅𝑘 (𝜆) ∈ S.

(iii) The fixed point maps 𝑅𝑘 : Arc [𝜆𝑘 , 𝜆𝑘 ] → S are continuously differentiable on Arc (𝜆𝑘 , 𝜆𝑘 ) and
orientation-preserving with the property that 𝑅𝑘 (1) = 1 and 𝑅𝑘 (𝜆) = 𝑅𝑘 (𝜆).

(iv) For 𝜆 ∈ Arc (1, 𝜆𝑘 ], the fixed point 𝑅𝑘 (𝜆) is in the upper half-plane. For 𝑧0 ∈ Arc [1, 𝑅𝑘 (𝜆)], the
orbit of 𝑧0 under iteration of 𝑓𝜆,𝑘 converges to 𝑅𝑘 (𝜆) and is contained in Arc [𝑧0, 𝑅𝑘 (𝜆)].

(v) The following inequalities hold:

Arg(𝜆𝑑−1) < Arg(𝜆𝑑−2) < · · · < Arg(𝜆1),

while for 𝜆 ∈ Arc (1, 𝜆𝑚], with 𝑚 ≤ 𝑑 − 1, we have

Arg(𝑅1 (𝜆)) < Arg(𝑅2 (𝜆)) < · · · < Arg(𝑅𝑚(𝜆)),

with the additional property that, for 𝑖 ∈ {1, . . . , 𝑚 − 2},

ℓ (Arc [𝑅𝑖 (𝜆), 𝑅𝑖+1(𝜆)]) ≤ ℓ (Arc [𝑅𝑖+1(𝜆), 𝑅𝑖+2(𝜆)]) . (3)

Proof. We refer to [42] for proofs of items (i)–(iv). Specifically, item (i) follows from [42, Lemma 8 &
Equation (3.1)], item (ii) from [42, Lemma 13, Theorem 14, Proof of Proposition 17], item (iii) from
[42, Proof of Theorem 14] and item (iv) from [42, Theorem 14, Proof of Theorem 5(i)].

We will prove item (v). By taking the derivative of both sides of the equality 𝑓𝜆,𝑘 (𝑅𝑘 (𝜆)) = 𝑅𝑘 (𝜆)
with respect to 𝜆 and rewriting, we obtain

𝑅′
𝑘 (𝜆) =

𝑅𝑘 (𝜆)

𝜆
(
1 − 𝑓 ′𝜆,𝑘

(
𝑅𝑘 (𝜆)

) ) .
Using equation (2) for 𝑧 = 𝑅𝑚(1) = 1, we obtain that 𝑅′

𝑖+1(1) > 𝑅′
𝑖 (1) for 𝑖 ∈ {1, . . . , 𝑑 − 2}, and thus

for 𝜆 ∈ S in the upper half-plane near 1 we find that Arg(𝑅𝑖+1(𝜆)) > Arg(𝑅𝑖 (𝜆)).
The derivative at a fixed point of a map of the unit circle to itself is real (see also [42, Lemma 11]).

Furthermore, if such a map is orientation-preserving, the derivative at a fixed point is positive. Because
the map 𝑓𝜆,𝑖 is orientation-preserving with attracting fixed point 𝑅𝑖 (𝜆), we find that 𝑓 ′𝜆,𝑖 (𝑅𝑖 (𝜆)) ∈ (0, 1)
for 𝜆 ∈ Arc (𝜆𝑖 , 𝜆𝑖). From this, we deduce that we can write		𝑅′

𝑘 (𝜆)
		 = 1

1 − 𝑓 ′𝜆,𝑘 (𝑅𝑘 (𝜆))
. (4)

From equation (2) it can be seen that
		 𝑓 ′𝑖 (𝑧)		 is increasing both with respect to Arg(𝑧) when Im(𝑧) > 0 and

with respect to the index i and thus, as long as 𝑅𝑖 (𝜆) and 𝑅𝑖+1(𝜆) are both defined and Arg(𝑅𝑖+1(𝜆)) >
Arg(𝑅𝑖 (𝜆)), we deduce that |𝑅′

𝑖+1(𝜆) | > |𝑅′
𝑖 (𝜆) |. Since Arg(𝑅𝑖+1(𝜆)) > Arg(𝑅𝑖 (𝜆)) for 𝜆 in the

upper half-plane close to 1, we conclude that there cannot be any 𝜆 in the upper half-plane such that
Arg(𝑅𝑖+1(𝜆)) ≤ Arg(𝑅𝑖 (𝜆)).

Now suppose that there is some index i such that Arg(𝜆𝑖) ≤ Arg(𝜆𝑖+1). Note that 𝑅𝑖 (𝜆𝑖) is a parabolic
fixed point of 𝑓𝜆𝑖 ,𝑖 , which means that 𝑓 ′𝜆𝑖 ,𝑖 (𝑅𝑖 (𝜆𝑖)) = 1. Because we assumed that Arg(𝜆𝑖) ≤ Arg(𝜆𝑖+1),

https://doi.org/10.1017/fms.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.4


10 Pjotr Buys et al.

we see from item (ii) that 𝑅𝑖+1(𝜆𝑖) must be well-defined. We already deduced that Arg(𝑅𝑖+1(𝜆𝑖)) >
Arg(𝑅𝑖 (𝜆𝑖)) and thus 𝑓 ′𝜆𝑖 ,𝑖+1(𝑅𝑖+1(𝜆𝑖)) > 𝑓 ′𝜆𝑖 ,𝑖 (𝑅𝑖 (𝜆𝑖)) = 1, which contradicts the fact that 𝑅𝑖+1(𝜆𝑖) is
an attracting fixed point of 𝑓𝜆𝑖 ,𝑖+1. This concludes the proof of the first two claims of item (v).

Finally, we show the final claim of item (v). For indices 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚, it will be convenient to
denote by 𝐴𝑖, 𝑗 ,𝜆 the arc Arc [𝑅𝑖 (𝜆), 𝑅 𝑗 (𝜆)], under the convention that 𝑅0 (𝜆) = 1. For 𝜆 ∈ Arc (1, 𝜆𝑚],
our goal is hence to show that ℓ

(
𝐴𝑖,𝑖+1,𝜆

)
≤ ℓ
(
𝐴𝑖+1,𝑖+2,𝜆

)
for all 𝑖 ∈ {1, . . . , 𝑚 − 2}.

For any 𝜆 ∈ Arc (1, 𝜆𝑘 ], we observe for 𝑖 = 1, . . . , 𝑘 that

ℓ(𝐴0,𝑖,𝜆) =
∫

Arc [1,𝜆]
|𝑅′
𝑖 (𝑧) | |𝑑𝑧 |,

and thus for 𝑖 ∈ {1, . . . , 𝑘 − 1} we have ℓ(𝐴𝑖,𝑖+1,𝜆) =
∫

Arc [1,𝜆] |𝑅
′
𝑖+1(𝑧) | − |𝑅′

𝑖 (𝑧) | |𝑑𝑧 |.
We first show item (v) for 𝜆 near 1. As we let 𝜆 approach 1 along the circle, we obtain that

lim
𝜆→1

ℓ(𝐴𝑖,𝑖+1,𝜆)

ℓ(Arc [1, 𝜆])
= |𝑅′

𝑖+1 (1) | − |𝑅′
𝑖 (1) | =

1
1 − 𝑓 ′𝜆,𝑖+1(1)

−
1

1 − 𝑓 ′𝜆,𝑖 (1)

=
(1 + 𝑏)/(1 − 𝑏)(

𝑖 − (1 + 𝑏)/(1 − 𝑏)
) (
𝑖 − 2𝑏/(1 − 𝑏)

) .
The second equality can be obtained by using (4) and the third by using (2) and simplifying. If we denote
this expression by 𝑔(𝑖), then it is not hard to see that 𝑔(𝑖 + 1) > 𝑔(𝑖) as long as 𝑖 + 1 < 2𝑏/(1 − 𝑏).
Because 𝑏 ∈ ( 𝑑−2

𝑑 , 1), we have 2𝑏/(1 − 𝑏) > 𝑑 − 2. So, indeed, 𝑔(𝑖 + 1) > 𝑔(𝑖) for 𝑖 ∈ {1, . . . , 𝑑 − 3},
which contains {1, . . . , 𝑘 − 2}. This shows that the inequality in (3) is true for 𝜆 near 1.

Now suppose that there is 𝜆 ∈ S and index i for which the inequality in (3) does not hold. Then,
by continuity, because the inequality does hold near 1, there is a 𝜆 ∈ S for which the inequality is an
equality; that is,

ℓ
(
𝐴𝑖,𝑖+1,𝜆

)
= ℓ
(
𝐴𝑖+1,𝑖+2,𝜆

)
. (5)

For convenience, we will henceforth drop the subscript 𝜆 from the notation for the arcs 𝐴𝑖, 𝑗 ,𝜆 and simply
write 𝐴𝑖, 𝑗 . The maps 𝑓𝜆, 𝑗 are orientation-preserving for any j and thus

ℓ
(
Arc[𝜆, 𝑅 𝑗 (𝜆)]

)
= ℓ
(
𝑓𝜆, 𝑗 (𝐴0, 𝑗 )

)
=
∫
𝐴0, 𝑗

| 𝑓 ′𝑗 (𝑧) | |𝑑𝑧 |.

Using this equality we can write

ℓ
(
𝐴 𝑗 , 𝑗+1

)
=
∫
𝐴0, 𝑗+1

| 𝑓 ′𝑗+1 (𝑧) | |𝑑𝑧 | −

∫
𝐴0, 𝑗

| 𝑓 ′𝑗 (𝑧) | |𝑑𝑧 |.

We use this equality for 𝑗 = 𝑖 and 𝑗 = 𝑖 + 1 and rearrange (5) to obtain

2
∫
𝐴0,𝑖+1

| 𝑓 ′𝑖+1 (𝑧) | |𝑑𝑧 | =
∫
𝐴0,𝑖+2

| 𝑓 ′𝑖+2 (𝑧) | |𝑑𝑧 | +

∫
𝐴0,𝑖

| 𝑓 ′𝑖 (𝑧) | |𝑑𝑧 |.

We use (2) to rewrite the left-hand side of this equation as

2(𝑖 + 1)
∫
𝐴0,𝑖

| 𝑓 ′1 (𝑧) | |𝑑𝑧 | + 2
∫
𝐴𝑖,𝑖+1

| 𝑓 ′𝑖+1(𝑧) | |𝑑𝑧 |,
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and we rewrite the right-hand side as

(𝑖 + 2)
∫
𝐴0,𝑖

| 𝑓 ′1 (𝑧) | |𝑑𝑧 | +

∫
𝐴𝑖,𝑖+2

| 𝑓 ′𝑖+2(𝑧) | |𝑑𝑧 | + 𝑖 ·

∫
𝐴0,𝑖

| 𝑓 ′1 (𝑧) | |𝑑𝑧 |.

These two being equal implies that

2
∫
𝐴𝑖,𝑖+1

| 𝑓 ′𝑖+1(𝑧) | |𝑑𝑧 | =
∫
𝐴𝑖,𝑖+2

| 𝑓 ′𝑖+2(𝑧) | |𝑑𝑧 |.

We will show that this yields a contradiction. We rewrite the right-hand side as∫
𝐴𝑖,𝑖+2

| 𝑓 ′𝑖+2 (𝑧) | |𝑑𝑧 | =
∫
𝐴𝑖,𝑖+1

| 𝑓 ′𝑖+2 (𝑧) | |𝑑𝑧 | +

∫
𝐴𝑖+1,𝑖+2

| 𝑓 ′𝑖+2(𝑧) | |𝑑𝑧 |,

and we will show that both summands are greater than
∫
𝐴𝑖,𝑖+1

| 𝑓 ′𝑖+1(𝑧) | |𝑑𝑧 |, which will yield the contra-
diction. The inequality for the first summand follows easily from the fact that | 𝑓 ′𝑖+2 (𝑧) | > | 𝑓 ′𝑖+1(𝑧) | for
all 𝑧 ∈ S; cf. (2). The second inequality uses the fact that | 𝑓 ′𝑖+2(𝑧) | increases as Arg(𝑧) increases (when
Im 𝑧 > 0) and thus∫

𝐴𝑖+1,𝑖+2

| 𝑓 ′𝑖+2 (𝑧) | |𝑑𝑧 | > | 𝑓 ′𝑖+2(𝑅𝑖+1(𝜆)) | · ℓ
(
𝐴𝑖+1,𝑖+2

)
> | 𝑓 ′𝑖+1(𝑅𝑖+1(𝜆)) | · ℓ

(
𝐴𝑖,𝑖+1

)
>

∫
𝐴𝑖,𝑖+1

| 𝑓 ′𝑖+1 (𝑧) | |𝑑𝑧 |.

The second inequality of this derivation uses the assumed equality in (5). This yields the desired
contradiction. �

Remark 11. For any 𝜆 ∈ S and 𝑘 ∈ Z≥1 for which the fixed point 𝑅𝑘 (𝜆) is defined, we have
| 𝑓 ′𝑘 (𝑅𝑘 (𝜆)) | > | 𝑓 ′𝑘 (𝜆) |. To see this when Im𝜆 > 0, note from item (iv) and the fact that the maps 𝑓𝜆,𝑘
are orientation-preserving that Arg(𝑅𝑘 (𝜆)) ∈ (Arg(𝜆), 𝜋) and hence by (2) that | 𝑓 ′𝑘 (𝑅𝑘 (𝜆)) | > | 𝑓 ′𝑘 (𝜆) |.
When Im𝜆 < 0, the inequality follows from the above since 𝑅𝑘 (𝜆) = 𝑅𝑘 (𝜆) from item (iii) and the
expression in (2) depends only the real part of z.

3.2. Results on 𝑓𝜆,1

Note that 𝑓𝜆,1 is a Möbius transformation; we will extract some relevant information about it using the
theory of Möbius transformations, following [3, Section 4.3].

There is a natural way to relate each Möbius transformation g with a 2 × 2 matrix A. Formally,
let GL2(C) be the group of 2 × 2 invertible matrices with complex entries (with the multiplication
operation) and M be the group of Möbius transformations (with the composition operation ◦). The
following map gives a surjective homomorphism between the groups GL2 (C) and M:

Φ : GL2(C) → M,
( 𝑎 𝑏
𝑐 𝑑

)
↦→ (𝑧 ↦→

𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
).

For 𝑔 ∈ M, let 𝐴 ∈ GL2(C) such that Φ(𝐴) = 𝑔 and define tr2(𝑔) = tr(𝐴)2/det(𝐴). This value does
not depend on the choice of preimage and, thus, tr2 is a well-defined operator on M. In the following
theorem, it is stated how this operator is used to classify Möbius transformations. We say that 𝑓 , 𝑔 ∈ M
are conjugate if there is ℎ ∈ M such that 𝑓 = ℎ ◦ 𝑔 ◦ ℎ−1.
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Theorem 12 ([3, Theorem 4.3.4]). Let 𝑔 ∈ M not equal to the identity; then g is conjugate to

1. a rotation 𝑧 ↦→ 𝑒𝑖 𝜃 𝑧 for some 𝜃 ∈ (0, 𝜋] if and only if tr2(𝑔) ∈ [0, 4), in which case tr2 (𝑔) =
2 · (cos(𝜃) + 1) ;

2. a multiplication 𝑧 ↦→ 𝑒𝜃 𝑧 for some 𝜃 ∈ R>0 if and only if tr2(𝑔) ∈ (4,∞), in which case tr2(𝑔) =
2 · (cosh(𝜃) + 1) .

In case (1), g is said to be elliptic, while in case (2) g is called hyperbolic. If tr2(𝑔) = 4 the map is
called parabolic.

Corollary 13. Let 𝑏 ∈ (0, 1), and let 𝜆1 = 𝜆1(𝑏) ∈ S be as in Lemma 8. The map 𝑓𝜆,1 is hyperbolic
when 𝜆 ∈ Arc (𝜆1, 𝜆1), and 𝑓𝜆,1 is elliptic when 𝜆 ∈ Arc (𝜆1, 𝜆1).

Proof. Write 𝜆 = 𝑥 + 𝑖𝑦 with 𝑥, 𝑦 ∈ R such that 𝑥2 + 𝑦2 = 1. A short calculation gives that

tr2 ( 𝑓𝜆,1) =
2 (𝑥 + 1)
1 − 𝑏2 .

The value of 𝑡𝑟2( 𝑓𝜆,1) strictly increases from 0 to 4/(1− 𝑏2) as x increases from −1 to 1. It follows that
there is a unique value 𝑥 ∈ (−1, 1) such that tr2( 𝑓𝜆,1) = 4. This value must coincide with Re(𝜆1), where
𝜆1 = 𝜆1(𝑏) ∈ S is as in Lemma 8, completing the proof. �

Lemma 14. Let 𝑏 ∈ (0, 1) be a rational. Suppose that 𝜉 ∈ SQ with 𝜉 ≠ ±1 is such that 𝑓𝜉 ,1 is elliptic.
Then 𝑓𝜉 ,1 is conjugate to an irrational rotation.

Proof. Let 𝜉 = 𝑥 + 𝑖𝑦 with 𝑥, 𝑦 ∈ Q such that 𝑥2 + 𝑦2 = 1. Because 𝑓𝜉 ,1 is elliptic, it is conjugate to a
rotation 𝑧 ↦→ 𝑒𝑖 𝜃 𝑧 with

2 · (cos(𝜃) + 1) =
2 (𝑥 + 1)
1 − 𝑏2 . (6)

Let 𝑡 = 2 · (cos(𝜃) + 1). Suppose 𝜃 is an angle corresponding to a rational rotation; that is, if we let
𝑧 = 𝑒𝑖 𝜃 , then there is a natural number n such that 𝑧𝑛 = 1. It follows that then 𝑧𝑛 = 1 and thus both
z and 𝑧 are also algebraic integers. Therefore, 𝑧 + 𝑧 = 2 cos(𝜃) is an algebraic integer. It follows that
t is an algebraic integer, while the right-hand side of (6) shows that t must also be rational. Because
the only rational algebraic integers are integers, we can conclude that t must be an integer and thus
𝑡 ∈ {0, 1, 2, 3}. If 𝑡 = 0, we see that 𝜉 = 𝑥 = −1, which we excluded, so only three possible values of t
remain. Let 𝑋 = 𝑡 (1 + 𝑏)/(1 − 𝑏) and 𝑌 = 2𝑡𝑦/(1 − 𝑏)2; then (𝑋,𝑌 ) is a rational point on the elliptic
curve 𝐸𝑡 given by the following equation:

𝐸𝑡 : 𝑌2 = 𝑋3 − (𝑡 − 2)𝑡 · 𝑋2 + 𝑡2 · 𝑋.

The set of rational points of an elliptic curve together with an additional point has a group structure that is
isomorphic to Z𝑟 ×Z/𝑁Z. The number 𝑟 ≥ 0 is called the rank of the curve and the subgroup isomorphic
to Z/𝑁Z is called the torsion subgroup. The rank and the torsion subgroup of a particular curve can be
found using a computer algebra system. Using Sage, if the variable t is declared to be either 1, 2 or 3,
the curve 𝐸𝑡 can be defined with the code Et = EllipticCurve([0, -(t-2)*t, 0, t**2, 0]).
The rank and the torsion subgroup can subsequently be found with the commands Et.rank() and
Et.torsion_subgroup(). We find that 𝐸𝑡 has rank 0 for all 𝑡 ∈ {1, 2, 3}. For 𝑡 ∈ {1, 3} the torsion
subgroup is isomorphic to Z/2Z, and for 𝑡 = 2 it is isomorphic to Z/4Z. This means that there is one
rational point on 𝐸1 and 𝐸3, which we can see is the point (0, 0), and there are three rational points on
𝐸2, namely, {(0, 0), (2,±4)}. These points do not correspond to values of b within the interval (0, 1),
which means that 𝜃 cannot correspond to a rational rotation. �
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3.3. Obtaining points with expanding derivatives

In this section, we use the dynamical study of the maps 𝑓𝜆,𝑘 from previous sections to conclude the
existence of points with expanding derivatives. More precisely, we show the following.

Lemma 15. Let 𝑏 ∈ (0, 1), 𝑘 ≥ 1 be an integer, and 𝜉 ∈ Λ𝑘 (𝑏) with 𝜉 ≠ −1. Let 𝑧0 ∈ S and let
𝑧𝑛 = 𝑓 𝑛𝜉 ,𝑘 (𝑧0) for 𝑛 > 0. Then there is some index m such that | 𝑓 ′𝜉 ,𝑘 (𝑧𝑚) | > 1.

Proof. For 𝑘 = 1 it follows from Corollary 13 that 𝑓𝜉 ,1 is conjugate to a rotation. If 𝑓𝜉 ,1 is conjugate
to an irrational rotation, then the orbit of any initial point 𝑧0 will get arbitrarily close to −1 for which
| 𝑓 ′1 (−1) | = 1+𝑏

1−𝑏 > 1. Otherwise, if 𝑓𝜉 ,1 is conjugate to a rational rotation, there is an integer 𝑁 > 1 such
that 𝑓 𝑁𝜉 ,1(𝑧) = 𝑧 for all z; consider the smallest such integer N. Let 𝜃 ∈ (0, 𝜋] be the angle such that 𝑓𝜉 ,1
is conjugate to the rotation 𝑧 ↦→ 𝑒𝑖 𝜃 · 𝑧. Equation (6) then states that

2 · (cos(𝜃) + 1) =
2 (Re(𝜉) + 1)

1 − 𝑏2 .

If 𝑁 = 2, then 𝜃 = 𝜋 and thus Re(𝜉) = −1, contradicting 𝜉 ≠ −1. Hence, 𝑁 > 2. From 𝑓 𝑁𝜉 ,1(𝑧) = 𝑧, we
obtain

𝑁−1∏
𝑛=0

𝑓 ′𝜉 ,1(𝑧𝑛) = ( 𝑓 𝑁𝜉 ,1)
′(𝑧0) = 1. (7)

From (2), there are precisely two values of 𝑤 ∈ S such that | 𝑓 ′𝜉 ,1(𝑤) | = 1. Because 𝑁 > 2 and N is the
smallest integer such that 𝑓 𝑁𝜉 ,1 (𝑧0) = 𝑧0, we conclude there is at least one term, say with index m, of the
product in (7) for which | 𝑓 ′𝜉 ,1 (𝑧𝑚) | > 1.

Consider now the case 𝑘 ≥ 2 and denote 𝑓 = 𝑓𝜉 ,𝑘 . By Lemma 8, for 𝜉 ∈ Λ𝑘 (𝑏) the Julia set of f is
the circle S. In [42, Proof of Proposition 17], it is shown that the two Fatou components of f, denoted
by D and D𝑐 , are attracting basins and contain the critical points −𝑏 and −1/𝑏. From [38, Theorem
19.1], we therefore conclude that the map f is hyperbolic; that is, there exists a conformal metric 𝜇 on a
neighbourhood U of S such that | |𝐷 𝑓𝑧 | |𝜇 ≥ 𝜅 > 1 for a constant 𝜅 and all 𝑧 ∈ S. We will briefly expand
on the meaning of this notation.

For any 𝑧 ∈ 𝑈 the metric 𝜇 induces a norm | | · | |𝜇 on the tangent space of U at z denoted by 𝑇𝑈𝑧 .
For 𝑧 ∈ S the map f induces a linear map, the derivative of f at z, 𝐷 𝑓𝑧 : 𝑇𝑈𝑧 → 𝑇𝑈 𝑓 (𝑧) . For nonzero
𝑣 ∈ 𝐷 𝑓𝑧 , the ratio | |𝐷 𝑓𝑧 (𝑣) | |𝜇/||𝑣 | |𝜇 is independent of the choice v and is denoted by | |𝐷 𝑓𝑧 | |𝜇, the
norm of 𝐷 𝑓𝑧 .

Because S is compact and the metric 𝜇 is conformal, there is a constant 𝑐 > 0 such that |𝑔′(𝑧) | >
𝑐 · | |𝐷𝑔𝑧 | |𝜇 for all 𝑧 ∈ S and maps 𝑔 : S→ S. It follows that for all 𝑁 > 0,

𝑁−1∏
𝑛=0

| 𝑓 ′(𝑧𝑛) | = | ( 𝑓 𝑁 )′(𝑧0) | > 𝑐 · | |𝐷 𝑓 𝑁𝑧0 | |𝜇 ≥ 𝑐 · 𝜅𝑁 .

There is an 𝑁 > 0 such that the right-hand side of this equation is greater than 1. The product on the left-
hand side of the equation shows that for such an N there must be at least one index 𝑚 ∈ {0, . . . , 𝑁 − 1}
such that | 𝑓 ′(𝑧𝑚) | > 1. �

Lemma 16. Let 𝑏 ∈ (0, 1), 𝜆 ∈ S \ {±1} and 𝑑, 𝑘 ∈ Z≥1. Supppose there exists a rooted tree in T𝑑+1
whose root degree m is at most 𝑑 − 𝑘 and which implements a field 𝜉 ∈ Λ𝑘 (𝑏)\{−1}.

Then there is 𝜎 ∈ S with | 𝑓 ′𝑘 (𝜎) | > 1 and a sequence of rooted trees {𝑇𝑛}𝑛≥1 in T𝑑+1 with root
degrees at most 𝑚 + 𝑘 which implement a sequence of fields {𝜁𝑛}𝑛≥1 such that 𝜁𝑛 approaches 𝜎 without
being equal to 𝜎.
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Proof. Consider the orbit

S =
{
𝑓 𝑛𝜆,1(1) : 𝑛 ≥ 1

}
.

Note that the elements ofS are fields of paths. We have seen in Subsection 3.2 that either 𝑓𝜆,1 is conjugate
to an irrational rotation or the orbit of 1 tends towards an attracting or a parabolic fixed point. In either
case there is 𝜎0 ∈ S such that 𝜎0 ∉ S and the elements of S accumulate on 𝜎0. It follows from Lemma 15
that there is a positive integer N such that 𝜎 := 𝑓 𝑁𝜉 ,𝑘 (𝜎0) has the property | 𝑓 ′𝑘 (𝜎) | > 1. Now define

R =
{
𝑓 𝑁𝜉 ,𝑘 (𝑠) : 𝑠 ∈ S

}
.

By assumption, 𝜉 can be implemented by a rooted tree in T𝑑+1 with root degree 𝑚 ≤ 𝑑 − 𝑘 , so by
inductively applying Lemma 4, the elements of R are fields of trees in T𝑑+1 whose root degree is
𝑚 + 𝑘 ≤ 𝑑. There is a sequence {𝜁𝑛}𝑛≥1 ⊆ R accumulating on 𝜎 without being equal to 𝜎, which is
what we wanted to show. �

3.4. The main lemma to carry out the induction: proof of Theorem 6

We are now ready to state the following lemma, which will imply Theorem 6. In this section we will
show how Theorem 6 follows from this lemma and the next couple of sections are dedicated to proving
Lemma 17.

Lemma 17. Let 𝑘, 𝑑 ∈ Z≥2 with 𝑘 ≤ 𝑑, 𝑏 ∈
(
𝑑−2
𝑑 , 𝑑−1

𝑑+1
]
∩ Q and 𝜆 ∈ SQ \ {±1}. Suppose there exists a

rooted tree in T𝑑+1 with root degree at most 𝑑 − 𝑘 that implements a field 𝜉 ≠ 1 with the property that
| 𝑓 ′𝑘 (𝜉) | ≥ 1 and 𝜉 ∈ Arc [𝜆 �𝑘/2� , 𝜆 �𝑘/2� ]. Then the set of fields implemented by trees in T𝑑+1 is dense in S.

Using this lemma, we can prove Theorem 6, which we restate here for convenience.

Theorem 6. Let 𝑑 ≥ 2 be an integer.

(a) Let 𝑏 ∈
(
0, 𝑑−1

𝑑+1
]

be a rational. Then SQ(𝑑, 𝑏) = SQ \ {±1}.
(b) Let 𝑏 ∈

(
𝑑−1
𝑑+1 , 1

)
be a rational. Then SQ(𝑑, 𝑏) is dense in S \ 𝐼 (𝜃𝑏).

Proof. We start with the proof of part (b). Let 𝜆′ ∈ S \ 𝐼 (𝜃𝑏). By [42, Corollary 4 and Theorem 5], it
follows that there exists 𝜆 ∈ S arbitrarily close to 𝜆′ for which there exists a tree 𝑇 ∈ T𝑑+1 such that
𝑍𝑇 (𝜆, 𝑏) = 0. Choose such a tree T with the minimum number of vertices and let v be a leaf of T, from
now on referred to as the root of T. Denote 𝑇 ′ = 𝑇 − 𝑣 and let u be the unique neighbour of v in T. Then
𝑍𝑇 ,-𝑣 (𝜆, 𝑏) ≠ 0. Indeed, if 𝑍𝑇 ,-𝑣 (𝜆, 𝑏) = 0, then 𝑍𝑇 ,+𝑣 (𝜆, 𝑏) = 0. Since(

𝜆 𝜆𝑏
𝑏 1

) (
𝑍𝑇 ′,+𝑢 (𝜆, 𝑏)
𝑍𝑇 ′,-𝑢 (𝜆, 𝑏)

)
=

(
𝑍𝑇 ,+𝑣 (𝜆, 𝑏)
𝑍𝑇 ,-𝑣 (𝜆, 𝑏)

)
and since the matrix is invertible (as |𝑏 | ≠ 1), this would imply 𝑍𝑇 ′,+𝑢 (𝜆, 𝑏) = 𝑍𝑇 ′,−𝑢 (𝜆, 𝑏) = 0 and
hence 𝑍𝑇 ′ (𝜆, 𝑏) = 0, contradicting the minimality of T. Therefore, 𝑅𝑇 ,𝑣 = −1.

Since the map 𝑧 ↦→ 𝜉 (𝑧) := 𝑍𝑇 ,+𝑣 (𝑧,𝑏)
𝑍𝑇 ,-𝑣 (𝑧,𝑏)

is holomorphic near 𝑧 = 𝜆, it follows that there exists 𝜆′′ ∈ SQ
arbitrarily close to 𝜆′ such that 𝜉 = 𝜉 (𝜆′′) ∈ Arc(𝜆1(𝑏), 𝜆1(𝑏)) \ {−1}. Therefore, by Lemma 14 and
Theorem 12, the orbit { 𝑓 𝑛𝜉 ,1(1)} is dense in S. So from Lemma 4, by using paths with the tree T attached
to all but one of its vertices at the root v of T, we obtain a collection of trees contained in T𝑑+1 whose
fields are dense in S.

We next prove part (a) for all 𝑑 ≥ 2 and 𝑏 ∈ ( 𝑑−2
𝑑 , 𝑑−1

𝑑+1 ]. The case 𝑏 ∈ (0, 𝑑−2
𝑑 ] follows from this by

invoking smaller values for d. Let 𝜆 ∈ SQ \ {±1}.

https://doi.org/10.1017/fms.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.4


Forum of Mathematics, Sigma 15

Let 𝑘0 = 𝑑 and 𝑚0 = 0, and define the sequences 𝑘𝑛 and 𝑚𝑛 by 𝑘𝑛+1 =
⌊
𝑘𝑛
2

⌋
and 𝑚𝑛+1 = 𝑚𝑛 + 𝑘𝑛+1.

Inductively we show that 𝑚𝑛 ≤ 𝑑 − 𝑘𝑛: we have 𝑚0 = 𝑑 − 𝑘0 and then

𝑚𝑛+1 = 𝑚𝑛 + 𝑘𝑛+1 ≤ 𝑑 − 𝑘𝑛 + 𝑘𝑛+1 = 𝑑 −
(
𝑘𝑛 −

⌊
𝑘𝑛
2

⌋ )
≤ 𝑑 −

⌊
𝑘𝑛
2

⌋
= 𝑑 − 𝑘𝑛+1.

Clearly, there is an integer N such that 𝑘𝑁+1 = 1. We claim that for every 𝑛 ∈ {0, . . . , 𝑁} there is a
rooted tree in T𝑑+1 with root degree 𝑚𝑛 that implements a field 𝜉𝑛 so that | 𝑓 ′(𝜉𝑛) | > 1 and at least one
of the following holds:

1. There is a tree in T𝑑+1 with root degree at most 𝑚𝑛 that implements a field inside Arc (𝜆𝑘𝑛+1 , 𝜆𝑘𝑛+1) \

{−1}, or else
2. the set of fields implemented by trees in T𝑑+1 is dense in S.

To show this for 𝑛 = 0, we consider the tree consisting of a single vertex. This tree implements
the field 𝜆 and its root degree is 0. By equation (2) of Lemma 10 and since 𝑏 ≤ 𝑑−1

𝑑+1 , we have that
| 𝑓 ′𝑑 (𝑧) | > 1 for all 𝑧 ∈ S \ {1} and, in particular, we have | 𝑓 ′𝑑 (𝜆) | > 1. If 𝜆 ∈ Arc[𝜆𝑘1 , 𝜆𝑘1], then we
apply Lemma 17 to obtain Item (2). If 𝜆 ∈ Arc (𝜆𝑘1 , 𝜆𝑘1), then the tree consisting of a single vertex
satisfies the conditions of Item (1).

Now suppose that we have shown the claim for 𝑛 − 1 for some 𝑛 ≥ 1 and assume that we are in the
case of Item (1) (otherwise, we are done); that is, there is a tree in T𝑑+1 with root degree 𝑚𝑛−1 that
implements a field 𝜉 inside Arc (𝜆𝑘𝑛 , 𝜆𝑘𝑛 ) \ {−1}. We can apply Lemma 16 to obtain a tree T in T𝑑+1
with root degree at most 𝑘𝑛 + 𝑚𝑛−1 = 𝑚𝑛 that implements a field 𝜁 ≠ −1 such that | 𝑓 ′𝑘𝑛 (𝜁) | > 1. If
𝜁 ∈ Arc[𝜆𝑘𝑛+1 , 𝜆𝑘𝑛+1 ], we can apply Lemma 17 to obtain Item (2). We can apply this lemma because
𝑚𝑛 ≤ 𝑑 − 𝑘𝑛. If 𝜁 ∈ Arc (𝜆𝑘𝑛+1 , 𝜆𝑘𝑛+1), then T itself satisfies the conditions of Item (1), which proves
the claim.

To finish the proof, it remains to consider the case of Item (1), where we can find a tree in T𝑑+1 with
root degree at most 𝑚𝑁 < 𝑑 − 1 which implements a field 𝜉 inside Arc (𝜆1, 𝜆1) \ {−1}. We have shown
in Lemma 14 that 𝑓𝜉 ,1 is conjugate to an irrational rotation and thus the orbit { 𝑓 𝑛𝜉 ,1(1)}𝑛≥1 is dense in
S. The elements of this orbit correspond to rooted trees in T𝑑+1 and, hence, we can conclude Item (2) in
this case as well.

Let R denote the set of all fields implemented by rooted trees in T𝑑+1. Let 𝜁 ∈ R and T be a tree in
T𝑑+1 that implements 𝜁 . We construct the tree 𝑇 with root r obtained by attaching r to the root of T with
an edge. Then, the root of 𝑇 has degree 1 and the field implemented by 𝑇 is 𝑓𝜆,1 (𝜁). So the set of fields
implemented by rooted trees in T𝑑+1 whose root degrees are 1 contains 𝑓𝜆,1 (R). Since 𝑓𝜆,1 (S) = S and
R is dense in S, we conclude that 𝑓𝜆,1 (R) is dense in S as well. �

Remark 18. We note that our proof of part (b) rests on the existence of zeros for trees proved in [42],
which in turn depends on the chaotic behaviour of the map 𝑓𝑑,𝜆. Alternatively, one could also prove part
(b) directly from Lemma 15. The same proof also yields a dense set of 𝜆 ∈ SQ for which the collection
of fields of trees in T𝑑+1 with root degree 1 is dense in S when 𝑏 ∈ (0, 𝑑−1

𝑑+1 ].

4. Contracting maps that cover via degree-derivative interplay

In this section, we adapt the contracting/covering maps framework of [6] in our setting and show how
to apply it using the degree-derivative inteplay alluded to in Subsection 2.3. Subsection 4.1 gives the
details of the framework, and Subsection 4.2 gives the main lemmas that exploit this interplay.

4.1. Density on circular arcs via contracting maps that cover

The contracting maps that cover framework is captured by the following lemma on the interval [0, 1],
which yields Corollary 20 on circular arcs of the unit circle S.
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Lemma 19. Let 𝑓1, . . . , 𝑓𝑘 be continuously differentiable maps from the interval [0, 1] to itself such
that 0 < 𝑓 ′𝑚(𝑥) < 1 for each index m and 𝑥 ∈ (0, 1) and such that

⋃𝑘
𝑚=1 𝑓𝑚 ([0, 1]) = [0, 1].

Then for any open interval 𝐽 ⊆ [0, 1], there is a sequence of indices 𝑚1, . . . , 𝑚𝑁 such that(
𝑓𝑚1 ◦ · · · ◦ 𝑓𝑚𝑁

)
([0, 1]) ⊂ 𝐽.

Proof. For 𝑚 ∈ {1, . . . , 𝑘}, define the closed interval 𝐼𝑚 = 𝑓𝑚 ([0, 1]) = [ 𝑓𝑚(0), 𝑓𝑚(1)] and note
that 𝑓𝑚 : [0, 1] → 𝐼𝑚 is bijective with a differentiable inverse. We define a sequence of intervals in
the following way. Let 𝐽0 = 𝐽, and as long as there exists an index m such that 𝐽𝑛 ⊆ 𝐼𝑚, we define
𝐽𝑛+1 = 𝑓 −1

𝑚 (𝐽). We will show that this cannot be done indefinitely; that is, there will be some interval
𝐽𝑛 such that 𝐽𝑛 � 𝐼𝑚 for all m.

For an interval 𝐼 ⊆ [0, 1], let ℓ(𝐼) denote the length of the interval and denote ℓ(𝐽) by 𝜖 . For
each index m choose a partition 𝐼𝑚 = 𝐼𝑚,𝐿 ∪ 𝐼𝑚,𝑀 ∪ 𝐼𝑚,𝑅, where 𝐼𝑚,𝐿 , 𝐼𝑚,𝑀 , 𝐼𝑚,𝑅 are of the form
[ 𝑓𝑚(0), 𝑎), [𝑎, 𝑏], (𝑏, 𝑓𝑚(1)], respectively, for a choice of 𝑎, 𝑏 ∈ int(𝐼𝑚) such that 𝑎 < 𝑏 and both
ℓ(𝐼𝑚,𝐿) and ℓ(𝐼𝑚,𝑅) are less than 𝜖/4. We can choose 𝐶 > 1 such that 𝑓 −1

𝑚
′
(𝑥) > 𝐶 for all indices m

and 𝑥 ∈ 𝐼𝑚,𝑀 . We will show inductively that for all 𝑛 ≥ 0 for which 𝐽𝑛 is defined it is the case that
ℓ(𝐽𝑛) ≥ 𝜖 · (1 + 𝐶𝑛)/2. For 𝑛 = 0 the statement is true. Suppose that the statement is true for 𝑛 ≥ 0 for
which 𝐽𝑛+1 is defined. By definition, there is an index m such that 𝐽𝑛 ⊆ 𝐼𝑚 and 𝐽𝑛+1 = 𝑓 −1

𝑚 (𝐽𝑛). We find

ℓ(𝐽𝑛+1) = ℓ( 𝑓
−1
𝑚 (𝐽𝑛 ∩ 𝐼𝑚,𝑀 )) + ℓ( 𝑓 −1

𝑚 (𝐽𝑛 ∩ 𝐼𝑚,𝐿)) + ℓ( 𝑓
−1
𝑚 (𝐽𝑛 ∩ 𝐼𝑚,𝑅))

≥ 𝐶 · ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝑀 ) + ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝐿) + ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝑅)

= 𝐶
(
ℓ(𝐽𝑛) − ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝐿) − ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝑅)

)
+ ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝐿) + ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝑅),

where we have used that 𝑓 −1
𝑚

′
(𝑥) ≥ 1 for 𝑥 ∈ 𝐼𝑚. Because ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝐿) + ℓ(𝐽𝑛 ∩ 𝐼𝑚,𝑅) ≤ 𝜖/2, this is

again at least equal to

𝐶 (ℓ(𝐽𝑛) − 𝜖/2) + 𝜖/2 ≥ 𝐶 (𝜖 · (1 + 𝐶𝑛)/2 − 𝜖/2) + 𝜖/2 = 𝜖 · (1 + 𝐶𝑛+1)/2.

It follows that there is an index n such that 𝐽𝑛 is not totally contained inside 𝐼𝑚 for any index m. This
means that there is an m such that 𝐽𝑛 contains at least one of the endpoints of 𝐼𝑚. Without loss of
generality, we can assume that 𝐽𝑛 contains the left endpoint of 𝐼𝑚. It follows that there is an 𝑎 > 0 such
that 𝑓𝑚([0, 𝑎]) ⊂ 𝐽𝑛 and thus there is a sequence𝑚1, . . . , 𝑚𝑛 such that ( 𝑓𝑚1 ◦· · ·◦ 𝑓𝑚𝑛 ◦ 𝑓𝑚) ( [0, 𝑎]) ⊂ 𝐽.
We complete the proof by showing that for at least one of the maps 𝑓𝑖 there is an index 𝑁𝑎 for any 𝑎 > 0
such that 𝑓 𝑁𝑎

𝑖 ([0, 1]) ⊂ [0, 𝑎].
Observe that there must be at least one map 𝑓𝑖 such that 𝑓𝑖 (0) = 0. We obtain an inclusion of intervals

[0, 1] ⊃ 𝑓𝑖 ([0, 1]) ⊃ 𝑓 2
𝑖 ([0, 1]) ⊃ · · · , where 𝑓 𝑁𝑖 ([0, 1]) = [0, 𝑓 𝑁𝑖 (1)]. This shows that the sequence

{ 𝑓 𝑁𝑖 (1)}𝑁 ≥0 is decreasing and thus has a limit L. If 𝐿 ≠ 0, we would have 𝑓𝑖 ([0, 𝐿]) = [0, 𝐿], which
contradicts the fact that 𝑓 ′𝑖 (𝑥) < 1 for all 𝑥 ∈ (0, 𝐿), so 𝐿 = 0. This concludes the proof. �

Corollary 20. Let 𝐴 ⊂ S be a closed circular arc and let 𝑓1, . . . , 𝑓𝑘 be orientation-preserving contin-
uously differentiable maps from A, such that

⋃𝑘
𝑚=1 𝑓𝑚 (𝐴) = 𝐴 and 0 < | 𝑓 ′𝑚(𝑥) | < 1 for each index m

and 𝑥 ∈ 𝐴 not equal to either of the endpoints of A.
Then for any open circular arc 𝐽 ⊆ 𝐴 there is a sequence of indices 𝑚1, . . . , 𝑚𝑁 such that(

𝑓𝑚1 ◦ · · · ◦ 𝑓𝑚𝑁

)
(𝐴) ⊂ 𝐽.

4.2. Exploiting the dependence of derivatives on the degrees

In this section, we show a few key lemmas that demonstrate how we employ the contracting maps that
cover idea, by exploiting the dependence of derivatives on the degrees.

Lemma 21. Let 𝑘 ∈ Z≥1 and 𝑏 ∈
[
𝑘
𝑘+2 , 1

)
. Let 𝜉 ∈ Arc [𝜆𝑘+1, 𝜆𝑘+1] with 𝜉 ≠ 1 be such that

| 𝑓 ′2𝑘+1 (𝑅𝑘 (𝜉)) | ≥ 1. Then there is an arc A of S such that the orbit of 1 under the action of the semigroup
generated by 𝑓𝜉 ,𝑘+1 and 𝑓𝜉 ,𝑘 is dense in A.
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Proof. We can assume that 𝜉 lies in the upper half-plane. Since all maps in this argument use the
parameter 𝜉, we will write 𝑓𝑚 instead of 𝑓𝜉 ,𝑚 for all m. Define the arc 𝐴 = Arc [𝑅𝑘 (𝜉), 𝑅𝑘+1(𝜉)]. Using
equation (2), we find that for every m,

| 𝑓 ′𝑚(𝑅𝑘 (𝜉)) | =
𝑚

2𝑘 + 1
· | 𝑓 ′2𝑘+1 (𝑅𝑘 (𝜉)) | ≥

𝑚

2𝑘 + 1
.

By using the fact that 𝑅𝑘+1(𝜉) is either a parabolic or an attracting fixed point of 𝑓𝑘+1, we deduce that
for all 𝑧 ∈ 𝐴,

| 𝑓 ′𝑘 (𝑧) | < | 𝑓 ′𝑘+1 (𝑧) | ≤ | 𝑓 ′𝑘+1 (𝑅𝑘+1(𝜉)) | ≤ 1,

where the second inequality is strict when 𝑧 ≠ 𝑅𝑘+1(𝜉). It follows that for all 𝑧 ∈ 𝐴 not equal to 𝑅𝑘+1(𝜉)
we have 𝑘/(2𝑘 + 1) ≤ | 𝑓 ′𝑘 (𝑧) | < 1 and (𝑘 + 1)/(2𝑘 + 1) ≤ | 𝑓 ′𝑘+1 (𝑧) | < 1. Therefore,

ℓ(𝐴) > ℓ( 𝑓𝑘 (𝐴)) >
𝑘

2𝑘 + 1
ℓ(𝐴) and ℓ(𝐴) > ℓ( 𝑓𝑘+1(𝐴)) >

𝑘 + 1
2𝑘 + 1

ℓ(𝐴).

From this we deduce that ℓ( 𝑓𝑘 (𝐴)) + ℓ( 𝑓𝑘+1(𝐴)) > ℓ(𝐴). Thus, because 𝑓𝑘 (𝐴) is of the form
Arc [𝑅𝑘 (𝜉), 𝑎] and 𝑓𝑘+1(𝐴) is of the form Arc [𝑏, 𝑅𝑘+1(𝜉)] for some 𝑎, 𝑏 ∈ 𝐴, we conclude that
𝑓𝑘 (𝐴) ∪ 𝑓𝑘+1(𝐴) = 𝐴.

It follows from item (iv) of Lemma 10 that there is some M such that 𝑓 𝑀𝑘+1(1) ∈ 𝐴. Let 𝐽 ⊆ 𝐴 be any
open arc. According to Corollary 20, there is a sequence of indices 𝑚1, . . . , 𝑚𝑁 ∈ {𝑘, 𝑘 + 1} such that(
𝑓𝑚1 ◦ · · · ◦ 𝑓𝑚𝑁 ◦ 𝑓 𝑀𝑘+1

)
(1) ∈ 𝐽. The fact that J was chosen as an arbitrary open arc in A concludes the

proof. �

Lemma 22. Let 𝑘 ∈ Z≥1 and 𝑏 ∈
[
𝑘−1
𝑘+1 , 1

)
. Let 𝜉1, 𝜉2 ∈ Arc [𝜆𝑘 , 𝜆𝑘 ] such that 𝜉1, 𝜉2 are distinct and lie

in the same half-plane; that is, both in the upper or lower half-plane and such that | 𝑓 ′2𝑘 (𝑅𝑘 (𝜉𝑖)) | ≥ 1
for 𝑖 ∈ {1, 2}. Then there is an arc A of S such that the orbit of 1 under the action of the semigroup
generated by 𝑓𝜉1 ,𝑘 and 𝑓𝜉2 ,𝑘 is dense in A.

Proof. We can assume that 𝜉1 and 𝜉2 lie in the upper half-plane and that Arg(𝜉1) < Arg(𝜉2). Let
𝐴 = Arc [𝑅𝑘 (𝜉1), 𝑅𝑘 (𝜉2)]; then for all 𝑧 ∈ 𝐴 we have

1
2
≤

1
2
·
		 𝑓 ′2𝑘 (𝑅𝑘 (𝜉1))

		 = 		 𝑓 ′𝑘 (𝑅𝑘 (𝜉1))
		 ≤ 		 𝑓 ′𝑘 (𝑧)		 ≤ 		 𝑓 ′𝑘 (𝑅𝑘 (𝜉2))

		 ≤ 1,

where the second to last inequality is strict when 𝑧 ≠ 𝑅𝑘 (𝜉2). Therefore, for 𝑖 ∈ {1, 2} we have

ℓ(𝐴) > ℓ( 𝑓𝜉𝑖 ,𝑘 (𝐴)) >
1
2
· ℓ(𝐴),

and from this we deduce that ℓ( 𝑓𝜉1 ,𝑘 (𝐴)) + ℓ( 𝑓𝜉2 ,𝑘 (𝐴)) > ℓ(𝐴). The rest of the proof proceeds exactly
as the proof of Lemma 21. �

Lemma 23. Let 𝑘 ≥ 5, 𝑏 ∈
(
𝑘−1
𝑘+1 , 1

)
and 𝜉 ∈ Arc [𝜆𝑘 , 𝜆𝑘 ] with 𝜉 ≠ 1 such that there is an integer

2𝑘 ≤ 𝑝 ≤ 3𝑘 − 5 for which | 𝑓 ′𝑝 (𝜉) | ≥ 1. Then at least one of the following two statements holds:

(i) The orbit of 1 under the action of the semigroup generated by 𝑓𝜉 ,𝑘−2, 𝑓𝜉 ,𝑘−1 and 𝑓𝜉 ,𝑘 is dense in
an arc of S.

(ii) We have | 𝑓 ′𝑘 (𝑅𝑘 (𝜉)) | > 1 −
𝑝−𝑘+2
𝑝 ·

𝑝−2𝑘+1
𝑘 .

Proof. W.l.o.g., we may assume that 𝜉 lies in the upper half plane. We write 𝑓𝑚 = 𝑓𝜉 ,𝑚 for all indices
m. Define the arcs 𝐴1 = Arc [𝑅𝑘−2(𝜉), 𝑅𝑘−1(𝜉)] and 𝐴2 = Arc [𝑅𝑘−1 (𝜉), 𝑅𝑘 (𝜉)]. Analogous to the
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proofs of Lemmas 21 and 22, we can use Corollary 20 to show that the orbit of 1 under the action of the
semigroup generated by 𝑓𝑘−2, 𝑓𝑘−1 and 𝑓𝑘 is dense in 𝐴1 ∪ 𝐴2 if

𝑓𝑘−2(𝐴1 ∪ 𝐴2) ∪ 𝑓𝑘−1(𝐴1 ∪ 𝐴2) ∪ 𝑓𝑘 (𝐴1 ∪ 𝐴2) = 𝐴1 ∪ 𝐴2. (8)

We will assume that this is not the case and show that this leads to statement (ii). First, we will show
that the left-hand side of equation (8) does cover 𝐴1. For any arc A in the upper half-plane such that
Arg(𝑥) ≥ Arg(𝜉) for all 𝑥 ∈ 𝐴 and index m, we have

ℓ( 𝑓𝑚(𝐴)) > | 𝑓 ′𝑚(𝜉) | · ℓ(𝐴) =
𝑚 · | 𝑓 ′𝑝 (𝜉) |

𝑝
· ℓ(𝐴) ≥

𝑚

𝑝
· ℓ(𝐴). (9)

We use this and the fact that ℓ(𝐴2) ≥ ℓ(𝐴1), which follows from item (v) of Lemma 10, to conclude the
following:

ℓ( 𝑓𝑘−2(𝐴1 ∪ 𝐴2)) + ℓ( 𝑓𝑘−1(𝐴1)) ≥
𝑘 − 2
𝑝

ℓ(𝐴1 ∪ 𝐴2) +
𝑘 − 1
𝑝

ℓ(𝐴1)

≥
2(𝑘 − 2)

𝑝
ℓ(𝐴1) +

𝑘 − 1
𝑝

ℓ(𝐴1)

=
3𝑘 − 5
𝑝

ℓ(𝐴1) ≥ ℓ(𝐴1).

Because 𝑓𝑘−2(𝐴1 ∪ 𝐴2) is of the form Arc [𝑅𝑘−2 (𝜉), 𝑎] and 𝑓𝑘−1(𝐴1) is of the form Arc [𝑏, 𝑅𝑘−1(𝜉)],
we have that 𝐴1 is covered by 𝑓𝑘−2(𝐴1 ∪ 𝐴2) ∪ 𝑓𝑘−1(𝐴1). Our assumption can be formulated as

ℓ(𝐴2) ≥ ℓ( 𝑓𝑘−1(𝐴2)) + ℓ( 𝑓𝑘 (𝐴1 ∪ 𝐴2)).

Note that

ℓ( 𝑓𝑘−1(𝐴2)) + ℓ( 𝑓𝑘 (𝐴1 ∪ 𝐴2)) ≥
𝑘 − 1
𝑝

ℓ(𝐴2) +
𝑘

𝑝
(ℓ(𝐴1) + ℓ(𝐴2)) .

Combining the previous two inequalities, we get

ℓ(𝐴1) ≤
𝑝 − 2𝑘 + 1

𝑘
· ℓ(𝐴2). (10)

Let 𝐴0 = Arc [1, 𝑅𝑘−2(𝜉)]. By using the fact that 𝑅𝑚(𝜉) is a fixed point of 𝑓𝑚 and 𝑓𝑚(1) = 𝜉 for every
m, we see that 𝑓𝑘−2(𝐴0) = Arc [𝜉, 𝑅𝑘−2(𝜉)], 𝑓𝑘−1(𝐴0 ∪ 𝐴1) = Arc [𝜉, 𝑅𝑘−1(𝜉)] and 𝑓𝑘 (𝐴0 ∪ 𝐴1 ∪ 𝐴2) =
Arc [𝜉, 𝑅𝑘 (𝜉)]. It follows from the relation between the derivative of different maps given in item (i) of
Lemma 10 that for any arc A on which 𝑓𝑚1 and 𝑓𝑚2 are injective we have

ℓ
(
𝑓𝑚1 (𝐴)

)
= 𝑚1 · ℓ( 𝑓1 (𝐴)) =

𝑚1
𝑚2

· ℓ
(
𝑓𝑚2 (𝐴)

)
.

These observations can be used to write ℓ(𝐴1) and ℓ(𝐴2) as follows:

ℓ(𝐴1) = ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)) − ℓ( 𝑓𝑘−2(𝐴0))

=
𝑘 − 2
𝑘 − 1

ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)) +
1

𝑘 − 1
ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)) −

𝑘 − 2
𝑘 − 1

ℓ( 𝑓𝑘−1(𝐴0))

=
𝑘 − 2
𝑘 − 1

ℓ( 𝑓𝑘−1(𝐴1)) +
1

𝑘 − 1
ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1))
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and

ℓ(𝐴2) = ℓ( 𝑓𝑘 (𝐴0 ∪ 𝐴1 ∪ 𝐴2)) − ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)) = ℓ( 𝑓𝑘 (𝐴2)) +
1

𝑘 − 1
· ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)).

By considering our way of writing ℓ(𝐴1) and the inequalities given in (9) and (10), we obtain the
following inequalities:

1
𝑘 − 1

· ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1)) = ℓ(𝐴1) −
𝑘 − 2
𝑘 − 1

· ℓ( 𝑓𝑘−1(𝐴1)) < ℓ(𝐴1) −
𝑘 − 2
𝑘 − 1

·
𝑘 − 1
𝑝

ℓ(𝐴1)

=
𝑝 − 𝑘 + 2

𝑝
· ℓ(𝐴1) <

𝑝 − 𝑘 + 2
𝑝

·
𝑝 − 2𝑘 + 1

𝑘
· ℓ(𝐴2).

It follows from the fact that Arg(𝑅𝑘 (𝜉)) ≥ Arg(𝑥) for all 𝑥 ∈ 𝐴2 that ℓ( 𝑓𝑘 (𝐴2)) < | 𝑓 ′𝑘 (𝑅𝑘 (𝜉)) | · ℓ(𝐴2).
By using this inequality and the previous inequality, we obtain

ℓ(𝐴2) = ℓ( 𝑓𝑘 (𝐴2)) +
1

𝑘 − 1
· ℓ( 𝑓𝑘−1(𝐴0 ∪ 𝐴1))

< | 𝑓 ′𝑘 (𝑅𝑘 (𝜉)) | · ℓ(𝐴2) +
𝑝 − 𝑘 + 2

𝑝
·
𝑝 − 2𝑘 + 1

𝑘
· ℓ(𝐴2).

We can cancel ℓ(𝐴2) and rewrite to obtain

| 𝑓 ′𝑘 (𝑅𝑘 (𝜉)) | > 1 −
𝑝 − 𝑘 + 2

𝑝
·
𝑝 − 2𝑘 + 1

𝑘
,

which is what we set out to prove. �

Corollary 24. Let m be a positive integer, 𝑏 ∈
(
𝑚−1
𝑚+1 , 1

)
and 𝜉 ∈ Arc [𝜆𝑚, 𝜆𝑚] with 𝜉 ≠ 1 such that

either of the following holds:

(a) 𝑚 ≥ 8 and | 𝑓 ′2𝑚(𝜉) | ≥ 1;
(b) 𝑚 ≥ 9 and | 𝑓 ′2𝑚+1(𝜉) | ≥ 1.

Then the orbit of 1 under the action of the semigroup generated by 𝑓𝜉 ,𝑚−3, 𝑓𝜉 ,𝑚−2, 𝑓𝜉 ,𝑚−1 and 𝑓𝜉 ,𝑚 is
dense in an arc of S.

Proof. We will again assume that 𝜉 lies in the upper half-plane. We apply Lemma 23 with 𝑘 = 𝑚 − 1
and 𝑝 = 2𝑚 for item (a) and 𝑝 = 2𝑚 + 1 for item (b). If the first statement of that lemma holds, we see
that orbit of 1 under the action of 𝑓𝑚−3, 𝑓𝑚−2 and 𝑓𝑚−1 generates an arc, in which case we are done. If
we assume that the second statement holds, we obtain

𝑓 ′𝑚−1(𝑅𝑚−1(𝜉)) > 1 −
2𝑚 − (𝑚 − 1) + 2

2𝑚
·

2𝑚 − 2(𝑚 − 1) + 1
𝑚 − 1

>
1
2

in the case where 𝑝 = 2𝑚 and

𝑓 ′𝑚−1(𝑅𝑚−1 (𝜉)) > 1 −
2𝑚 + 1 − (𝑚 − 1) + 2

2𝑚 + 1
·

2𝑚 + 1 − 2(𝑚 − 1) + 1
𝑚 − 1

>
1
2

in the case where 𝑝 = 2𝑚 + 1. It follows that for 𝑥 ∈ Arc [𝑅𝑘−1(𝜉), 𝑅𝑘 (𝜉)], we obtain 1 > | 𝑓 ′𝑚 (𝑥) | >
| 𝑓 ′𝑚−1 (𝑥) | > 1/2. Therefore, with 𝐴 = Arc [𝑅𝑘−1(𝜉), 𝑅𝑘 (𝜉)], we get

ℓ( 𝑓𝑚 (𝐴)) + ℓ( 𝑓𝑚−1 (𝐴)) ≥ ℓ(𝐴).

This, together with Corollary 20, implies that the orbit of 1 under the action of the semigroup generated
by 𝑓𝑚−1 and 𝑓𝑚 is dense in A. �
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5. Proof of Lemma 17 for Some Special Cases

The arguments of this section will be used to cover some leftover cases in the proof of Lemma 17 that
are not directly covered by the results of the previous section.

5.1. Proof of Lemma 17 for powers of 2

The following lemma will be used in the proof of Lemma 17 for those values of k for which either k or
𝑘 + 1 is a power of 2; see the proof in Section 6 for details.

Lemma 25. Let 𝑑 ≥ 2, 𝑘 ≥ 0 be integers, 𝑏 ∈
(
0, 𝑑−1

𝑑+1
]
∩ Q, 𝜆 ∈ SQ \ {±1} and 𝜉 ∈ Λ2𝑘 (𝑏) ∩ SQ with

𝜉 ≠ ±1. Suppose there is a tree in T𝑑+1 with root degree at most 𝑑 − (2𝑘+1 − 1) that implements the field
𝜉. Then the set of fields implemented by rooted trees in T𝑑+1 is dense in S.

Proof. We will prove this by induction on k. For 𝑘 = 0, the field 𝜉 has to lie in Arc(𝜆1, 𝜆1) \ {−1} and
the root degree of the tree in T𝑑+1 implementing 𝜉 is at most 𝑑 − 1. From Corollary 13 and Lemma 14,
we have that 𝑓𝜉 ,1 is conjugate to an irrational rotation and thus the orbit of any initial point 𝑧0 ∈ S is
dense in S. By Lemma 4, every element of the set { 𝑓 𝑛𝜉 ,1(𝜆)}𝑛≥1 is the field implemented by a tree in
T𝑑+1 and hence we obtain the theorem for 𝑘 = 0.

Now suppose that 𝑘 ≥ 1 and that we have proved the statement for 𝑘 −1. If 𝑏 < (2𝑘−1−1)/(2𝑘−1+1),
then we must have 𝑘 > 1, and by Lemma 8 we can immediately apply the induction hypothesis with
𝜉 = 𝜆 and tree consisting of a single vertex. So, assume that 𝑏 ≥ (2𝑘−1 − 1)/(2𝑘−1 + 1) and observe
that the parameter 𝜆2𝑘−1 ∈ S from Lemma 10 exists. It follows from Lemma 16 that there is 𝜎 ∈ S with
| 𝑓 ′2𝑘 (𝜎) | > 1 and a set R = {𝜁𝑛}𝑛≥1 accumulating on 𝜎 such that each 𝜁𝑛 is implemented by a tree in
T𝑑+1 whose root degree is at most 𝑑 − (2𝑘+1 − 1) + 2𝑘 = 𝑑 − (2𝑘 − 1). If R has a nonempty intersection
with Arc (𝜆2𝑘−1 , 𝜆2𝑘−1) \ {−1}, we can apply the induction hypothesis to the tree corresponding to the
field in this intersection. Therefore, we assume that the elements of R accumulate on 𝜎 from inside
Arc [𝜆2𝑘−1 , 𝜆2𝑘−1]. It follows that we can find two distinct elements 𝑟1, 𝑟2 ∈ R such that they both lie in
either Arc (𝜆2𝑘−1 , 1) or Arc (1, 𝜆2𝑘−1) and such that | 𝑓 ′2𝑘 (𝑟𝑖) | > 1 for 𝑖 = 1, 2. By Remark 11, we have
| 𝑓 ′2𝑘 (𝑅2𝑘−1 (𝑟𝑖)) | > | 𝑓 ′2𝑘 (𝑟𝑖) | > 1 and thus we can apply Lemma 22 to conclude that the following set is
dense in an arc A of the circle:

A =
{
( 𝑓𝑟𝑖1 ,2𝑘−1 ◦ · · · ◦ 𝑓𝑟𝑖𝑛 ,2𝑘−1 ) (1) : 𝑛 ∈ Z≥1 and 𝑖1, . . . , 𝑖𝑛 ∈ {1, 2}

}
.

Since 𝑟1, 𝑟2 are implemented by trees in T𝑑+1 whose root degrees are at most 𝑑 − (2𝑘+1 − 1) + 2𝑘 =
𝑑 − (2𝑘 − 1), by Lemma 4, every element of A is implemented by a tree in T𝑑+1 whose root degree
is bounded by 𝑑 − (2𝑘 − 1) + 2𝑘−1 = 𝑑 − (2𝑘−1 − 1) ≤ 𝑑. We have seen that (2) implies that for
𝑏 ≤ (𝑑 − 1)/(𝑑 + 1) it holds that | 𝑓 ′𝑑 (𝑧) | > 1 for all 𝑧 ∈ S \ {1}. This implies that there is some 𝑁 ∈ Z≥1
such that 𝑓 𝑁𝑑 (𝐴) = S. It follows that the set { 𝑓 𝑁𝜆,𝑑 (𝑎) : 𝑎 ∈ A} is dense in S, finishing the proof, since
every element of this set corresponds to the field of a tree in T𝑑+1 (again using Lemma 4). �

5.2. Proof of Lemma 17 for small cases

In this section, we give the main lemma needed to cover certain small cases of Lemma 17. Interestingly,
the proof uses a Cantor-style construction, explained in detail in the next subsection.

5.2.1. Near-arithmetic progressions
Let 𝛼 ∈ (0, 1) and define the maps from the unit interval to itself given by 𝜙0(𝑥) = 𝛼𝑥 and 𝜙1(𝑥) =
𝛼𝑥 + (1 − 𝛼). Let Ω = ∪∞

𝑛=0{0, 1}
𝑛 be the set of finite binary sequences. For 𝜔 ∈ Ω we let |𝜔| denote

the length of 𝜔 and for 𝜔1, 𝜔2 ∈ Ω we let 𝜔1 ⊕ 𝜔2 ∈ Ω denote the concatenation of the two sequences.
For 𝜔 ∈ Ω of the form (𝜔1, . . . , 𝜔𝑛) and two maps 𝑓0, 𝑓1, we let 𝑓𝜔 = 𝑓𝜔1 ◦ · · · ◦ 𝑓𝜔𝑛 and if |𝜔| = 0
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we let 𝑓𝜔 denote the identity map. The properties of the semigroup generated by 𝜙0 and 𝜙1 for certain
parameters 𝛼 have been studied extensively. For 𝛼 ∈ (0, 1

2 ), the set

C𝛼 =
∞⋂
𝑛=0

⋃
𝜔∈Ω
|𝜔 |=𝑛

𝜙𝜔 ([0, 1])

is a Cantor set, with C1/3 being the Cantor ternary set. We will not use the properties of Cantor sets,
so we do not define them. First we state some easy-to-prove properties of this semigroup to describe a
construction that will help us to prove Lemma 17 for small cases of k.

Lemma 26. Let 𝜔 ∈ Ω and 𝛼 ∈ (0, 1). Then 𝜙𝜔 ([0, 1]) is an interval of length 𝛼 |𝜔 | and, furthermore,
the intervals 𝜙𝜔⊕(0) ( [0, 1]) and 𝜙𝜔⊕(1) ( [0, 1]) are subintervals of 𝜙𝜔 ([0, 1]) sharing the left and right
boundaries, respectively.

Proof. Because the derivative of 𝜙𝑖 is constantly equal to 𝛼 for 𝑖 = 1, 2, it follows that the length of
𝜙𝜔 ([0, 1]) is 𝛼 |𝜔 | . The maps 𝜙𝑖 are increasing and thus we can write 𝜙𝜔 ([0, 1]) = [𝜙𝜔 (0), 𝜙𝜔 (1)] and
also 𝜙𝜔⊕(0) ( [0, 1]) = [𝜙𝜔⊕(0) (0), 𝜙𝜔⊕(0) (1)] = [𝜙𝜔 (0), 𝜙𝜔⊕(0) (1)]. Therefore, the left boundaries of
𝜙𝜔 ([0, 1]) and 𝜙𝜔⊕(0) ( [0, 1]) are equal. The length of the latter interval is 𝛼 |𝜔 |+1, which is less than
the length of 𝜙𝜔 ([0, 1]), and thus 𝜙𝜔⊕(0) ( [0, 1]) is indeed contained in 𝜙𝜔 ([0, 1]). The stated property
of 𝜙𝜔⊕(1) ( [0, 1]) follows completely analogously. �

For two sets 𝐴, 𝐵 ⊆ R, we will let 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. A famous property of the
Cantor ternary set is that C1/3 + C1/3 = [0, 2]. More generally, one can show that C𝛼 + C𝛼 = [0, 2]
for all 𝛼 ∈ [ 1

3 , 1). In [37], an overview is given of the possible structures of C𝛼1 + C𝛼2 for pairs of
𝛼1, 𝛼2 ∈ (0, 1). Similar methods to those used in [37] can be used to show the following.

Lemma 27. Let 𝛼 ∈ [ 1
3 , 1) and 𝜖 > 0. Then there are sequences 𝜔1, 𝜔2, 𝜔3 ∈ Ω such that for all triples

𝑝1, 𝑝2, 𝑝3 with 𝑝𝑖 ∈ 𝜙𝜔𝑖 ([0, 1]), 				 𝑝2 − 𝑝1
𝑝3 − 𝑝2

− 1
				 < 𝜖. (11)

Proof. First assume that 𝛼 ∈ [ 1
2 , 1). Then 𝜙0([0, 1]) ∪ 𝜙1([0, 1]) = [0, 1]. It follows from Lemma 19

that for any 𝛿 > 0 there are elements 𝜔1, 𝜔2 and 𝜔3 in Ω such that

𝜙𝜔1 ([0, 1]) ⊆ [0, 𝛿], 𝜙𝜔2 ([0, 1]) ⊆ [1/2 − 𝛿, 1/2 + 𝛿] and 𝜙𝜔3 ([0, 1]) ⊆ [1 − 𝛿, 1] .

By choosing 𝛿 small enough, we can guarantee the inequality in (11).
Assume now that 𝛼 ∈ [ 1

3 ,
1
2 ). We will first show that if there are 𝜔𝑖 ∈ Ω with |𝜔𝑖 | = 𝑛 and

𝑞𝑖 ∈ 𝜙𝜔𝑖 ([0, 1]) for 𝑖 = 1, 2, 3 such that 𝑞1 + 𝑞3 = 2𝑞2, then there are choices of indices 𝑘𝑖 ∈ {0, 1}
such that there exist 𝑞𝑖 ∈ 𝜙𝜔𝑖⊕(𝑘𝑖) ( [0, 1]) for which 𝑞1 + 𝑞3 = 2𝑞2. Suppose that we are given such 𝜔𝑖
and 𝑞𝑖 . Let 𝐼𝑖 = 𝜙𝜔𝑖 ([0, 1]) and 𝐼𝑘𝑖 = 𝜙𝜔𝑖⊕(𝑘) ( [0, 1]) for 𝑖 = 1, 2, 3 and 𝑘 = 0, 1. We will show that

𝐼1 + 𝐼3 = (𝐼0
1 + 𝐼0

3 ) ∪ (𝐼1
1 + 𝐼0

3 ) ∪ (𝐼0
1 + 𝐼1

3 ). (12)

Let 𝑎1 and 𝑎3 be the left boundaries of 𝐼1 and 𝐼3, respectively. Because |𝜔1 | = |𝜔3 | = 𝑛, it follows that
𝐼1 = [𝑎1, 𝑎1 + 𝛼

𝑛] and 𝐼3 = [𝑎3, 𝑎3 + 𝛼
𝑛] and thus 𝐼1 + 𝐼3 = [𝑎1 + 𝑎3, 𝑎1 + 𝑎3 + 2𝛼𝑛], which we can

denote as 𝑎1 + 𝑎3 + 𝛼
𝑛 · [0, 2]. Now

𝐼0
1 + 𝐼0

3 = (𝑎1 + 𝛼
𝑛 · [0, 𝛼]) + (𝑎3 + 𝛼

𝑛 · [0, 𝛼]) = 𝑎1 + 𝑎3 + 𝛼
𝑛 · [0, 2𝛼]

𝐼1
1 + 𝐼0

3 = (𝑎1 + 𝛼
𝑛 · [1 − 𝛼, 1]) + (𝑎3 + 𝛼

𝑛 · [0, 𝛼]) = 𝑎1 + 𝑎3 + 𝛼
𝑛 · [1 − 𝛼, 1 + 𝛼]

𝐼1
1 + 𝐼1

3 = (𝑎1 + 𝛼
𝑛 · [1 − 𝛼, 1]) + (𝑎3 + 𝛼

𝑛 · [1 − 𝛼, 1]) = 𝑎1 + 𝑎3 + 𝛼
𝑛 · [2 − 2𝛼, 2] .
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Figure 1. An illustration of the union of 𝜙𝜔 ([0, 1]), where 𝜔 ∈ Ω runs over all sequences of length n
for 𝑛 = 0, 1, . . . , 6 for 𝛼 = 7/16. At each level, starting at level 2, three red intervals are highlighted
containing elements 𝑞1, 𝑞2 and 𝑞3, respectively, such that 𝑞1 + 𝑞3 = 2𝑞2.

Because 𝛼 ∈ [ 1
3 , 1), it follows that

[0, 2] = [0, 2𝛼] ∪ [1 − 𝛼, 1 + 𝛼] ∪ [2 − 2𝛼, 2],

thus showing (12). Because there are 𝑞𝑖 ∈ 𝐼𝑖 such that 𝑞1 + 𝑞3 = 2𝑞2, we know that 𝐼1 + 𝐼3 is not disjoint
from 2𝐼2. These two intervals have the same length and thus at least one of the boundary points of 2𝐼2
lies in 𝐼1 + 𝐼3; therefore, there is a 𝑘2 ∈ {0, 1} such that 2𝐼𝑘2

2 is not disjoint from 𝐼1 + 𝐼3 because the
intervals 𝐼0

2 and 𝐼1
2 contain the respective boundary points of 𝐼2. This means that 2𝐼𝑘2

2 is not disjoint
from (𝐼0

1 + 𝐼
0
3 ) ∪ (𝐼1

1 + 𝐼
0
3 ) ∪ (𝐼0

1 + 𝐼
1
3 ) and thus there are also choices of 𝑘1, 𝑘3 ∈ {0, 1} such that 𝐼𝑘1

1 + 𝐼𝑘3
3

is not disjoint from 2𝐼𝑘2
2 . It follows that there are 𝑞𝑖 ∈ 𝐼𝑘𝑖𝑖 such that 𝑞1 + 𝑞3 = 2𝑞2.

Let 𝜔1 = (0, 0), 𝜔2 = (0, 1) and 𝜔3 = (1, 0). Note that 0 ∈ 𝜙𝜔1 ([0, 1]) and 1 − 𝛼 ∈ 𝜙𝜔3 ([0, 1]) =
[1 − 𝛼, 1 − 𝛼 + 𝛼2]. Furthermore, it can be checked, using the fact that 𝛼 ∈ [ 1

3 ,
1
2 ), that (1 − 𝛼)/2 ∈

𝜙𝜔2 ([0, 1]) = [𝛼 − 𝛼2, 𝛼], and thus there are 𝑞𝑖 ∈ 𝜙𝜔𝑖 ([0, 1]) such that 𝑞1 + 𝑞3 − 2𝑞2 = 0. From
the previous considerations it follows that there are �̃�𝑖 ∈ Ω of arbitrary length such that there are
𝑞𝑖 ∈ 𝜙𝜔𝑖⊕�̃�𝑖 ([0, 1]) for which 𝑞1 + 𝑞3 − 2𝑞2 = 0. See Figure 1 for an illustration of the construction
described in this proof. By taking the length of �̃�𝑖 large enough, the lengths of the intervals can be made
arbitrarily small, and thus we can guarantee that

|𝑝3 − 𝑝2 | ·

				 𝑝2 − 𝑝1
𝑝3 − 𝑝2

− 1
				 = |𝑝1 + 𝑝3 − 2𝑝2 | < 𝜖 · (1 − 2𝛼)

for all triples 𝑝𝑖 ∈ 𝜙𝜔𝑖⊕�̃�𝑖 ([0, 1]). Because 𝜙𝜔𝑖⊕�̃�𝑖 ([0, 1]) ⊆ 𝜙𝜔𝑖 ([0, 1]), we conclude that 𝑝3 − 𝑝2 is
at least 1 − 2𝛼. The inequality in (11) follows. �

Lemma 28. Let 𝛼 ∈ [ 1
3 , 1), 𝜖 > 0 and 𝑓0, 𝑓1 differentiable maps from [0, 1] to itself with fixed points

0 and 1, respectively. Then there is a constant 𝛿 > 0 such that if | 𝑓 ′𝑖 (𝑥) − 𝛼 | < 𝛿 for 𝑖 = 0, 1 and all
𝑥 ∈ [0, 1], then there are 𝜔1, 𝜔2, 𝜔3 ∈ Ω such that for all triples 𝑝1, 𝑝2, 𝑝3 with 𝑝𝑖 ∈ 𝑓𝜔𝑖 ([0, 1]) it
holds that 				 𝑝2 − 𝑝1

𝑝3 − 𝑝2
− 1
				 < 𝜖. (13)

Proof. Suppose that | 𝑓 ′𝑖 (𝑥) − 𝛼 | < 𝛿 for 𝑖 = 0, 1 and all 𝑥 ∈ [0, 1]. For any 𝑥 ∈ [0, 1], we can write

𝑓0(𝑥) =
∫ 𝑥

0
𝑓 ′0 (𝑡)𝑑𝑡 and 𝑓1(𝑥) = 1 −

∫ 1

𝑥
𝑓 ′1 (𝑡)𝑑𝑡.

We show inductively that for all 𝑥 ∈ [0, 1] and 𝜔 ∈ Ω we have | 𝑓𝜔 (𝑥) −𝜙𝜔 (𝑥) | ≤ |𝜔| · 𝛿. When |𝜔| = 0,
the statement is clear, so we suppose that |𝜔| > 0. Assume that the first entry of 𝜔 is a 0, so we write
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𝜔 = (0) ⊕ 𝜔′ for some 𝜔′ ∈ Ω with |𝜔| = |𝜔′ | + 1. Let 𝑥 ∈ [0, 1]; we assume that we have shown that
| 𝑓𝜔′ (𝑥) − 𝜙𝜔′ (𝑥) | < 𝛿 · |𝜔′ |. We denote 𝑓𝜔′ (𝑥) by y and 𝜙𝜔′ (𝑥) by 𝑦 + 𝑟 , where |𝑟 | ≤ 𝛿 · |𝜔′ |. Now

| 𝑓𝜔 (𝑥) − 𝜙𝜔 (𝑥) | = | 𝑓0 (𝑦) − 𝜙0(𝑦 + 𝑟) | =

				∫ 𝑦

0
𝑓 ′0 (𝑡)𝑑𝑡 − 𝛼 · (𝑦 + 𝑟)

				 = 				∫ 𝑦

0

(
𝑓 ′0 (𝑡) − 𝛼

)
𝑑𝑡 − 𝛼𝑟

				
≤

∫ 𝑦

0
| 𝑓 ′0 (𝑡) − 𝛼 |𝑑𝑡 + 𝛼 |𝑟 | ≤ 𝑦𝛿 + 𝛼𝛿 |𝜔′ | < 𝛿(|𝜔′ | + 1) = 𝛿 |𝜔|.

If the first entry of 𝜔 is a 1, the calculation is analogous.
Let𝜔1, 𝜔2, 𝜔3 ∈ Ω such that for all triples 𝑝1, 𝑝2, 𝑝3 with 𝑝𝑖 ∈ 𝜙𝜔𝑖 ([0, 1]) it holds that

		 𝑝2−𝑝1
𝑝3−𝑝2

−1
		 <

𝜖/2. These choices of 𝜔𝑖 exist by Lemma 27. For this inequality to hold, it must be the case that
𝜙𝜔2 ([0, 1])∩𝜙𝜔3 ([0, 1]) = ∅ and thus, since the map (𝑝1, 𝑝2, 𝑝3) → (𝑝2− 𝑝1)/(𝑝3− 𝑝2) is continuous
in all points where 𝑝2 ≠ 𝑝3, we can find three open intervals 𝐼1, 𝐼2, 𝐼3 with 𝜙𝜔𝑖 ([0, 1]) ⊆ 𝐼𝑖 such that
for all triples 𝑞𝑖 ∈ 𝐼𝑖 we have 				𝑞2 − 𝑞1

𝑞3 − 𝑞2
− 1
				 < 𝜖.

We showed that by making 𝛿 small enough we obtain bounds on the difference between 𝑓𝜔 (𝑥) and 𝜙𝜔 (𝑥)
uniformly over all 𝑥 ∈ [0, 1] and 𝜔 of bounded length. Therefore, we can make 𝛿 sufficiently small such
that 𝑓𝜔𝑖 ([0, 1]) ⊂ 𝐼𝑖 for 𝑖 ∈ {1, 2, 3}, which is enough to conclude the statement of the lemma. �

Corollary 29. Let 𝛼 ∈ [ 1
3 , 1), 𝜖 > 0. There is 𝛿 > 0 such that the following holds for any closed circular

arc 𝐴 ⊆ S1 and two maps 𝑓0, 𝑓1 : 𝐴 → 𝐴 with the respective endpoints of A as fixed points with the
property that | | 𝑓 ′𝑖 (𝑧) | − 𝛼 | < 𝛿 for all 𝑧 ∈ 𝐴.

There exist 𝜔1, 𝜔2, 𝜔3 ∈ Ω such that for all triples 𝑝𝑖 with 𝑝𝑖 ∈ 𝑓𝜔𝑖 (𝐴) we have that Arc[𝑝1, 𝑝2]
and Arc[𝑝2, 𝑝3] are subsets of A satisfying				ℓ(Arc[𝑝1, 𝑝2])

ℓ(Arc[𝑝2, 𝑝3])
− 1
				 < 𝜖.

We are now ready to prove the following lemma.

Lemma 30. Let 𝑑 ∈ Z≥2, 𝑘 ∈ Z≥1, 𝑏 ∈
[
𝑘−1
𝑘+1 ,

𝑑−1
𝑑+1
]

with 𝑏 ≠ 0 and 𝜆 ∈ S. Let 𝜉 ∈ S \ {−1} with
| 𝑓 ′3𝑘 (𝜉) | > 1. Let {𝜉𝑛}𝑛≥1 be a sequence in S converging to 𝜉 and not equal to 𝜉 such that for all positive
integers n there is a rooted tree 𝑇𝑛 in T𝑑+1, with root degree 𝑚 ≤ 𝑑 − 2𝑘 implementing the field 𝜉𝑛. Then
at least one of the following is true:

1. The set of fields implemented by rooted trees in T𝑑+1 is dense in S.
2. Given 𝜖 > 0, there is a rooted tree in T𝑑+1 with root degree at most 𝑚 + 𝑘 that implements the field

𝑟 ∈ Arc (𝜆𝑘 , 𝜆𝑘 ) \ {−1} with | 𝑓 ′3𝑘 (𝑟) | > | 𝑓 ′3𝑘 (𝜉) | − 𝜖 .

Proof. We distinguish the following three cases:

(i) 𝜉 ∈ Arc(𝜆𝑘 , 𝜆𝑘 ).
(ii) 𝜉 ∈ Arc[𝜆𝑘 , 𝜆𝑘 ] and 𝑅𝑘 (𝜉) ∈ Arc(𝜆𝑘 , 𝜆𝑘 ).

(iii) 𝜉 ∈ Arc[𝜆𝑘 , 𝜆𝑘 ] and 𝑅𝑘 (𝜉) ∈ Arc[𝜆𝑘 , 𝜆𝑘 ].

Suppose first we are in case (i). Then, since 𝜉𝑛 → 𝜉 and thus 𝑓 ′3𝑘 (𝜉𝑛) → 𝑓 ′3𝑘 (𝜉), given 𝜖 , there is an
integer n such that 𝜉𝑛 ∈ Arc(𝜆𝑘 , 𝜆𝑘 ) \ {−1} and | 𝑓 ′3𝑘 (𝜉𝑛) | > | 𝑓 ′3𝑘 (𝜉) | − 𝜖 . The rooted tree 𝑇𝑛 satisfies
the requirements of statement (2) of the lemma.

To prove the lemma for cases (ii) and (iii), we define the following set:

R =
{
𝑓 𝑁𝜉𝑛 ,𝑘 (𝜉𝑛) : 𝑛, 𝑁 ≥ 1

}
.
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By repeatedly applying Lemma 4, we see that every element of R corresponds to the field implemented
by a rooted tree in T𝑑+1 whose root degree is at most 𝑚 + 𝑘 . The following limits follow from continuity:

lim
𝑁→∞

lim
𝑛→∞

𝑓 𝑁𝜉𝑛 ,𝑘 (𝜉𝑛) = lim
𝑁→∞

𝑓 𝑁𝜉 ,𝑘 (𝜉) = 𝑅𝑘 (𝜉).

Therefore, 𝑅𝑘 (𝜉) is an accumulation of R and, in fact, there is a sequence {𝜁𝑛}𝑛≥1 of elements in R
converging to 𝑅𝑘 (𝜉) but not equal to 𝑅𝑘 (𝜉). If we are in case (ii), by Remark 11 we can take 𝜁𝑛 sufficiently
close to 𝑅𝑘 (𝜉) so that 𝜁𝑛 ∈ Arc (𝜆𝑘 , 𝜆𝑘 ) \ {−1}. Since | 𝑓 ′3𝑘 (𝑅𝑘 (𝜉)) | > | 𝑓 ′3𝑘 (𝜉) | by Remark 11, we can
further ensure that | 𝑓 ′3𝑘 (𝜁𝑛) | > | 𝑓 ′3𝑘 (𝜉) |. The corresponding tree with field 𝜁𝑛 satisfies the condition of
statement (2) of the lemma.

Suppose now we are in case (iii) and suppose first that 𝑅𝑘 (𝜉) ∈ {𝜆𝑘 , 𝜆𝑘 }. If a subsequence (𝜁𝑛)
converges to 𝑅𝑘 (𝜉) along the arc Arc(𝜆𝑘 , 𝜆𝑘 ), we obtain a 𝜁𝑛 ∈ Arc(𝜆𝑘 , 𝜆𝑘 ) and, by the same reasoning
as in the previous case, we can conclude that statement (2) of the lemma holds. So we can assume that
for large enough n, all 𝜁𝑛 lie in Arc(𝜆𝑘 , 𝜆𝑘 ). In this case, we find that for sufficiently high n the elements
𝜁𝑛 get arbitrarily close to either 𝜆𝑘 or 𝜆𝑘 and thus | 𝑓 ′𝑘 (𝑅𝑘 (𝜁𝑛)) | gets arbitrarily close to 1. It follows that
we can find 𝑛1 and 𝑛2 such that 𝜁𝑛1 and 𝜁𝑛2 lie in the same half-plane and such that | 𝑓 ′2𝑘 (𝑅𝑘 (𝜁𝑛𝑖 )) | > 1
for 𝑖 = 1, 2. It follows then from Lemma 22 that, if we let 𝑔0 = 𝑓𝜁𝑛1 ,𝑘

and 𝑔1 = 𝑓𝜁𝑛2 ,𝑘
, the set

R1 = {𝑔𝜔 (1) : 𝜔 ∈ Ω, |𝜔| ≥ 1}

is dense in an arc 𝐴 ⊆ 𝑆. By applying Lemma 4, we observe that every 𝑟 ∈ R1 corresponds to the field
implemented by a rooted tree in T𝑑+1 with root degree at most 𝑚 + 2𝑘 ≤ 𝑑. Because the tree consisting
of a single vertex implements the field 𝜆, we can apply Lemma 4 to see that every element in the set

R2 = { 𝑓 𝑛𝜆,𝑑 (𝑟) : 𝑟 ∈ R1, 𝑛 ≥ 1}

corresponds to the field implemented by a rooted tree in T𝑑+1 with root degree at most d. Because b is
chosen such that | 𝑓 ′𝑑 (𝑧) | > 1 for all 𝑧 ∈ S − {1}, we find that 𝑓 𝑁𝜆,𝑑 (𝐴) = S for a sufficiently large N and
thus R2 is dense in S, which shows that in this case statement (1) of the lemma holds.

Finally, we assume that 𝑅𝑘 (𝜉) ∈ Arc(𝜆𝑘 , 𝜆𝑘 ). W.l.o.g., assume that 𝜉 lies in the upper half-plane. Let
𝛼 = | 𝑓 ′𝑘 (𝑅𝑘 (𝜉)) |. It follows from the fact that 𝑅𝑘 (𝜉) ∈ Arc(𝜉, 𝜆𝑘 ) that 𝛼 ∈ (1/3, 1). Let 𝜖1, 𝜖2 > 0 be
two reals whose value will be determined later. Let 𝛿 be the constant obtained from applying Corollary
29 to 𝛼 and 𝜖 = 𝜖1. Now choose 𝑛1, 𝑛2 such that 𝜉𝑛1 , 𝜉𝑛2 have the following properties:

(a) 𝜉𝑛1 and 𝜉𝑛2 lie in the upper half-plane, Arg(𝜉𝑛1) < Arg(𝜉𝑛2), Arc [𝑅𝑘 (𝜉𝑛1), 𝑅𝑘 (𝜉𝑛2 )] ⊆ Arc (1, 𝜆𝑘 )
and Arg(𝑅𝑘 (𝑅𝑘 (𝜉𝑛1))) > Arg(𝑅𝑘 (𝜉)).

(b) For all 𝑧 ∈ Arc [𝑅𝑘 (𝜉𝑛1 ), 𝑅𝑘 (𝜉𝑛2 )] we have | | 𝑓 ′𝑘 (𝑧) | − 𝛼 | < 𝛿.
(c) For all 𝑧1, 𝑧2 ∈ Arc [𝑅𝑘 (𝜉𝑛1 ), 𝑅𝑘 (𝜉𝑛2)] we have | |𝑅′

𝑘 (𝑧1)/𝑅
′
𝑘 (𝑧2) | − 1| < 𝜖2.

That it is possible to choose 𝑛1, 𝑛2 such that the first two properties hold follows from the fact that both
𝑅𝑘 and the derivative of 𝑓𝑘 are continuous on Arc [𝜆𝑘 , 𝜆𝑘 ]. The existence of 𝑛1, 𝑛2 satisfying the third
property follows from the fact that the derivative of 𝑧 ↦→ 𝑅𝑘 (𝑧) is continuous and nonzero on Arc (1, 𝜆𝑘 ).

Let 𝑔0 = 𝑓𝜉𝑛1 ,𝑘
and 𝑔1 = 𝑓𝜉𝑛2 ,𝑘

. Since 𝜉𝑛1 , 𝜉𝑛2 are implemented by rooted trees in T𝑑+1 with root
degrees at most m, we have by Lemma 4 that, if r is implemented by a rooted tree in T𝑑+1, then 𝑔𝑖 (𝑟) is
the field implemented by a tree in T𝑑+1 and root degree 𝑚 + 𝑘 ≤ 𝑑. Let 𝐴 = Arc [𝑅𝑘 (𝜉𝑛1 ), 𝑅𝑘 (𝜉𝑛2 )] and
note that the maps 𝑔0, 𝑔1 have the respective endpoints of A as fixed points. Furthermore, | |𝑔′𝑖 (𝑧) |−𝛼 | < 𝛿
for all 𝑧 ∈ 𝐴 and thus it follows from Corollary 29 that there is a triple 𝜔1, 𝜔2, 𝜔3 ∈ Ω such that for all
triples 𝑝𝑖 ∈ 𝑔𝜔𝑖 (𝐴) we have Arg(𝑝1) < Arg(𝑝2) < Arg(𝑝3) and				ℓ(Arc[𝑝1, 𝑝2])

ℓ(Arc[𝑝2, 𝑝3])
− 1
				 < 𝜖1.
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The orbit of 𝜉𝑛2 under iteration of 𝑔1 converges to 𝑅𝑘 (𝜉𝑛2 ) approaching from an anti-clockwise direction
and thus there is some number N such that if we let 𝜔𝑁 be the constant 1 sequence of length N,
𝑔𝜔𝑁 (𝜉𝑛2 ) ∈ 𝐴. For 𝑖 = 1, 2, 3 we define 𝜁𝑖 = 𝑔𝜔𝑖⊕𝜔𝑁 (𝜉𝑛2 ) and note that each 𝜁𝑖 is contained in the
interval (𝜆𝑘 , 𝜆𝑘 ) and is implemented by a rooted tree in T𝑑+1 with root degree 𝑚 + 𝑘 . Furthermore, we
have Arg(𝜁1) < Arg(𝜁2) < Arg(𝜁3) and				ℓ(Arc[𝜁1, 𝜁2])

ℓ(Arc[𝜁2, 𝜁3])
− 1
				 < 𝜖1. (14)

Let ℎ𝑖 = 𝑓𝜁𝑖 ,𝑘 . Analogous to the above, if r is implemented by a rooted tree in T𝑑+1, then ℎ𝑖 (𝑟) is imple-
mented by a rooted tree in T𝑑+1 with root degree at most𝑚+2𝑘 ≤ 𝑑. Redefine 𝐴 = Arc [𝑅𝑘 (𝜁1), 𝑅𝑘 (𝜁3)].
We will show that we can choose 𝜖1 and 𝜖2 sufficiently small such that 𝐴 = ℎ1(𝐴) ∪ ℎ2 (𝐴) ∪ ℎ3 (𝐴).
To do this, define 𝐴1 = Arc [𝑅𝑘 (𝜁1), 𝑅𝑘 (𝜁2)] and 𝐴2 = Arc [𝑅𝑘 (𝜁2), 𝑅𝑘 (𝜁3)]. It follows from the mean
value theorem that there are 𝑥𝑖 ∈ Arc [𝜁𝑖 , 𝜁𝑖+1] such that ℓ(𝐴𝑖) = |𝑅′

𝑘 (𝑥𝑖) | · ℓ(Arc [𝜁𝑖 , 𝜁𝑖+1]) for 𝑖 = 1, 2.
Because both 𝑥1 and 𝑥2 lie in Arc [𝑅𝑘 (𝜉𝑛1), 𝑅𝑘 (𝜉𝑛2 )], it follows from property (c) above that we can
write |𝑅′

𝑘 (𝑥1)/𝑅
′
𝑘 (𝑥2) | = 1 + 𝑟2 for some 𝑟2 ∈ R with |𝑟2 | < 𝜖2. We use the bound in (14) to obtain the

following inequality:				ℓ(𝐴1)

ℓ(𝐴2)
− 1
				 = 				 |𝑅′

𝑘 (𝑥1) | · ℓ(Arc [𝜁1, 𝜁2])

|𝑅′
𝑘 (𝑥2) | · ℓ(Arc [𝜁2, 𝜁3])

− 1
				 = 				(1 + 𝑟2)

ℓ(Arc [𝜁1, 𝜁2])

ℓ(Arc [𝜁2, 𝜁3])
− 1
				

≤ |1 + 𝑟2 | ·

				ℓ(Arc [𝜁1, 𝜁2])

ℓ(Arc [𝜁2, 𝜁3])
− 1
				 + |𝑟2 | < |1 + 𝑟2 | · 𝜖1 + |𝑟2 |

≤ 𝜖1 + 𝜖2 + 𝜖1 · 𝜖2.

Let 𝜖3 = 𝜖1 + 𝜖2 + 𝜖1 · 𝜖2 and note that 𝜖3 can be made arbitrarily small by choosing 𝜖1 and 𝜖2 sufficiently
small. It follows that there is some 𝑟3 ∈ R with |𝑟3 | < 𝜖3 such that ℓ(𝐴1) = (1 + 𝑟3) · ℓ(𝐴2). Because
Arg(𝑅𝑘 (𝜁1)) > Arg(𝑅𝑘 (𝑅𝑘 (𝜉𝑛1))) > Arg(𝑅𝑘 (𝜉)), we find that 1 > | 𝑓 ′𝑘 (𝑧) | > 𝛼 for all 𝑧 ∈ 𝐴 and thus
1 > |ℎ′𝑖 (𝑧) | > 𝛼 for all 𝑧 ∈ 𝐴 and 𝑖 = 1, 2, 3. It follows that

ℓ(ℎ1(𝐴1 ∪ 𝐴2)) + ℓ(ℎ2(𝐴1)) > 𝛼 · (ℓ(𝐴1) + ℓ(𝐴2)) + 𝛼 · ℓ(𝐴1) = 𝛼 · (2ℓ(𝐴1) + ℓ(𝐴2))

= 𝛼 ·
(
2 +

1
1 + 𝑟3

)
ℓ(𝐴1) = 𝛼 ·

3 + 2𝑟3
1 + 𝑟3

· ℓ(𝐴1)

and

ℓ(ℎ2(𝐴2)) + ℓ(ℎ3(𝐴1 ∪ 𝐴2)) > 𝛼 · ℓ(𝐴2) + 𝛼 · (ℓ(𝐴1) + ℓ(𝐴2)) = 𝛼 · (ℓ(𝐴1) + 2ℓ(𝐴2))

= 𝛼 · ((1 + 𝑟3) + 2) ℓ(𝐴2) = 𝛼 · (3 + 𝑟3) · ℓ(𝐴2).

Because 𝛼 > 1/3, we can choose 𝜖3 sufficiently small such that

ℓ(ℎ1(𝐴1 ∪ 𝐴2)) + ℓ(ℎ2(𝐴1)) > ℓ(𝐴1) and ℓ(ℎ2(𝐴2)) + ℓ(ℎ3(𝐴1 ∪ 𝐴2)) > ℓ(𝐴2).

Because ℎ1 (𝐴1∪𝐴2) and ℎ2(𝐴1) share the respective endpoints of 𝐴1, it follows that 𝐴1 ⊆ ℎ1 (𝐴1∪𝐴2)∪
ℎ2 (𝐴1). Similarly, we find that 𝐴2 ⊆ ℎ3 (𝐴1 ∪ 𝐴2) ∪ ℎ2 (𝐴2). It follows that 𝐴 = ℎ1 (𝐴) ∪ ℎ2(𝐴) ∪ ℎ3(𝐴).
Finally, let 𝑠 = ℎ𝑁3 (1), where we have taken N sufficiently large such that 𝑠 ∈ 𝐴, and consider

S =
{
(ℎ𝑖1 ◦ · · · ◦ ℎ𝑖𝑙 ) (𝑠) : 𝑙 ∈ Z≥1 and 𝑖1, . . . , 𝑖𝑙 ∈ {1, 2, 3}

}
.

It follows from Corollary 20 that S is a dense subset of A. Every 𝑟 ∈ S is implemented by a rooted tree
in T𝑑+1 with root degree 𝑚 + 2𝑘 ≤ 𝑑. Finally, we let

S2 = { 𝑓 𝑛𝜆,𝑑 (𝑟) : 𝑟 ∈ S, 𝑛 ≥ 1}
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and we find, because | 𝑓 ′𝑑 (𝑧) | > 1 for all 𝑧 ∈ S − {1}, that S2 is dense in S. Every 𝑟 ∈ S2 is implemented
by a tree in T𝑑+1. This shows that in this case item (1) of the lemma holds. �

Lemma 31. Suppose 𝑑 ∈ Z≥5, 𝑏 ∈
(
0, 𝑑−1

𝑑+1
]
∩ Q, 𝜆 ∈ SQ \ {±1} and 𝜉 ∈ Λ3 (𝑏) ∩ SQ with 𝜉 ≠ ±1.

Suppose there is a rooted tree in T𝑑+1 with root degree at most 𝑑 − 5 and field 𝜉. Then the set of fields
implemented by rooted trees in T𝑑+1 is dense in S.

Proof. It follows from Lemma 16 that there is 𝜎 ∈ Swith | 𝑓 ′3 (𝜎) | > 1 together with a sequence {𝜁𝑛}𝑛≥1
accumulating on 𝜎 such that every 𝜁𝑛 is the field implemented by a tree in T𝑑+1 whose root degree is
bounded by (𝑑 − 5) + 3 = 𝑑 − 2. We can now apply Lemma 30 with 𝑘 = 1. It follows that either the set
of fields implemented by rooted trees in T𝑑+1 is dense in S or there is a tree in T𝑑+1 with root degree at
most (𝑑 − 2) + 1 = 𝑑 − 1 and field 𝜁 ∈ Arc (𝜆1, 𝜆1) \ {−1}. We conclude from Lemma 14 that 𝑓𝜁 ,1 is
conjugate to an irrational rotation and thus the orbit { 𝑓 𝑛𝜁 ,1 (1)}𝑛≥1 is dense in S. Every element in this
orbit is implemented by a rooted tree in T𝑑+1, and thus we are done. �

6. Proof of Lemma 17

We are now ready to prove Lemma 17, which we restate here for convenience.

Lemma 17 . Let 𝑘, 𝑑 ∈ Z≥2 with 𝑘 ≤ 𝑑, 𝑏 ∈
(
𝑑−2
𝑑 , 𝑑−1

𝑑+1
]
∩Q and 𝜆 ∈ SQ \ {±1}. Suppose there exists a

rooted tree in T𝑑+1 with root degree at most 𝑑 − 𝑘 that implements a field 𝜉 ≠ 1 with the property that
| 𝑓 ′𝑘 (𝜉) | ≥ 1 and 𝜉 ∈ Arc [𝜆 �𝑘/2� , 𝜆 �𝑘/2� ]. Then the set of fields implemented by trees in T𝑑+1 is dense in S.

Proof. The proof consists of a careful case analysis. We give a seperate argument first for when k
is a power of two and for when 𝑘 + 1 is a power of 2 and then for each value of k within the set
{5, 6, 9, 10, 11, 12, 13, 14, 17} and, lastly, we prove the statement for all other k.

We remark that in some cases we will show that the set of fields implemented by rooted trees in T𝑑+1
is dense in an arc A of the circle. Since b is such that | 𝑓 ′𝑑 (𝑧) | > 1 for all 𝑧 ∈ S \ {1} (see (2) of Lemma
10), it follows that for all arcs A there is an 𝑁 ≥ 1 such that 𝑓 𝑁𝜆,𝑑 (𝐴) = S. Density of fields in the whole
unit circle therefore follows from density in A.

First suppose 𝑘 = 2𝑚 is a power of 2. In this case, 𝜉 ∈ Arc [𝜆2𝑚−1 , 𝜆2𝑚−1] \ {1} is implemented
by a rooted tree in T𝑑+1 with root degree at most 𝑑 − 2𝑚 and with | 𝑓 ′2𝑚 (𝜉) | ≥ 1. Let 𝜉2 = 𝑓𝜉 ,1(𝜉).
By item (v) of Lemma 10, we have 𝜉 ∈ Arc [𝜆1, 𝜆1] \ {1} and hence 𝜉2 ≠ 𝜉 by item (iv) of the
same lemma. Moreover, by Lemma 4, 𝜉2 is the field of a rooted tree in T𝑑+1 with root degree at most
𝑑 − (2𝑚 − 1). If 𝜉2 ∈ Arc (𝜆2𝑚−1 , 𝜆2𝑚−1 ), then the desired result follows from Lemma 25. Otherwise,
𝜉, 𝜉2 ∈ Arc [𝜆2𝑚−1 , 𝜆2𝑚−1] and the result follows from applying Lemma 22 to these two parameters.

Now suppose 𝑘+1 is a power of 2, so 𝑘 = 2𝑚+1−1 for𝑚 ≥ 1. In this case, 𝜉 ∈ Arc [𝜆2𝑚−1, 𝜆2𝑚−1]\{1}
is implemented by a rooted tree in T𝑑+1 with root degree at most 𝑑−(2𝑚+1−1) and with | 𝑓 ′2𝑚+1−1(𝜉) | ≥ 1.
If 𝜉 ∈ Arc (𝜆2𝑚 , 𝜆2𝑚 ), the result follows from Lemma 25. Otherwise, if 𝜉 ∈ Arc [𝜆2𝑚 , 𝜆2𝑚], the result
follows from Lemma 21.

We now continue with the list of individual cases.
k = 5 : In this case, 𝜉 ∈ Arc [𝜆2, 𝜆2] \{1} is the field of a rooted tree with root degree at most 𝑑−5 and

with | 𝑓 ′5 (𝜉) | ≥ 1. If 𝜉 ∈ Arc (𝜆3, 𝜆3), the result follows from Lemma 31. Otherwise, if 𝜉 ∈ Arc [𝜆3, 𝜆3],
the result follows from Lemma 21.

k = 6 : In this case, 𝜉 ∈ Arc [𝜆3, 𝜆3] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree
at most 𝑑 − 6 and with | 𝑓 ′6 (𝜉) | ≥ 1. Let 𝜉2 = 𝑓𝜉 ,1(𝜉), which is the field of a rooted tree in T𝑑+1 with
root degree at most 𝑑 − 5. If 𝜉2 ∈ Arc(𝜆3, 𝜆3), then the result follows from Lemma 31. Otherwise,
𝜉, 𝜉2 ∈ Arc [𝜆3, 𝜆3] and the result follows from applying Lemma 22 to these two parameters.

k = 9 : In this case, 𝜉 ∈ Arc [𝜆4, 𝜆4] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree
at most 𝑑 − 9 and with | 𝑓 ′9 (𝜉) | ≥ 1. Consider the orbit { 𝑓 𝑛𝜉 ,1(𝜉) : 𝑛 ≥ 1}. The elements of this orbit
are implemented by trees in T𝑑+1 with root degree at most 𝑑 − 8 and they accumulate on 𝑅1 (𝜉). Note
that | 𝑓 ′9 (𝑅1 (𝜉)) | > 1. It follows from Lemma 30 that either we obtain the desired density or we obtain a
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rooted tree with root degree at most (𝑑 − 8) + 3 = 𝑑 − 5 that implements a field in Arc (𝜆3, 𝜆3). In this
latter case, the result follows from applying Lemma 31 to this tree.

k = 10 : In this case, 𝜉 ∈ Arc [𝜆5, 𝜆5] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree
at most 𝑑 −10 and with | 𝑓 ′10 (𝜉) | ≥ 1. Then it follows from Lemma 23 that the orbit of 1 under the action
of the semigroup generated by 𝑓𝜉 ,3, 𝑓𝜉 ,4 and 𝑓𝜉 ,5 is dense in an arc of S, in which case the result follows.
Or we can conclude that | 𝑓 ′5 (𝑅5 (𝜉)) | >

43
50 . In that case, we consider the orbit R = { 𝑓 𝑛

𝜉 ,5(𝜉) : 𝑛 ≥ 1}.
This orbit accumulates on 𝑅5(𝜉) and every element is implemented by a rooted tree with root degree at
most 𝑑 − 10 + 5 = 𝑑 − 5. If 𝑅5(𝜉) ∈ Arc (𝜆3, 𝜆3), then there are also fields 𝜁 ∈ R with 𝜁 ∈ Arc (𝜆3, 𝜆3).
In that case, we can apply Lemma 31 to obtain density of the fields. Otherwise, if 𝑅5(𝜉) ∈ Arc [𝜆3, 𝜆3],
then we can find 𝜁1, 𝜁2 ∈ R such that 𝜁1, 𝜁2 ∈ Arc [𝜆3, 𝜆3] are distinct, lie in the same half-plane and
| 𝑓 ′5 (𝜁𝑖) | >

43
50 for 𝑖 = 1, 2. It follows that for both fields 𝜁𝑖 we have

| 𝑓 ′6 (𝑅3 (𝜁𝑖)) | > | 𝑓 ′6 (𝜁𝑖) | =
6
5
· | 𝑓 ′5 (𝜁𝑖) | >

6
5
·

43
50

=
129
125

> 1.

Density of the fields now follows from applying Lemma 22 to 𝜁1 and 𝜁2.
k = 11 : In this case, 𝜉 ∈ Arc [𝜆5, 𝜆5] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree

at most 𝑑 − 11 and with | 𝑓 ′11 (𝜉) | ≥ 1. If 𝜉 ∈ Arc [𝜆6, 𝜆6], the result follows from Lemma 21. Otherwise,
if 𝜉 ∈ Arc (𝜆6, 𝜆6), we apply Lemma 16 to find a parameter 𝜎 ∈ S with | 𝑓 ′6 (𝜎) | > 1 together with a
sequence of fields {𝜁𝑛}𝑛≥1 accumulating on 𝜎 such that every 𝜁𝑛 is implemented by a rooted tree in
T𝑑+1 whose root degree is at most 𝑑 − 11 + 6 = 𝑑 − 5. If there is any 𝜁𝑛 ∈ Arc (𝜆3, 𝜆3), then density of
the fields in the circle follows from Lemma 31. Otherwise, the sequence accumulates on 𝜎 from inside
Arc [𝜆3, 𝜆3] and thus we can find 𝜁𝑛1 , 𝜁𝑛2 ∈ Arc [𝜆3, 𝜆3] that are distinct, lie in the same half-plane
and have the property that | 𝑓 ′6 (𝜁𝑖) | > 1 for 𝑖 = 1, 2. The desired density now follows from applying
Lemma 22 to 𝜁1 and 𝜁2.

k = 12 : In this case, 𝜉 ∈ Arc [𝜆6, 𝜆6] \{1} is implemented by a rooted tree in T𝑑+1 with root degree at
most 𝑑−12 and with | 𝑓 ′12 (𝜉) | ≥ 1. This case can be done in a very similar way to the 𝑘 = 9 case. Consider
the orbit { 𝑓 𝑛𝜉 ,1(𝜉) : 𝑛 ≥ 1}. The elements of this orbit are fields of trees in T𝑑+1 with root degree at most
𝑑 − 11 and they accumulate on 𝑅1(𝜉). Note that | 𝑓 ′12 (𝑅1 (𝜉)) | > 1. It follows from Lemma 30 that either
we obtain the desired density or we obtain a rooted tree with root degree at most (𝑑 − 11) + 4 = 𝑑 − 7
and field in Arc (𝜆4, 𝜆4). In this latter case, the result follows from applying Lemma 25 to this tree.

k = 13 : In this case, 𝜉 ∈ Arc [𝜆6, 𝜆6] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree
at most 𝑑 −13 and with | 𝑓 ′13 (𝜉) | ≥ 1. Then it follows from Lemma 23 that the orbit of 1 under the action
of the semigroup generated by 𝑓𝜉 ,4, 𝑓𝜉 ,5 and 𝑓𝜉 ,6 is dense in an arc of S, in which case the result follows.
Or we can conclude that | 𝑓 ′6 (𝑅6 (𝜉)) | >

10
13 . In that case, we consider the orbit R = { 𝑓 𝑛

𝜉 ,6(𝜉) : 𝑛 ≥ 1}.
This orbit accumulates on 𝑅6 (𝜉) and every element is implemented by a rooted tree in T𝑑+1 with root
degree at most 𝑑 − 13 + 6 = 𝑑 − 7. If 𝑅6(𝜉) ∈ Arc (𝜆4, 𝜆4), then there is also a field 𝜁 ∈ R with
𝜁 ∈ Arc (𝜆4, 𝜆4). In that case, we can apply Lemma 25 to obtain density of the fields. Otherwise, if
𝑅6 (𝜉) ∈ Arc [𝜆4, 𝜆4], then we can find 𝜁1, 𝜁2 ∈ R such that 𝜁1, 𝜁2 ∈ Arc [𝜆4, 𝜆4] are distinct, lie in the
same half-plane and | 𝑓 ′6 (𝜁𝑖) | >

10
13 for 𝑖 = 1, 2. It follows that for both fields 𝜁𝑖 we have

| 𝑓 ′8 (𝑅4(𝜁𝑖)) | > | 𝑓 ′8 (𝜁𝑖) | =
8
6
· | 𝑓 ′6 (𝜁𝑖) | >

8
6
·

10
13

=
40
39

> 1.

Density of the fields now follows from applying Lemma 22 to 𝜁1 and 𝜁2.
k = 14 : In this case, 𝜉 ∈ Arc [𝜆7, 𝜆7] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree

at most 𝑑 −14 and with | 𝑓 ′14 (𝜉) | ≥ 1. Then it follows from Lemma 23 that the orbit of 1 under the action
of the semigroup generated by 𝑓𝜉 ,5, 𝑓𝜉 ,6 and 𝑓𝜉 ,7 is dense in an arc of S, in which case the result follows.
Or we can conclude that | 𝑓 ′7 (𝑅7 (𝜉)) | >

89
98 . In that case, we consider the orbit R = { 𝑓 𝑛𝜉 ,7(𝜉) : 𝑛 ≥ 1}.

This orbit accumulates on 𝑅7 (𝜉) and every element is implemented by a rooted tree in T𝑑+1 with root
degree at most 𝑑 − 14 + 7 = 𝑑 − 7. If 𝑅7(𝜉) ∈ Arc (𝜆4, 𝜆4), then there is also a field 𝜁 ∈ R with
𝜁 ∈ Arc (𝜆4, 𝜆4). In that case, we can apply Lemma 25 to obtain density of the fields. Otherwise, if
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𝑅7 (𝜉) ∈ Arc [𝜆4, 𝜆4], then we can find 𝜁1, 𝜁2 ∈ R such that 𝜁1, 𝜁2 ∈ Arc [𝜆4, 𝜆4] are distinct, lie in the
same half-plane and | 𝑓 ′7 (𝜁𝑖) | >

89
98 for 𝑖 = 1, 2. It follows that for both fields 𝜁𝑖 we have

| 𝑓 ′8 (𝑅4 (𝜁𝑖)) | > | 𝑓 ′8 (𝜁𝑖) | =
8
7
· | 𝑓 ′7 (𝜁𝑖) | >

8
7
·

89
98

=
356
343

> 1.

Density of the fields now follows from applying Lemma 22 to 𝜁1 and 𝜁2.
k = 17 : In this case, 𝜉 ∈ Arc [𝜆8, 𝜆8] \ {1} is implemented by a rooted tree in T𝑑+1 with root degree

at most 𝑑 − 17 and with | 𝑓 ′17 (𝜉) | ≥ 1. If 𝜉 ∈ Arc [𝜆9, 𝜆9], the result follows from Lemma 21; therefore,
we assume that 𝜉 ∈ Arc (𝜆9, 𝜆9). We apply Lemma 16 to find a parameter 𝜎 ∈ S with | 𝑓 ′9 (𝜎) | > 1
together with a sequence of fields {𝜁𝑛}𝑛≥1 accumulating on 𝜎 such that every 𝜁𝑛 is implemented by a
rooted tree in T𝑑+1 whose root degree is at most 𝑑 − 17 + 9 = 𝑑 − 8. It follows from Lemma 30 that we
either obtain the required density of fields or there is a tree in T𝑑+1 whose root degree is bounded by
𝑑 − 5 with field inside Arc (𝜆3, 𝜆3). In the latter case, the result follows from Lemma 31.

Finally, we complete the proof for 𝑘 > 17. In that case, write 𝑘 = 2𝑚 if k is even and 𝑘 = 2𝑚 + 1 if k
is odd. Note that 𝑚 ≥ 9. We are then given that 𝜉 ∈ Arc [𝜆𝑚, 𝜆𝑚] \ {1} is implemented by a rooted tree
in T𝑑+1 with root degree at most 𝑑 − 𝑘 and with | 𝑓 ′𝑘 (𝜉) | ≥ 1. It follows from Corollary 24 that the orbit
of 1 under the action of the semigroup generated by 𝑓𝜉 ,𝑚−3, 𝑓𝜉 ,𝑚−2, 𝑓𝜉 ,𝑚−1 and 𝑓𝜉 ,𝑚 is dense in an arc
of S from which our desired conclusion follows. This finishes the proof of Lemma 17. �

7. Fast implementation of fields

In this section, we bootstrap Theorem 6 to obtain fast algorithms for implementing fields which will be
important in our reductions. For a number 𝛼 = 𝑝/𝑞 ∈ Q with gcd(𝑝, 𝑞) = 1, we use size(𝛼) to denote
the total number of bits needed to represent 𝑝, 𝑞, and we extend this to numbers in CQ by adding the
sizes of the real and imaginary parts. For 𝛼1, . . . , 𝛼𝑡 ∈ CQ, we denote by size(𝛼1, . . . , 𝛼𝑡 ) the total of
the sizes of 𝛼1, . . . , 𝛼𝑡 .

Lemma 32. Fix an integer Δ ≥ 3, a rational number 𝑏 ∈ (0, 1) and 𝜆 ∈ SQ(Δ − 1, 𝑏). Then, there is
an algorithm, which on input �̂� ∈ SQ and rational 𝜖 > 0, returns in time 𝑝𝑜𝑙𝑦(size(�̂�, 𝜖))) a rooted tree
T in TΔ with root degree 1 that implements a field 𝜆′ such that |𝜆′ − �̂� | ≤ 𝜖 .

Proof of Lemma 32. Let 𝑑 = Δ − 1. We start by setting up some parameters that will be useful.
Let 𝜆1 be as in Lemma 10. As �̃� approaches 𝜆1 from inside Arc (1, 𝜆1), we know that 𝑅1(�̃�)

approaches 𝑅1(𝜆1). Since | 𝑓 ′1 (𝑅1(𝜆1)) | = 1, there must be �̃� ∈ Arc (1, 𝜆1) such that | 𝑓 ′1 (𝑅1(𝜉)) | ∈ ( 1
2 , 1)

for all 𝜉 ∈ Arc (�̃�, 𝜆1). By Theorem 6, there exist trees 𝑇1, 𝑇2 in T𝑑+1 with root degree 1 and fields
𝜉1, 𝜉2 ∈ Arc (�̃�, 𝜆1)∩SQ with Arg(𝜉1) < Arg(𝜉2). Because the map 𝜉 ↦→ 𝑅1(𝜉) is orientation preserving
with nonzero derivative, we have Arg(𝑅1 (𝜉1)) < Arg(𝑅1(𝜉2)). For 𝑖 ∈ {1, 2}, the fixed point 𝑅1(𝜉𝑖) is
a solution to the quadratic equation 𝜉𝑖 (𝑧 + 𝑏) = 𝑧(𝑏𝑧 + 1) and hence we can approximate it with any
desired rational precision 𝜏 > 0 in time 𝑝𝑜𝑙𝑦(size(𝜏)).

Let 𝐼 = Arc(𝑅1 (𝜉1), 𝑅1(𝜉2)) and note that this arc is contained in the upper half-plane. We will show
that the arc I gets mapped onto S in a fixed number of applications of 𝑓𝜆,𝑑 . The idea of the algorithm is
then to find a small enough neighbourhood of a point in I that gets mapped close to the field that we are
trying to (approximately) implement. Then we use that we are able to quickly and accurately approach
any value inside I using 𝑓𝜉1 ,1 and 𝑓𝜉2 ,1. This algorithm is very similar to the proof of Lemma 19.

We now show that I gets mapped onto S in a fixed number of applications of 𝑓𝜆,𝑑 . We first consider
the case that 𝑏 ∈ (0, 𝑑−1

𝑑+1 ]. Let 𝐶1 = | 𝑓 ′𝜆,𝑑 (1) | = 𝑑 1−𝑏
1+𝑏 and let 𝐶2 = | 𝑓 ′𝜆,𝑑 (−1) | = 𝑑 1+𝑏

1−𝑏 . Note that 𝐶1 and
𝐶2 are both greater than 1 and that for any 𝑧 ∈ S the inequality 𝐶1 ≤ | 𝑓 ′𝜆,𝑑 (𝑧) | ≤ 𝐶2 holds (cf. item (i)
of Lemma 10). This means that for any circular arc J and integer n we get

𝐶𝑛1 · ℓ(𝐽) ≤ ℓ( 𝑓 𝑛𝜆,𝑑 (𝐽)) ≤ 𝐶𝑛2 · ℓ(𝐽). (15)

From this, we deduce that 𝑓 𝑁𝜆,𝑑 (𝐼) = S, where 𝑁 =
⌈ log(2𝜋/ℓ (𝐼 ))

log(𝐶1)

⌉
.
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Next, in case 𝑏 ∈ ( 𝑑−1
𝑑+1 , 1), we recall the conformal metric 𝜇 from the proof of Lemma 15. Let us

denote the length of a circular arc J with respect to this metric by length(𝐽) and denote 𝑐 = length(S).
Since there exists a constant 𝜅 > 1 such that 𝑓𝑑,𝜆 is uniformly expanding on S with a factor 𝜅 with
respect to this metric, it follows that 𝑓 𝑁𝜆,𝑑 (𝐼) = S, where 𝑁 =

⌈ log(𝑐/length(𝐼 ))
log(𝜅)

⌉
. Note that the right-hand

side of (15) is also valid for 𝑏 ∈ ( 𝑑−1
𝑑+1 , 1) (with 𝐶2 defined in the same way).

Let 𝑥0, . . . , 𝑥𝑚 be points such that the clockwise arcs between 𝑥𝑖−1 and 𝑥𝑖 form a partition of I with
𝑥0 = 𝑅1(𝜉1), 𝑥𝑚 = 𝑅1(𝜉2) and chosen so that 𝑥1, . . . , 𝑥𝑚−1 ∈ SQ and the length of an arc between two
subsequent points is less than 2𝜋/𝐶𝑁2 . In this way, we ensure that these arcs are not mapped onto the
whole circle by N applications of 𝑓𝜆,𝑑 and thus each arc is bijectively mapped to an arc on the unit circle
by 𝑓 𝑁𝜆,𝑑 .

We now describe an algorithm that, on input �̂� ∈ SQ and rational 𝜖 > 0, yields in 𝑝𝑜𝑙𝑦(size(�̂�, 𝜖))
a rooted tree 𝑇 in T𝑑+1 with O(log(𝜖−1)) vertices whose field has distance at most 𝜖 from �̂�; we will
account for the degree of the root later. We assume for convenience that 𝜖 � ℓ(𝐼).

The first step of the algorithm is to find 𝑖 ∈ {1, . . . , 𝑚} such that �̂� ∈ Arc [ 𝑓 𝑁𝜆,𝑑 (𝑥𝑖−1), 𝑓
𝑁
𝜆,𝑑 (𝑥𝑖)]. We

know that such an arc must exist because I is mapped surjectively onto S by 𝑓 𝑁𝜆,𝑑 and, since 𝑓 𝑁𝜆,𝑑 (𝑧) is
a rational function of z with fixed degree, we can find i in time 𝑝𝑜𝑙𝑦(size(�̂�)). Now we consider the
bijective map

𝑓 𝑁𝜆,𝑑 : Arc [𝑥𝑖−1, 𝑥𝑖] → Arc [ 𝑓 𝑁𝜆,𝑑 (𝑥𝑖−1), 𝑓
𝑁
𝜆,𝑑 (𝑥𝑖)] .

Analogously, with 𝑛 = �log3/2(ℓ(Arc [𝑥𝑖−1, 𝑥𝑖]) · 𝐶
𝑁
2 /𝜖)� applications of 𝑓 𝑁𝜆,𝑑 , we can determine

using binary search in time 𝑝𝑜𝑙𝑦(size(�̂�, 𝜖)) an arc 𝐽 ⊆ Arc [𝑥𝑖−1, 𝑥𝑖] with endpoints in SQ such that
�̂� ∈ 𝑓 𝑁𝜆,𝑑 (𝐽) and whose length satisfies

3−𝑛 · ℓ(Arc [𝑥𝑖−1, 𝑥𝑖]) ≤ ℓ(𝐽) ≤ (2/3)𝑛 · ℓ(Arc [𝑥𝑖−1, 𝑥𝑖]) ≤ 𝜖/𝐶𝑁2 .

Note that the length of J is bounded below by 𝐶3 · 𝜖
5, where 𝐶3 is a constant independent of �̂� or 𝜖 . It

follows from (15) that ℓ( 𝑓 𝑁𝜆,𝑑 (𝐽)) ≤ 𝜖 , which means that the arc J is mapped by 𝑓 𝑁𝜆,𝑑 to an arc of length
at most 𝜖 that includes �̂�. We will next show how to construct in 𝑝𝑜𝑙𝑦(size(�̂�, 𝜖)) a rooted tree T in T𝑑+1
with 𝑠 = O(log(𝜖−1)) vertices that implements a field 𝑤 ∈ 𝐽. Then, using Lemma 4,8 we obtain a rooted
tree 𝑇 with (𝑑𝑁 − 1)/(𝑑 − 1) + 𝑑𝑁 𝑠 vertices that implements the field 𝜆′ = 𝑓 𝑁𝜆,𝑑 (𝑤) with |𝜆′ − �̂� | ≤ 𝜖 .

To construct T, we first fix some constants. Let 𝐶4 = | 𝑓 ′1 (𝑅1 (𝜉1)) | and 𝐶5 = | 𝑓 ′1 (𝑅1 (𝜉2)) | and
note that 𝐶4, 𝐶5 ∈ ( 1

2 , 1). We also have 𝐶4 ≤ | 𝑓 ′1 (𝑧) | ≤ 𝐶5 for all 𝑧 ∈ 𝐼. It follows that 𝑓𝜉2 ,1(𝐼) =
Arc [ 𝑓𝜉2 ,1 (𝑅1 (𝜉1)), 𝑅1(𝜉2)] is contained in I and its length is strictly bigger than ℓ(𝐼)/2. Furthermore, it
follows that 𝑓 −1

𝜉1 ,1(Arc [𝑅1 (𝜉1), 𝑓𝜉2 ,1 (𝑅1(𝜉1))]) = Arc [𝑅1 (𝜉1), 𝑓
−1
𝜉1

( 𝑓𝜉2 (𝑅1(𝜉1)))] is strictly contained
inside I. Let 𝐽0 = 𝐽, and for 𝑘 ≥ 0, as long as 𝑓𝜉2 ,1 (𝑅1 (𝜉1)) ∉ 𝐽𝑘 , define

𝐽𝑘+1 =

{
𝑓 −1
𝜉1 ,1 (𝐽𝑘 ) if 𝐽𝑘 ⊂ Arc [𝑅1 (𝜉1), 𝑓𝜉2 ,1 (𝑅1 (𝜉1))]

𝑓 −1
𝜉2 ,1 (𝐽𝑘 ) if 𝐽𝑘 ⊂ Arc [ 𝑓𝜉2 ,1 (𝑅1(𝜉1))), 𝑅1 (𝜉2)] .

We have that 𝐽𝑘 ⊆ 𝐼 for every k and ℓ(𝐽𝑘 ) ≥ 𝐶−𝑘
5 · ℓ(𝐽0) ≥ 𝐶3 · 𝐶

−𝑘
5 · 𝜖5. Because 𝐶5 < 1, we deduce

that there is 𝑁1 ≥ 0 such that 𝑓𝜉2 ,1 (𝑅1(𝜉1)) ∈ 𝐽𝑁1 where 𝑁1 is bounded above by⌈
log(𝐶3 ·𝜖

5/ℓ (𝐼 ))
log(𝐶5)

⌉
= O(log(𝜖−1)).

8Lemma 4 describes how to construct a tree of size 𝑠 · 𝑑 + 1 with field 𝑓𝜆,𝑑 (𝑧) from a tree of size s and field z. Repeating this
construction N times yields the construction of �̂� from T.
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Let 𝑖1, . . . , 𝑖𝑁1 be the sequence of indices such that 𝑓𝜉𝑖𝑘 (𝐽𝑘 ) = 𝐽𝑘−1 and note that these can be computed
in 𝑝𝑜𝑙𝑦(size(�̂�, 𝜖)) time. Let 𝐾 = 𝑓 −1

𝜉2 ,1 (𝐽𝑁1). We see that 𝑅1 (𝜉1) ∈ 𝐾 and(
𝑓𝜉𝑖1 ,1 ◦ · · · ◦ 𝑓𝜉𝑖𝑁1

,1 ◦ 𝑓𝜉2 ,1
)
(𝐾) = 𝐽.

Furthermore, because the maps 𝑓 −1
𝜉𝑖 ,1 are expanding on I, we find ℓ(𝐾) ≥ ℓ(𝐽) ≥ 𝐶3 · 𝜖5. This means

that there is an arc of length at least 1
2 · 𝐶3 · 𝜖5 extending from 𝑅1(𝜉1), going either clockwise or

counterclockwise, contained in K. In the case that such a clockwise arc exists – that is, Arc[𝑅1 (𝜉1) ·

𝑒−𝑖
1
2𝐶3 𝜖

5
, 𝑅1 (𝜉1)] ⊆ 𝐾 – we see that, because 𝑅1 is an attracting fixed point of 𝑓𝜉1 , there is some 𝑁2,

specified below, such that 𝑓 𝑁2
𝜉1 ,1 (𝜉1) ∈ 𝐾 . Using that for integers n we have

ℓ(Arc [ 𝑓 𝑛𝜉1 ,1 (𝜉1), 𝑅1(𝜉1)]) = ℓ( 𝑓
𝑛
𝜉1 ,1 (Arc [𝜉1, 𝑅1(𝜉1)])) ≤ 𝐶𝑛4 · ℓ(Arc [𝜉1, 𝑅1(𝜉1)]) < 𝐶𝑛4 · 2𝜋,

we see that it suffices to take 𝑁2 =
⌈ log(𝐶3 ·𝜖

5/(4𝜋))
log(𝐶4)

⌉
= O(log(𝜖−1)). In the case that such a clockwise

arc does not exist, we find that a counterclockwise arc of length 1
2 · 𝐶3 · 𝜖

5 is contained in K. Note that
there is some integer 𝑁𝑐 independent of �̂� and 𝜖 such that 𝑓 𝑁𝑐

𝜉2 ,1 (𝜉1) ∈ 𝐼. The same analysis as above
shows that then ( 𝑓 𝑁2

𝜉1 ,1 ◦ 𝑓
𝑁𝑐

𝜉2 ,1) (𝜉1) ∈ 𝐾 . We let 𝑁3 be equal to zero if a clockwise arc of sufficient length
is contained in K and, otherwise, we let 𝑁3 = 𝑁𝑐 . We conclude that(

𝑓 𝑁𝜆,𝑑 ◦ 𝑓𝜉𝑖1 ,1 ◦ · · · ◦ 𝑓𝜉𝑖𝑁1
,1 ◦ 𝑓𝜉2 ,1 ◦ 𝑓 𝑁2

𝜉1 ,1 ◦ 𝑓 𝑁3
𝜉2 ,1
)
(𝜉1) (16)

has a distance at most 𝜖 from �̂�. By repeatedly applying the constructions laid out in Lemma 4 (cf.
Footnote 8), we conclude that we can construct a tree T in T𝑑+1 whose field is given by the value in (16)
and with O(log(𝜖−1)) vertices.

This finishes the description of the algorithm, modulo that the root of the tree we constructed has
degree d. To obtain a rooted tree with root degree 1, we run the algorithm described on input 𝑓 −1

𝜆,1 (�̂�)

and 𝜖 · 𝑑−1
𝑑+1 to obtain a rooted tree with root degree d and field 𝜁 with | 𝑓 −1

𝜆,1 (�̂�) − 𝜁 | < 𝜖 · 𝑑−1
𝑑+1 . Attaching

one new vertex by an edge to this root yields a rooted tree with root degree 1 and field 𝑓𝜆,1 (𝜁) which
satisfies, using Item i of Lemma 10, that

|�̂� − 𝑓𝜆,1 (𝜁) | ≤ | 𝑓 −1
𝜆,1 (�̂�) − 𝜁 | · max

𝑧∈𝑆
| 𝑓 ′𝜆,1 (𝑧) | < 𝜖 ·

𝑑 − 1
𝑑 + 1

·
𝑑 + 1
𝑑 − 1

= 𝜖,

as wanted. This finishes the proof of Lemma 32. �

8. Reduction

In this section, we prove our inapproximability results. Throughout this section, we use GΔ to denote the
set of all graphs with maximum degree at most Δ . We start in Subsection 8.1 with some preliminaries
that will be used in our proofs. Subsection 8.2 gives the main reduction, and we show how to use this
in Subsection 8.3 to conclude the proof of Theorem 1.

8.1. Preliminaries

We will use the following lemma from [42].
Lemma 33 ([42]). LetΔ ≥ 3 be an integer and let𝜆 ∈ SQ with𝜆 ≠ −1. Then, there exists 𝜂 = 𝜂(Δ , 𝜆) > 1
such that, for all 𝑏 ∈ (1/𝜂, 𝜂), for all graphs 𝐺 ∈ GΔ , it holds that 𝑍𝐺 (𝜆, 𝑏) ≠ 0.

For a graph G and vertices 𝑢, 𝑣 in G, let 𝑍𝐺,±𝑢,±𝑣 (𝜆, 𝑏) denote the contribution to the partition function
when 𝑢, 𝑣 are assigned the spins ±, respectively. For a configuration 𝜎 on G, we use 𝑤𝐺,𝜎 (𝜆, 𝑏) to
denote the weight 𝜆 |𝑛+ (𝜎) |𝑏𝛿 (𝜎) of 𝜎. We will use the following observation.
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Lemma 34. Let 𝜆 ∈ S and 𝑏 ∈ R. Then, for an arbitrary graph 𝐺 = (𝑉𝐺 , 𝐸𝐺) and vertices 𝑢, 𝑣 of G, it
holds that

𝑍𝐺,+𝑢,+𝑣 (𝜆, 𝑏) = 𝜆
|𝑉 (𝐺) | 𝑍𝐺,-𝑢,-𝑣 (𝜆, 𝑏), 𝑍𝐺,+𝑢,-𝑣 (𝜆, 𝑏) = 𝜆

|𝑉 (𝐺) | 𝑍𝐺,-𝑢,+𝑣 (𝜆, 𝑏).

Proof. For an assignment 𝜎 : 𝑉𝐺 → {+, -}, let �̄� : 𝑉𝐺 → {+, -} be the assignment obtained by
interchanging the assignment of +’s with -’s. Then

𝑤𝐺,�̄� (𝜆, 𝑏) = 𝜆
|𝑛+ ( �̄�) |𝑏𝛿 ( �̄�) = 𝜆 |𝑉𝐺 |− |𝑛+ (𝜎) |𝑏𝛿 (𝜎) = 𝜆 |𝑉 (𝐺) |𝑤𝐺,𝜎 (𝜆, 𝑏).

The result follows by summing over the relevant 𝜎 for each of 𝑍𝐺,+𝑢,+𝑣 (𝜆, 𝑏) and 𝑍𝐺,+𝑢,-𝑣 (𝜆, 𝑏). �

The following lemma will be useful in general for handling rational points on the circle. Ideally, we
would like to describe a number on S by a rational angle, but this may not correspond to a rational
Cartesian point, which would complicate computations. However, rational points are dense on the circle,
and we can compute one arbitrarily close to a given angle, as follows.

Lemma 35. Given a rational angle 𝜃 ∈ [0, 2𝜋) and 𝜖 ∈ (0, 1), there exists a number 𝜃 such that
|𝜃 − 𝜃 | < 𝜖 and cos 𝜃, sin 𝜃 ∈ Q are rational numbers of size at most 𝑝𝑜𝑙𝑦(size(𝜃, 𝜖)). Furthermore, we
can compute cos 𝜃 and sin 𝜃 in time 𝑝𝑜𝑙𝑦(size(𝜃, 𝜖)).

Proof. By symmetry, we may assume that 𝜃 ∈ [0, 𝜋/4]. Given 𝜃, take a rational approximation r of
tan(𝜃/2) such that | tan(𝜃/2) − 𝑟 | < 𝜖/2. We claim that 𝜃 = 2 arctan(𝑟) has the desired properties.

Write 𝑠, 𝑐, 𝑡 respectively for sin 𝜃, cos 𝜃, tan 𝜃. Using the tan double angle formula, we have 𝑠/𝑐 = 𝑡 =
2𝑟/(1− 𝑟2). We also know that 𝑠2 + 𝑐2 = 1. Solving these simultaneously gives that 𝑠 = 2𝑟/(1 + 𝑟2) and
𝑐 = (1 − 𝑟2)/(1 + 𝑟2), which are both rational since r is rational.

Also, writing 𝑓 (𝑥) = 2 arctan(𝑥) for 𝑥 ∈ [0, 1], note that 𝑓 ′(𝑥) = 2/(1 + 𝑥2) ∈ [1, 2] for 𝑥 ∈ [0, 1].
Hence, | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 2|𝑥 − 𝑦 | for 𝑥, 𝑦 ∈ [0, 1] and so |𝜃 − 𝜃 ′ | < 𝜖 .

Finally, we can compute r in 𝑝𝑜𝑙𝑦(size(𝜃, 𝜖)) using a series expansion of tan from which we can
compute s and c from the formulas above. �

Finally, we will use the following well-known lemma for continued-fraction approximation.

Lemma 36 ([43, Corollary 6.3a]). There is a poly-time algorithm which, on input a rational number
𝛼 and integer 𝐾 ≥ 1, decides whether there exists a rational number 𝑝/𝑞 with 1 ≤ 𝑞 ≤ 𝐾 and
|𝛼 − (𝑝/𝑞) | < 1/2𝐾2 and, if so, finds this (unique) rational number.

8.2. The reduction

To prove Theorem 1, we will show how to use a poly-time algorithm for #IsingNorm(𝜆, 𝑏,Δ , 𝐾)
and #IsingArg(𝜆, 𝑏,Δ , 𝜌) to compute exactly 𝑍𝐺 (𝜆, �̂�) on graphs G of maximum degree 3 for some
appropriate value of �̂� that we next specify.

Let 𝜂 = 𝜂(3, 𝜆) > 1 be as in Lemma 33, so that

𝑍𝐺 (𝜆, 𝑏
′) ≠ 0 for all 𝑏′ ∈ (1/𝜂, 𝜂) and 𝐺 ∈ G3. (17)

For 𝑘 = 2, 3, . . . , let 𝑃𝑘 be the path with k vertices whose endpoints are labelled 𝑢𝑘 , 𝑣𝑘 and all vertex
activities are equal to 1. Then, it is not hard to see that[

𝑍𝑃𝑘 ,+𝑢𝑘 ,+𝑣𝑘 (1, 𝑏) 𝑍𝑃𝑘 ,+𝑢𝑘 ,-𝑣𝑘 (1, 𝑏)
𝑍𝑃𝑘 ,-𝑢𝑘 ,+𝑣𝑘 (1, 𝑏) 𝑍𝑃𝑘 ,-𝑢𝑘 ,-𝑣𝑘 (1, 𝑏)

]
=

[
1 𝑏
𝑏 1

] 𝑘−1
. (18)
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Clearly, for all k it holds that

𝑍𝑃𝑘 ,+𝑢𝑘 ,+𝑣𝑘 (1, 𝑏) = 𝑍𝑃𝑘 ,-𝑢𝑘 ,-𝑣𝑘 (1, 𝑏) and
𝑍𝑃𝑘 ,+𝑢𝑘 ,-𝑣𝑘 (1, 𝑏)
𝑍𝑃𝑘 ,-𝑢𝑘 ,-𝑣𝑘 (1, 𝑏)

=
𝑍𝑃𝑘 ,-𝑢𝑘 ,+𝑣𝑘 (1, 𝑏)
𝑍𝑃𝑘 ,-𝑢𝑘 ,-𝑣𝑘 (1, 𝑏)

=: 𝑏𝑘 . (19)

Moreover, using (18), we have that there exists k such that

1/𝜂 < �̂� = 𝑏𝑘 < 𝜂. (20)

By the choice of k and (17), we conclude that

𝑍𝐺 (𝜆, �̂�) ≠ 0 for all 𝐺 ∈ G3. (21)

The main step in the reduction is captured by the following lemma.

Lemma 37. Let Δ ≥ 3 be an integer, 𝑏 ∈ (0, 1) be a rational and let 𝜆 ∈ CQ(Δ − 1, 𝑏) Let 𝐾 =
1.001 and 𝜌 = 𝜋/40. Assume that a poly-time algorithm exists for either #IsingNorm(𝜆, 𝑏,Δ , 𝐾) or
#IsingArg(𝜆, 𝑏,Δ , 𝜌). Then, there exists a poly-time algorithm that on input a graph 𝐺 ∈ G3 and an
edge 𝑒 = {𝑢, 𝑣} of G outputs the value of the ratio

𝑅𝐺,𝑒 =
�̂�2𝑧++ + �̂�(𝑧+- + 𝑧-+) + 𝑧--

�̂�2𝑧-- + �̂�(𝑧+- + 𝑧-+) + 𝑧++
, where 𝑧±± := 𝑍𝐺\𝑒,±𝑢,±𝑣 (𝜆, �̂�).

The algorithm also outputs the value of the ratio 𝑅′
𝐺,𝑒 = 𝑧--/𝑧++, provided that 𝑧++ ≠ 0.

Remark 38. As will be shown in the proof of Lemma 37, the ratio 𝑅𝐺,𝑒 is well-defined for all graphs
𝐺 ∈ G3 and edges e in G using the zero-free region in Lemma 33 and the choice of �̂�. It is harder to show
that 𝑅′

𝐺,𝑒 is well-defined (we cannot use Lemma 33 directly) and hence the need for the assumption that
𝑧++ ≠ 0 in Lemma 37.

Proof. Suppose that 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. Let

𝑟 = �̂�2𝑧++ + �̂�(𝑧+- + 𝑧-+) + 𝑧--, 𝑟 ′ = (�̂�2 − 1)2𝑧--,

𝑡 = �̂�2𝑧-- + �̂�(𝑧+- + 𝑧-+) + 𝑧++, 𝑡 ′ = (�̂�2 − 1)2𝑧++.
(22)

We first show that 𝑟, 𝑡 ≠ 0. Consider the graph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) obtained from G by subdividing edge e;
that is, we remove edge 𝑒 = {𝑢, 𝑣} and then add a new vertex s which is connected to both 𝑢, 𝑣. Note
that H is obtained from 𝐺\𝑒 by adding the edges {𝑠, 𝑢}, {𝑠, 𝑣}, so it is not hard to see that

𝑍𝐻 (𝜆, �̂�) = 𝜆𝑡 + 𝑟.

Note that H is a graph of maximum degree Δ and we have 𝑍𝐻 (𝜆, �̂�) ≠ 0 from (21). Moreover, from
Lemma 34, we have 𝑟 = 𝜆𝑛𝑡. Combining these, we obtain that 𝑟, 𝑡 ≠ 0. From assumption, we also have
that 𝑡 ′ ≠ 0.

We will show how to compute the ratios 𝑅goal = − 𝑟𝑡 and 𝑅′
goal = − 𝑟

′

𝑡′ (note that these are well-defined
since 𝑡, 𝑡 ′ ≠ 0). By Lemma 34, we have that 𝑟 = 𝜆𝑛𝑡 and 𝑟 ′ = 𝜆𝑛𝑡 ′, so 𝑅goal, 𝑅

′
goal ∈ SQ. In fact, letting

𝑝, 𝑝′, 𝑝′′, 𝑞 be integers such that �̂� = 𝑝/𝑞 and 𝜆 = (𝑝′ + i𝑝′′)/𝑞, we have that 𝑅goal, 𝑅
′
goal ∈ R ∩ SQ,

where

R =
{ 𝑃 + i𝑄
𝑃′ + i𝑄 ′

| 𝑃,𝑄, 𝑃′, 𝑄 ′ ∈ {−𝑀, . . . , 0, . . . , 𝑀}
}

and 𝑀 := 2𝑛 |𝑝 |𝑚 (|𝑝′ | + |𝑝′′ |)𝑛𝑞𝑚+𝑛.
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Let 𝜖 = 1/(10𝑀)16. Note that for any two distinct numbers 𝑧, 𝑧′ ∈ R it holds that |𝑧 − 𝑧′| ≥ 10𝜖 , so if
we manage to produce �̂�, �̂�′ ∈ SQ with 𝑝𝑜𝑙𝑦(𝑛) size so that |𝑅goal − �̂� | ≤ 𝜖 and |𝑅′

goal − �̂�′ | ≤ 𝜖 , we
can in fact compute 𝑅goal and 𝑅′

goal in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜖)) = 𝑝𝑜𝑙𝑦(𝑛).9
We first focus on how to compute �̂� ∈ SQ so that |𝑅goal − �̂� | ≤ 𝜖 . At this point, it will be helpful

to represent complex numbers on the unit circle S with their arguments. Let 𝜃goal = Arg(𝑅goal) and
𝑔(𝜃) := 𝑡ei𝜃 + 𝑟 . Note that

|𝑔(𝜃) | = |𝑔(𝜃) − 𝑔(𝜃goal) | = |𝑡 | |ei𝜃 − ei𝜃goal | = 2|𝑡 |
		 sin((𝜃 − 𝜃goal)/2)

		,
Arg(𝑔(𝜃)) = (𝜃 − 𝜃goal)/2 + Arg(𝑡)mod 2𝜋,

(23)

the latter provided 𝜃 ≠ 𝜃goal.
We will compute in 𝑝𝑜𝑙𝑦(𝑛) time a rational 𝜃 such that |𝜃 − 𝜃goal | ≤ 𝜖/2, yielding the desired �̂� (via

Lemma 35).
Let 𝜏 = 1/500 and 𝜅 = 𝜖/103. We will show that a poly-time algorithm for #IsingNorm(𝜆, 𝑏,Δ , 𝐾)

can be used to compute, for every rational 𝜃, a positive number �̂�𝜃 in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)) such that,
whenever |𝜃 − 𝑎 | ≥ 𝜅 for every 𝑎 ∈ arg(𝑅goal), it holds that

(1 − 𝜏) |𝑔(𝜃) | ≤ �̂�𝜃 ≤ (1 + 𝜏) |𝑔(𝜃) |. (24)

When |𝜃 − 𝑎 | ≤ 𝜅 for some 𝑎 ∈ arg(𝑅goal), there is no guarantee on the value of �̂�𝜃 . Similarly, we will
show that a poly-time algorithm for #IsingArg(𝜆, 𝑏,Δ , 𝜌) can be used to compute, for every rational 𝜃,
a positive number �̂�𝜃 in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)) such that, whenever |𝜃 − 𝑎 | ≥ 𝜅 for every 𝑎 ∈ arg(𝑅goal),
it holds that

|Arg(𝑔(𝜃)) − �̂�𝜃 | ≤ 2𝜌 = 𝜋/20. (25)

Using these, we compute the desired 𝜃 via binary search following techniques similar to those in
[18, 20, 6], though in our case the details are a bit different because we have to work on the unit circle.
For the norm, we will utilise that |𝑔(𝜃) | is increasing in the interval [𝜃goal, 𝜃goal + 𝜋] and decreasing in
the interval [𝜃goal − 𝜋, 𝜃goal], whereas for the argument we will utilise that Arg(𝑔(𝜃)) changes abruptly
around 𝜃goal (roughly by 𝜋). In particular, we proceed as follows.

Algorithm for #IsingNorm(𝜆, 𝑏,Δ , 𝐾) (Step 1): We first find an interval of length < 2𝜋/3 with rational
endpoints containing 𝜃goal in 𝑝𝑜𝑙𝑦(𝑛) time. For 𝑗 = 0, . . . , 18, let 𝜃 𝑗 = 𝑗/3, 𝑔 𝑗 = |𝑔(𝜃 𝑗 ) | and �̂� 𝑗 = �̂�𝜃 𝑗 ;
note that the �̂� 𝑗s can be computed in 𝑝𝑜𝑙𝑦(𝑛) time. For convenience, extend these definitions by setting
𝜃19ℎ+ 𝑗 = 𝜃 𝑗 + 2ℎ𝜋, 𝑔19ℎ+ 𝑗 = 𝑔 𝑗 and �̂�19ℎ+ 𝑗 = �̂� 𝑗 for every integer h and 𝑗 = 0, . . . , 18. Note that for all j
we have that 1/3 ≥ |𝜃 𝑗+1 − 𝜃 𝑗 | ≥ 1/4 > 𝜋/15.

Consider an index 𝑗 ∈ {0, . . . , 18} such that arg(𝑅goal) does not intersect with the intervals [𝜃 𝑗 −
𝜅, 𝜃 𝑗+1 + 𝜅] and [𝜃 𝑗 − 𝜋, 𝜃 𝑗+1 − 𝜋]. Then, we have that

(1 − 𝜏)𝑔 𝑗 ≤ �̂� 𝑗 ≤ (1 + 𝜏)𝑔 𝑗 , (1 − 𝜏)𝑔 𝑗+1 ≤ �̂� 𝑗+1 ≤ (1 + 𝜏)𝑔 𝑗+1. (26)

We claim that 𝑔 𝑗+1 − 𝑔 𝑗 has the same sign as �̂� 𝑗+1 − �̂� 𝑗 . To see this, assume w.l.o.g. 𝑔 𝑗+1 − 𝑔 𝑗 > 0 that
the other possibility follows in a similar way. Observe that we must have 𝜃 𝑗 , 𝜃 𝑗+1 ∈ (𝜃goal, 𝜃goal + 𝜋), as

9We briefly give the details for 𝑅goal; the details for 𝑅′
goal are similar. For 𝑟 ∈ N let Q𝑟 , denote the set of rationals with

denominator between 1 and r. Since 𝑅goal ∈ R ∩ SQ and �̂� ∈ SQ, we have that there exist 𝛼, 𝛽 ∈ Q2𝑀2 and �̂�, 𝛽 ∈ Q such
that 𝑅goal = 𝛼 + i𝛽 and �̂� = �̂� + i𝛽. From |𝑅goal − �̂� | ≤ 𝜖 , we have |𝛼 − �̂� |, |𝛽 − 𝛽 | ≤ 𝜖 . By Lemma 36 (applied to �̂�, 𝛽
and 𝐾 = 2𝑀2), in poly(n) time, we can compute rationals 𝛼′, 𝛽′ ∈ Q2𝑀2 such that | �̂� − 𝛼′ |, |𝛽 − 𝛽′ | ≤ 1/(8𝑀4) and hence
|𝛼 − 𝛼′ |, |𝛽 − 𝛽′ | ≤ 𝜖 + 1/(8𝑀4) ≤ 1/(4𝑀4) . Now, for distinct 𝛾, 𝛿 ∈ Q2𝑀2 , we have that |𝛾 − 𝛿 | ≥ 1/(2𝑀2) , so it must
be that 𝛼 = 𝛼′ and 𝛽 = 𝛽′, completing the computation of 𝑅goal.
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𝜃 ↦→ sin(𝜃/2 − 𝜃goal/2) is increasing on (𝜃goal, 𝜃goal + 𝜋), and so

𝑔 𝑗+1 − 𝑔 𝑗 = |𝑔(𝜃 𝑗+1) | − |𝑔(𝜃 𝑗 ) | ≥ 2|𝑡 | min
𝜙∈[0, 𝜋/2−𝜋/30) ]

[sin(𝜙 + 𝜋/30) − sin 𝜙]

≥ 2|𝑡 |
[

sin(𝜋/2) − sin(𝜋/2 − 𝜋/30)
]
≥ |𝑡 |/100.

(27)

On the other hand, if �̂� 𝑗+1 − �̂� 𝑗 < 0, from (26) we have (1 − 𝜏)𝑔 𝑗+1 − (1 + 𝜏)𝑔 𝑗 < 0. This gives
𝑔 𝑗+1 − 𝑔 𝑗 ≤ 𝜏(𝑔 𝑗+1 + 𝑔 𝑗 ) ≤ 2𝜏 |𝑡 |, a contradiction to the above.

Let 𝑗∗ be such that 𝜃goal ∈ [𝜃 𝑗∗ , 𝜃 𝑗∗+1). From (23), the sequence 𝑔 𝑗 is decreasing until 𝑗∗ and
increasing after 𝑗∗ + 1. From the claim above, the sequence �̂� 𝑗 must therefore be decreasing for indices
j in [ 𝑗∗ − 8, 𝑗∗ − 1] and increasing for indices [ 𝑗∗ + 2, 𝑗∗ + 9]. Therefore, from the values of �̂� 𝑗s we can
find 𝑗 so that 𝜃goal ∈ [𝜃 𝑗−3, 𝜃 𝑗+3]. By enlarging slightly the interval [𝜃 𝑗−3, 𝜃 𝑗+3], we obtain the desired
interval of length < 2𝜋/3 with rational endpoints.

Algorithm for #IsingNorm(𝜆, 𝑏,Δ , 𝐾) (Step 2): Given an interval [𝜃1, 𝜃2] with rational endpoints
containing 𝜃goal with |𝜃1 − 𝜃2 | = ℓ and ℓ ∈ (100𝜅, 2𝜋/3), we show how to find in 𝑝𝑜𝑙𝑦(𝑛, size(𝜃1, 𝜃2))
time an interval with rational endpoints that is a factor of 1/2 smaller in length and also contains 𝜃goal.
The analysis will be similar to step 1.

For 𝑗 = 0, . . . , 19 define 𝜙 𝑗 = 𝜃1 + (𝜃2 − 𝜃1) 𝑗/19 and let 𝑔 𝑗 = |𝑔(𝜙 𝑗 ) | and �̂� 𝑗 = �̂�𝜙 𝑗 . Since
𝜃goal ∈ [𝜃1, 𝜃2] and |𝜃1 − 𝜃2 | = ℓ, for any 𝜃 ∈ [𝜃1, 𝜃2] we have |𝑔(𝜃) | ≤ 2|𝑡 | sin(ℓ/2) ≤ ℓ |𝑡 |. In
particular, we have 𝑔 𝑗 ≤ ℓ |𝑡 | for all j.

Moreover, for an index j such that 𝜃goal ∉ [𝜙 𝑗 , 𝜙 𝑗+1], we claim that 𝑔 𝑗+1 − 𝑔 𝑗 has the same sign
as �̂� 𝑗+1 − �̂� 𝑗 . To prove the claim, assume 𝑔 𝑗+1 − 𝑔 𝑗 ≥ 0, so 𝜙 𝑗+1, 𝜙 𝑗 ≥ 𝜃goal; the other possibility
follows in a similar way. The derivative of |𝑔(𝜃) | in the interval [𝜃goal, 𝜃goal + ℓ] is bounded below by
|𝑡 | cos(ℓ/2) ≥ |𝑡 |/2, so by the mean value theorem we have that

𝑔 𝑗+1 − 𝑔 𝑗 ≥
|𝑡 |

2
(𝜙 𝑗+1 − 𝜙 𝑗 ) ≥ |𝑡 |ℓ/50.

On the other hand, if �̂� 𝑗+1 − �̂� 𝑗 < 0, then, as before, we have (1− 𝜏)𝑔 𝑗+1 − (1 + 𝜏)𝑔 𝑗 < 0, which implies
𝑔 𝑗+1 − 𝑔 𝑗 ≤ 𝜏(𝑔 𝑗+1 + 𝑔 𝑗 ) ≤ 2𝜏ℓ |𝑡 |, a contradiction to the above. This proves the claim.

Using the claim, we can conclude just as we did in step 1 and find an index 𝑗 so that 𝜃goal ∈

[𝜙 𝑗−3, 𝜙 𝑗+3], giving the desired interval.

Algorithm for #IsingArg(𝜆, 𝑏,Δ , 𝜌): Given a rational endpoint 𝜃1 and a rational length ℓ ∈ (100𝜅, 63
10 ]

such that 𝜃goal lies in the interval [𝜃1, 𝜃2] for some 𝜃2 ≤ 𝜃1+ℓ, we show how to find in 𝑝𝑜𝑙𝑦(𝑛, size(𝜃1, ℓ))
time a rational endpoint 𝜃 ′1 and a rational length ℓ′ such that ℓ′ ≤ ℓ/4 and 𝜃goal ∈ [𝜃 ′1, 𝜃

′
2] for some

𝜃 ′2 ≤ 𝜃 ′1 + ℓ
′.

For 𝑗 = 0, . . . , 25, define 𝜙 𝑗 = 𝜃1 + ℓ 𝑗/26 and let 𝑎 𝑗 = Arg(𝑔(𝜙 𝑗 )), �̂� 𝑗 = �̂�𝜙 𝑗 . For convenience,
extend these definitions by setting 𝜙26ℎ+ 𝑗 = 𝜙 𝑗 , 𝑎26ℎ+ 𝑗 = 𝑎 𝑗 and �̂�26ℎ+ 𝑗 = �̂� 𝑗 for every integer h and
𝑗 = 0, . . . , 25. For indices 𝑗 , 𝑗 ′, let

𝐷 𝑗 , 𝑗′ = min{|𝑎 𝑗′ − 𝑎 𝑗 |, 2𝜋 − |𝑎 𝑗′ − 𝑎 𝑗 |} and 𝐷 𝑗 , 𝑗′ = min{|�̂� 𝑗′ − �̂� 𝑗 |, 2𝜋 − |�̂� 𝑗′ − �̂� 𝑗 |}.

Consider an index j such that 𝜃goal ∉ [𝜙 𝑗−𝜅, 𝜙 𝑗+1+𝜅]. Then, we have that𝐷 𝑗 , 𝑗+1 = |𝜙 𝑗+1−𝜙 𝑗 |/2 ≤ 𝜋/10
and hence 𝐷 𝑗 , 𝑗+1 ≤ 𝜋/5. On the other hand, for an index j such that 𝜃goal ∈ [𝜙 𝑗 , 𝜙 𝑗+1], we have that
𝐷 𝑗−1, 𝑗+1 = 𝜋 − |𝜙 𝑗+1 − 𝜙 𝑗−1 |/2 ≥ 4𝜋/5 and, similarly, 𝐷 𝑗 , 𝑗+2 ≥ 4𝜋/5. Therefore, at least one of
𝐷 𝑗−1, 𝑗+1 ≥ 3𝜋/5, 𝐷 𝑗 , 𝑗+2 ≥ 3𝜋/5 must hold. Therefore, using the �̂� 𝑗s, we can find an index 𝑗 so that
𝜃goal ∈ [𝜙 𝑗−2, 𝜙 𝑗+2], giving the desired interval.

By repeating the above, we conclude that, using a poly-time algorithm for either the problem
#IsingNorm(𝜆, 𝑏,Δ , 𝐾) or #IsingArg(𝜆, 𝑏,Δ , 𝜌), we can compute in 𝑝𝑜𝑙𝑦(𝑛) time a rational 𝜃 such that
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|𝜃 − 𝜃 | ≤ 400𝜅 ≤ 𝜖/2, yielding the desired �̂� (via Lemma 35). We thus focus on proving that for a
rational 𝜃 we can obtain in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)) values �̂�𝜃 , �̂�𝜃 satisfying (24) and (25), respectively.

Let 𝜖2 = 𝜅𝜖/105, 𝜖1 := 𝜖2/
(
24𝑛 (2�̂�)2𝑚) , 𝜖0 = 𝜖1/(𝑘4𝑘 ). By Lemmas 32 and 35, for a rational number

𝜙, we can construct in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜙)) a rooted tree 𝑇𝜙 in TΔ with root 𝑥𝜙 that has degree 1 and
implements a field 𝜆𝜙 such that |𝜆𝜙 − ei𝜙 | ≤ 𝜖0. For convenience, let

𝑄±𝜙 := 𝑍𝑇𝜙 ,±𝑥𝜙 (𝜆, 𝑏) and note that
			𝑄+𝜙
𝑄-𝜙

− ei𝜙
			 ≤ 𝜖0. (28)

Let 𝑇𝜃 , 𝑇0 be the trees obtained for 𝜙 = 𝜃, 0 and note that that 𝑇𝜃 , 𝑇0 implement the vertex activities
ei𝜃 , 1, respectively (with precision 𝜖0).

Recall that 𝑃𝑘 is the path with k vertices and endpoints 𝑢𝑘 , 𝑣𝑘 , and we denote by 𝑉𝑃𝑘 the set of its
vertices. Let 𝑃𝑘,𝑇0 be the tree obtained from 𝑃𝑘 by attaching 𝑘 − 2 disjoint copies of the graph 𝑇0 to the
internal vertices of the path; that is, for 𝑖 = 1, . . . , 𝑘 − 2, identify the root 𝑥0 of the ith copy of 𝑇0 with
the ith internal vertex of the path. For convenience, let

𝐴±± := 𝑍𝑃𝑘,𝑇0 ,±𝑢𝑘 ,±𝑣𝑘
(𝜆, 𝑏). (29)

Recall that 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) denotes the graph obtained by subdividing edge e of G. Let 𝐻𝜃 ∈ GΔ be
the graph obtained from H by replacing every edge {𝑥, 𝑦} of H by a distinct copy of 𝑃𝑘,𝑇0 (identifying
x with 𝑢𝑘 and y with 𝑣𝑘 ) and attaching the tree 𝑇𝜃 on the vertex s of H (identifying s with the root 𝑥𝜃 ).
Effectively, the construction of 𝐻𝜃 is so that the Ising model on 𝐻𝜃 with edge activities equal to b and
vertex activities equal to 𝜆 corresponds to an Ising model on H with edge activities equal to �̂� and vertex
activities equal to 𝜆 apart from that of vertex s which is set to ei𝜃 . In this latter model, the contribution
to the partition function from configurations where s is set to + is given by t and the contribution to the
partition function from configurations where s is set to - is given by r, where 𝑡, 𝑟 are as in (22). Based
on this, we will soon show that

			 𝑍𝐻𝜃 (𝜆, 𝑏)

𝑄-𝜃 (𝐴++)
𝑚+1 − 𝑔(𝜃)

			 ≤ 𝜖2. (30)

From (30), we obtain the desired approximations �̂�𝜃 , �̂�𝜃 that satisfy (24), (25), respectively, as follows.
First, observe that |𝑔(𝜃) | ≥ |𝑡 |𝜅/2 ≥ 10𝜖2/𝜏 since |𝜃 − 𝑎 | ≥ 𝜅 for every 𝑎 ∈ arg(𝑅goal). Second, 𝑇𝜃 and
𝑃𝑘,𝑇0 are trees of size 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)), so we can compute𝑄-𝜃 and 𝐴++ in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)). Using
a poly-time algorithm for #IsingNorm(𝜆, 𝑏,Δ , 𝐾), we can compute �̂�𝜃 in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃)) which
is within a factor of 1± 𝜏 from |𝑍𝐻𝜃 (𝜆, 𝑏) |, thus yielding �̂�𝜃 = �̂�𝜃

|𝑄-𝜃 | |𝐴++ |
𝑚+1 that satisfies (24). Similarly,

using a poly-time algorithm for #IsingArg(𝜆, 𝑏,Δ , 𝜌), we can compute �̂�𝜃 in time 𝑝𝑜𝑙𝑦(𝑛, size(𝜃))
which is within distance 𝜌 from Arg(𝑍𝐻𝜃 (𝜆, 𝑏)). Noting that the argument 𝛼 of 𝑍𝐻𝜃 (𝜆,𝑏)

𝑄-𝜃 (𝐴++)
𝑚+1 − 𝑔(𝜃)

satisfies sin(𝛼) ≤ 𝜖2/𝑔(𝜃), from which it follows that 𝛼 ≤ 𝜌. Hence, �̂�𝜃 = �̂�𝜃 − Arg(𝑄-𝜃 ) − (𝑚 +

1)Arg(𝐴++) (mod 2𝜋) satisfies (25).
It remains to prove (30). We first claim that

			 𝐴±±
(𝑄-0)

𝑘−2 − 𝑍𝑃𝑘 ,±𝑢𝑘 ,±𝑣𝑘 (1, 𝑏)
			 ≤ 𝜖1

4
𝑍𝑃𝑘 ,±𝑢𝑘 ,±𝑣𝑘 (1, 𝑏). (31)

Indeed, for a fixed 𝜎 : 𝑉𝑃𝑘 → {+, -}, the aggregate contribution to 𝑍𝑃𝑘,𝑇0
(1, 𝑏) from configurations

on 𝑃𝑘,𝑇0 that agree with 𝜎 on 𝑉𝑃𝑘 is (𝑄+0)
𝑛+ (𝜎) (𝑄-0)

𝑛- (𝜎)𝑤𝑃𝑘 ,𝜎 (1, 𝑏) where 𝑛± (𝜎) is the number of
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internal vertices in 𝑃𝑘 that have spin ± under 𝜎, so (31) follows from aggregating over the relevant 𝜎 and
observing that10

		 (𝑄+0 ) 𝑗
(𝑄-0 )

𝑗 − 1
		 ≤ 𝑘𝜖0 for all 𝑗 = 0, . . . , 𝑘 . From (19) and (31), it follows that 𝐴±,± ≠ 0 and

			 𝐴-+
𝐴++

− �̂�
			 ≤ 𝜖1,

			 𝐴--
𝐴++

− 1
			 ≤ 𝜖1. (32)

Now, for 𝜎 : 𝑉𝐻 → {+, -} with 𝜎(𝑠) = +, let 𝑊+𝜎 be the aggregate weight of configurations on 𝐻𝜃 that
agree with 𝜎 on 𝑉 (𝐻). Define analogously 𝑊-𝜎 . Then, we have that

𝑊±𝜎 = 𝑄±𝜃 (𝐴++)
𝑚++ (𝜎) (𝐴+-)

𝑚+- (𝜎) (𝐴--)
𝑚-- (𝜎) ,

where 𝑚++ (𝜎), 𝑚+-(𝜎), 𝑚-- (𝜎) denote the number edges of 𝐸𝐻 whose endpoints are assigned
++, +-, --, respectively. Since the total number of edges in 𝐸𝐻 is 𝑚 + 1, we obtain				 𝑊+𝜎

𝑄-𝜃 (𝐴++)
𝑚+1 − ei𝜃 𝑤𝐻,𝜎 (𝜆, �̂�)

				 ≤ 𝜖2/10𝑛,
				 𝑊-𝜎
𝑄-𝜃 (𝐴++)

𝑚+1 − 𝑤𝐻,𝜎 (𝜆, �̂�)

				 ≤ 𝜖2/10𝑛. (33)

Observe also that the quantities 𝑡, 𝑟 , as defined in (22), are such that

𝑡 =
∑

𝜎:𝑉𝐻→{+,-};𝜎 (𝑠)=+

𝑤𝐻,𝜎 (𝜆, �̂�) and 𝑟 =
∑

𝜎:𝑉𝐻→{+,-};𝜎 (𝑠)=-

𝑤𝐻,𝜎 (𝜆, �̂�),

so summing (33) over all 𝜎 gives (30). This finishes the proof of (30) and hence completes the
computation of 𝑅goal in 𝑝𝑜𝑙𝑦(𝑛) time.

The computation of 𝑅′
goal is completely analogous, once we establish an analogue of (30). In particular,

let 𝐻 ′ be the graph obtained from H by removing vertex s and adding the vertices 𝑢′, 𝑣′, 𝑠′ and the edges
{𝑢, 𝑢′}, {𝑢′, 𝑠′}, {𝑠′, 𝑣′}, {𝑣′, 𝑣}; note that 𝐻 ′ is obtained from G by replacing the edge e by a path with
three vertices. We construct 𝐻 ′

𝜃 from 𝐻 ′ as above, with a minor twist: we replace every edge {𝑥, 𝑦}
of 𝐻 ′ with a distinct copy of 𝑃𝑘,𝑇0 (identifying x with 𝑢𝑘 and y with 𝑣𝑘 ), we attach the rooted tree 𝑇𝜃
on the vertex 𝑠′ of 𝐻 ′ (identifying 𝑠′ with the root 𝑥𝜃 ) and we attach two distinct copies of the rooted
tree 𝑇𝜋 on the vertices 𝑢′, 𝑣′ of 𝐻 ′ (identifying 𝑢′, 𝑣′ with the corresponding roots 𝑥𝜋 in the two copies
of 𝑇𝜋). Note the use of the tree 𝑇𝜋 in the construction of 𝐻 ′ which, analogous11 to (28), implements
the field ei𝜋 = −1 (with precision 𝜖0). Effectively, the construction of 𝐻 ′

𝜃 is so that the Ising model on
𝐻 ′
𝜃 with edge activities equal to b and vertex activities equal to 𝜆 corresponds to an Ising model on

𝐻 ′ with edge activities equal to �̂� and vertex activities equal to 𝜆 apart from those of 𝑢′, 𝑠′, 𝑣′ which
are set to −1, ei𝜃 ,−1, respectively. In this latter model, the contribution to the partition function from
configurations where 𝑠′ is set to + is given by 𝑡 ′ = (�̂�2 − 1)2𝑧++ and the contribution to the partition
function from configurations where 𝑠′ is set to - is given by 𝑟 ′ = (�̂�2 − 1)2𝑧--. Based on this, we obtain,
similar to the above, the following analogue of (30):			 𝑍𝐻 ′

𝜃
(𝜆, 𝑏)

𝑄-𝜃 (𝑄
-
𝜋)

2(𝐴++)𝑚+2 −
(
𝑡 ′ei𝜃 + 𝑟 ′

) 			 ≤ 𝜖2. (34)

Having (34) at hand, the computation of 𝑅′
goal can be carried out using exactly the same procedure as

for 𝑅goal. This finishes the proof of Lemma 37. �

10Here and in the follow-up estimates, we use that for complex numbers 𝑐1, . . . , 𝑐𝑖 and 𝑑1, . . . , 𝑑𝑖 it holds that
		∏𝑖

𝑗=1 𝑐 𝑗 −∏𝑖
𝑗=1 𝑑 𝑗

		 ≤ ∑𝑖
𝑗=1 |𝑐 𝑗 − 𝑑 𝑗 |

∏ 𝑗−1
𝑗′=1 |𝑐 𝑗 |

∏𝑖
𝑗′= 𝑗+1 |𝑑 𝑗 |.

11Even though 𝜋 is irrational, it holds that ei𝜋 = −1, and we can therefore construct 𝑇𝜋 satisfying (28) for 𝜙 = 𝜋 using
Lemma 32.
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8.3. Proof of our main theorem

We are now ready to finish the proof of Theorem 1, which we restate here for convenience.

Theorem 1. Let Δ ≥ 3 be an integer and let 𝐾 = 1.001 and 𝜌 = 𝜋/40.

(a) Let 𝑏 ∈
(
0, Δ−2

Δ

]
be a rational and 𝜆 ∈ SQ such that 𝜆 ≠ ±1. Then the problems

#IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) are #P-hard.
(b) Let 𝑏 ∈

(Δ−2
Δ , 1

)
be a rational. Then the collection of complex numbers 𝜆 ∈ SQ for which

#IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) are #P-hard is dense in the arc S \ 𝐼 (𝜃𝑏).

Proof of Theorem 1. Let 𝑏 ∈ (0, 1) be a rational number and let 𝜆 ∈ SQ(Δ − 1, 𝑏). By Theorem
6, it suffices to show that #IsingNorm(𝜆, 𝑏,Δ , 𝐾) and #IsingArg(𝜆, 𝑏,Δ , 𝜌) are #P-hard. To prove
the #P-hardness for these problems, we will show that, assuming a poly-time algorithm for either
#IsingNorm(𝜆, 𝑏,Δ , 𝐾) or #IsingArg(𝜆, 𝑏,Δ , 𝜌), on input of a graph 𝐺 ∈ G3 we can compute 𝑍𝐺 (𝜆, �̂�)
in poly-time, which is #P-hard by [28, Theorem 1.1]. In fact, it suffices to compute in poly-time, for
an arbitrary edge e of G, the ratio 𝑍𝐺 (𝜆,�̂�)

𝑍𝐺\𝑒 (𝜆,�̂�)
, since then we can compute 𝑍𝐺 (𝜆, �̂�) using a telescoping

product over the edges of the graph G.
So fix an arbitrary edge 𝑒 = {𝑢, 𝑣} of G and let 𝑧±± := 𝑍𝐺,±𝑢,±𝑣 (𝜆, �̂�). The ratio 𝑟∗ := 𝑍𝐺 (𝜆,�̂�)

𝑍𝐺\𝑒 (𝜆,�̂�)
is

well-defined since, by the choice of �̂�, we have 𝑍𝐺\𝑒 (𝜆, �̂�) ≠ 0 (cf. (20) and (21)). Moreover, we can
express 𝑟∗ using the 𝑧±±s as follows:

𝑟∗ =
𝑧++ + 𝑧-- + �̂�(𝑧+- + 𝑧-+)

𝑧++ + 𝑧-- + 𝑧+- + 𝑧-+
.

We will compute 𝑟∗ using Lemma 37. Namely, by Lemma 37, we can compute in poly-time the value
of the ratio

𝑟 = 𝑅𝐺,𝑒 =
𝐴2𝑧++ + 𝐴𝐵(𝑧+- + 𝑧-+) + 𝐵

2𝑧--
𝐴2𝑧-- + 𝐴𝐶 (𝑧+- + 𝑧-+) + 𝐶2𝑧++

, where
𝐴 := �̂�
𝐵 := 1
𝐶 := 1

. (35)

Let 𝐺 ′ be the graph obtained from 𝐺 \ 𝑒 by adding two new vertices 𝑢′, 𝑣′ and adding the edges
{𝑢, 𝑢′}, {𝑢′, 𝑣′}, {𝑣′, 𝑣}. We next apply Lemma 37 to the graph 𝐺 ′ with the edge 𝑒′ = {𝑢′, 𝑣′}. We first
express 𝑍𝐺′\𝑒′,±𝑢′,±𝑣′ (𝜆, �̂�) in terms of the 𝑧±±s. We have

𝑍𝐺′\𝑒′,+𝑢′,+𝑣′ (𝜆, �̂�) = 𝜆
2 (𝑧++ + �̂�(𝑧+- + 𝑧-+) + �̂�2𝑧--

)
,

𝑍𝐺′\𝑒′,+𝑢′,-𝑣′ (𝜆, �̂�) = 𝜆
(
�̂�𝑧++ + 𝑧+- + �̂�

2𝑧-+ + �̂�𝑧--
)
,

𝑍𝐺′\𝑒′,-𝑢′,+𝑣′ (𝜆, �̂�) = 𝜆
(
�̂�𝑧++ + �̂�

2𝑧+- + 𝑧-+ + �̂�𝑧--
)
,

𝑍𝐺′\𝑒′,-𝑢′,-𝑣′ (𝜆, �̂�) = �̂�2𝑧++ + �̂�(𝑧+- + 𝑧-+) + 𝑧--.

Then, by Lemma 37, we can compute in poly-time the value of the ratio

𝑟 ′ = 𝑅𝐺′,𝑒′ =
(𝐴′)2𝑧++ + 𝐴

′𝐵′(𝑧+- + 𝑧-+) + (𝐵′)2𝑧--
(𝐴′)2𝑧-- + 𝐴′𝐶 ′(𝑧+- + 𝑧-+) + (𝐶 ′)2𝑧++

, where
𝐴′ := �̂�(𝜆 + 1)
𝐵′ := 1 + �̂�2𝜆

𝐶 ′ := �̂�2 + 𝜆

. (36)

We are now in position to complete the computation of 𝑟∗. We first show how to decide in poly-time
whether 𝑧++ = 0. We claim that

𝑧++ = 0 ⇐⇒ 𝑟 = 𝐵/𝐶 and 𝑟 ′ = 𝐵′/𝐶 ′. (37)
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Indeed, if 𝑧++ = 0, then 𝑧-- = 0 from Lemma 34 and, therefore, from (35), (36) we have that 𝑟 = 𝐵/𝐶
and 𝑟 ′ = 𝐵′/𝐶 ′. Conversely, using that 𝐴2 ≠ 𝐵𝐶 and (𝐴′)2 ≠ 𝐵′𝐶 ′, we have that

𝑟 = 𝐵/𝐶 =⇒ 𝐶𝑧++ = 𝐵𝑧--, 𝑟 ′ = 𝐵′/𝐶 ′ =⇒ 𝐶 ′𝑧++ = 𝐵′𝑧--,

which together imply that 𝑧++ = 0.
Using (37), we can decide in poly-time whether 𝑧++ = 0. If so, by Lemma 34, we have 𝑧-- = 0 and

hence 𝑟∗ = �̂�. So, assume 𝑧++ ≠ 0, and hence 𝑧-- ≠ 0 in what follows. We claim that

𝑧+- + 𝑧-+ = 0 ⇐⇒ 𝑟 =
𝐴2𝑧++ + 𝐵

2𝑧--
𝐴2𝑧-- + 𝐶2𝑧++

, 𝑟 ′ =
(𝐴′)2𝑧++ + (𝐵′)2𝑧--
(𝐴′)2𝑧-- + (𝐶 ′)2𝑧++

. (38)

The forward direction is again trivial. For the backward direction, we have

𝑟 =
𝐴2𝑧++ + 𝐵

2𝑧--
𝐴2𝑧-- + 𝐶2𝑧++

=⇒ 𝐶𝑧++ = 𝐵𝑧-- or 𝑧+- + 𝑧-+ = 0,

𝑟 ′ =
(𝐴′)2𝑧++ + (𝐵′)2𝑧--
(𝐴′)2𝑧-- + (𝐶 ′)2𝑧++

=⇒ 𝐶 ′𝑧++ = 𝐵′𝑧-- or 𝑧+- + 𝑧-+ = 0.

Since 𝑧++, 𝑧-- ≠ 0, we therefore obtain that 𝑧+- + 𝑧-+ = 0, proving (38).
Note that we can decide the right-hand side of (38) in poly-time using the value of the ratio

𝑟 ′′ = 𝑧--/𝑧++ from the second part of Lemma 37. If it turns out that 𝑧+- + 𝑧-+ = 0, then 𝑟∗ = 1 and we
are done. Otherwise, we can use the values of r and 𝑟 ′′ to compute the ratios 𝑧++

𝑧+-+𝑧-+
, 𝑧--
𝑧+-+𝑧-+

, which we
can then use to compute 𝑟∗.

This completes the computation of the ratio 𝑟∗ and therefore the proof of Theorem 1. �

9. Equivalence for 𝜆 = −1 with Approximately Counting Perfect Matchings

In this section, we show that for 𝜆 = −1, the problem of approximating the partition of the ferromagnetic
Ising model on graphs of maximum degree Δ is equivalent to the problem #PerfectMatchings, the
problem of approximately counting perfect matchings on general graphs. The proof follows the technique
in [19], where the case of negative b but 𝜆 = 1 was considered; here, however, we need to rework the
relevant ingredients. The main such ingredient is the following ‘high-temperature’ expansion formula
for 𝜆 = −1.

Lemma 39. Let 𝜆 = −1 and 𝑏 ≠ −1 be an arbitrary number. Then, for any graph 𝐺 = (𝑉, 𝐸),

𝑍𝐺 (𝜆, 𝑏) = (−2) |𝑉 |
(1 + 𝑏

2

) |𝐸 | ∑
𝑆⊆𝐸 ; 𝑆 odd

(1 − 𝑏

1 + 𝑏

) |𝑆 |
,

where the sum is over 𝑆 ⊆ 𝐸 such that every vertex 𝑣 ∈ 𝑉 has odd degree in the subgraph (𝑉, 𝑆).

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph. For a set 𝑆 ⊆ 𝐸 and a vertex 𝑣 ∈ 𝑉 , we let 𝑑𝑣 (𝑆) denote the degree
of v in the subgraph (𝑉, 𝑆).

For the purposes of this proof, it will be convenient to view configurations of the Ising model on G as
vectors in {±1}𝑉 . Now, for a configuration 𝜎 ∈ {±1}𝑉 , we use the notation 𝑛+(𝜎) to denote the number
of vertices with spin +1. Observe that 𝑛+(𝜎) = 1

2
(
|𝑉 | +

∑
𝑣 ∈𝑉 𝜎𝑣

)
and that for an edge 𝑒 = (𝑢, 𝑣), we

have 𝑏1{𝜎𝑢≠𝜎𝑣 } = 1+𝑏
2
(
1 + 1−𝑏

1+𝑏𝜎𝑢𝜎𝑣
)
= 𝜌
(
1 + 𝜈𝜎𝑢𝜎𝑣

)
, where for convenience we set 𝜌 := 1+𝑏

2 and
𝜈 := 1−𝑏

1+𝑏 . So, using that i2 = −1,

𝑍𝐺 (𝜆, 𝑏) = 𝜌 |𝐸 |
∑

𝜎∈{±1}𝑉
𝜆𝑛+ (𝜎)

∏
𝑒=(𝑢,𝑣) ∈𝐸

(1 + 𝜈𝜎𝑢𝜎𝑣 ) = 𝜌 |𝐸 |
∑

𝜎→{±1}𝑉
𝜆𝑛+ (𝜎)

∑
𝑆⊆𝐸

𝜈 |𝑆 |
∏
𝑣 ∈𝑉

(𝜎𝑣 )
𝑑𝑣 (𝑆)

= i |𝑉 |𝜌 |𝐸 |
∑
𝑆⊆𝐸

𝜈 |𝑆 |
∑

𝜎∈{±1}𝑉

∏
𝑣 ∈𝑉

i𝜎𝑣 (𝜎𝑣 )
𝑑𝑣 (𝑆) .
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The latter sum is equal to
∏
𝑣 ∈𝑉

∑
𝜎𝑣 ∈{±1} i𝜎𝑣 (𝜎𝑣 )

𝑑𝑣 (𝑆) , which equals 0 if 𝑑𝑣 (𝑆) is even and 2i
otherwise. Plugging this in the expression above yields the lemma. �

Now, we are ready to show the main theorem for this section. For counting problems 𝐴, 𝐵 we use the
notion of AP-reductions; see [13]. Roughly, we have that 𝐴 ≤AP 𝐵 if an FPRAS for B can be converted
to an FPRAS for A and 𝐴 ≡AP 𝐵 if both 𝐴 ≤AP 𝐵 and 𝐵 ≤AP 𝐴 hold.

Theorem 40. Let 𝜆 = −1 and 𝑏 ∈ (0, 1) be a rational. Then, for any connected graph G, we have
𝑍𝐺 (𝜆, 𝑏) > 0 if G has an even number of vertices and 𝑍𝐺 (𝜆, 𝑏) = 0 otherwise.

Moreover, for all integers Δ ≥ 3, we have that #IsingNorm(𝜆, 𝑏,Δ) ≡AP #PerfectMatchings.

Proof. The statement about the sign of 𝑍𝐺 (𝜆, 𝑏) follows from Lemma 39 and the fact that every
connected graph with an even number of vertices has a spanning subgraph where every vertex has odd
degree. We thus focus on proving the AP-equivalence.

#PerfectMatchings ≤AP #IsingNorm(𝝀, 𝒃,𝚫). It is well-known that the problem of approximating the
number of perfect matchings on general graphs is AP-equivalent to the same problem on graphs of
maximum degree 3; see, for example, [23, Lemma 28]. So, let 𝐺 = (𝑉𝐺 , 𝐸𝐺) be a graph of maximum
degree 3, with 𝑛 = |𝑉𝐺 | and𝑚 = |𝐸𝐺 |, and letM be the set of perfect matchings of G. Since we can check
whether a graph has a perfect matching in polynomial time, we may further assume that |M| > 0 and,
in particular, that n is even. Let 𝜖 ∈ (0, 1) be the desired relative error that we want to approximate |M|.

Analogous to (18) and (19), for 𝑘 = 1 + 2�𝑚
2+ln(1/𝜖 )
− ln(1−𝑏) �, let 𝑃𝑘 = (𝑉𝑘 , 𝐸𝑘 ) be the path with k vertices

whose endpoints are labelled 𝑢𝑘 , 𝑣𝑘 and 𝑃∗
𝑘 = (𝑉∗

𝑘 , 𝐸
∗
𝑘 ) be the graph obtained from 𝑃𝑘 by attaching a

vertex 𝑧𝑖 to the ith internal vertex 𝑤𝑖 of 𝑃𝑘 , for 𝑖 = 1, . . . , 𝑘 − 2. Let 𝐴±,± := 𝑍𝑃∗
𝑘
,±𝑢𝑘 ,±𝑣𝑘 (𝜆, 𝑏). Then, it

is not hard to see that12 [
𝐴++ −𝐴+-
−𝐴-+ 𝐴--

]
= (1 − 𝑏)𝑘−2

[
1 𝑏
𝑏 1

] 𝑘−1

and so
𝐴++ = 𝐴-- = 1

2
(
(1 + 𝑏)𝑘−1 + (1 − 𝑏)𝑘−1) (1 − 𝑏)𝑘−2, and

𝐴+- = 𝐴-+ = 1
2
(
(1 − 𝑏)𝑘−1 − (1 + 𝑏)𝑘−1) (1 − 𝑏)𝑘−2.

We next set

𝑏𝑘 := −
𝐴+-
𝐴++

= −
𝐴-+
𝐴--

, and observe that 1 − (1 − 𝑏)𝑘−1 < 𝑏𝑘 < 1. (39)

Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) be an instance of #IsingNorm(𝜆, 𝑏,Δ) obtained from G by replacing every edge
𝑒 = (𝑢, 𝑣) of G with a distinct copy of 𝑃∗

𝑘 , identifying the endpoints 𝑢, 𝑣 with 𝑢𝑘 , 𝑣𝑘 , respectively. Then,
we claim that

𝑍𝐻 (𝜆, 𝑏) = (𝐴++)
𝑚𝑍𝐺 (𝜆, 𝑏𝑘 ). (40)

Indeed, for a configuration 𝜎 : 𝑉𝐺 → {+, -}, let Ω𝐻,𝜎 = {𝜎′ : 𝑉𝐻 → {+, -} | 𝜎′
𝑉𝐺

= 𝜎} be the
configurations on H which agree with 𝜎 on 𝑉𝐺 and 𝑍𝐻,𝜎 (𝜆, 𝑏) be the contribution to 𝑍𝐻 (𝜆, 𝑏) from
configurations in Ω𝐻,𝜎 . Then, we have

𝑍𝐻,𝜎 (𝜆, 𝑏) = 𝜆
|𝑛+ (𝜎) |

∏
𝑒=(𝑢,𝑣) ∈𝐸𝐺

(−1)1𝜎𝑢≠𝜎𝑣 𝐴𝜎𝑢𝜎𝑣 = (𝐴++)
𝑚𝜆 |𝑛+ (𝜎) |𝑏𝛿 (𝜎)

𝑘 ,

12Here, the key observation is that for a configuration 𝜏 : 𝑉𝑘 → {+, -}, the aggregate weight of configurations 𝜎 : 𝑉 ∗
𝑘 →

{+, -} with 𝜎𝑉𝑘
= 𝜏 is (−1)1{𝜏𝑢𝑘 ≠𝜏𝑣𝑘 } (1 − 𝑏)𝑘−2𝑤𝑃𝑘 ,𝜏 (1, 𝑏) . Indeed, if 𝜏 (𝑤𝑖) = +, then the contribution of the edge

(𝑤𝑖 , 𝑧𝑖) and the external field on 𝑧𝑖 is 𝑏 + 𝜆 = 𝑏 − 1, whereas if 𝜏 (𝑤𝑖) = -, the contribution is 1 + 𝑏𝜆 = 1 − 𝑏. This, combined
with the factor 𝜆𝑛+ (𝜏) coming from the external fields on 𝑉𝑘 , gives the factor (−1)1{𝜏𝑢𝑘 ≠𝜏𝑣𝑘 } (1 − 𝑏)𝑘−2 above; the remaining
contribution is just the weight of 𝜏 on 𝑃𝑘 when the external field of all vertices on 𝑃𝑘 is equal to 1.
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proving (40). Note from Lemma 39 we have that

𝑍𝐺 (𝜆, 𝑏𝑘 ) = 2𝑛
(1 + 𝑏𝑘

2

)𝑚 ∑
𝑆⊆𝐸 ; 𝑆 odd

(1 − 𝑏𝑘
1 + 𝑏𝑘

) |𝑆 |
. (41)

Perfect matchings in G are in 1-1 correspondence with odd sets 𝑆 ⊆ 𝐸 with |𝑆 | = 𝑛/2. Moreover, for
any other odd set 𝑆 ⊆ 𝐸 we have |𝑆 | > 𝑛/2 + 1 and hence, using also (40), we obtain				 𝑍𝐻 (𝜆, 𝑏)

(𝐴++)𝑚2𝑛
( 1+𝑏𝑘

2
)𝑚 ( 1−𝑏𝑘

1+𝑏𝑘

)𝑛/2 − |M|

				 ≤ 2𝑚
(1 − 𝑏𝑘

1 + 𝑏𝑘

)
≤ 𝜖 |M|.

Therefore, using an FPRAS for #IsingNorm(𝜆, 𝑏,Δ), we can approximate 𝑍𝐻 (𝜆, 𝑏) within relative error
𝜖 in time 𝑝𝑜𝑙𝑦(𝑛, 1/𝜖) and therefore compute |M| within relative error 𝜖 , finishing the AP-reduction.

#IsingNorm(𝝀, 𝒃,𝚫) ≤AP #PerfectMatchings. We first consider the case Δ = 3. Let 𝐺 = (𝑉, 𝐸) be a
graph of maximum degree Δ = 3 that is input to #IsingNorm(𝜆, 𝑏,Δ) and set 𝑛 = |𝑉 |, 𝑚 = |𝐸 |. We may
assume that n is even, since otherwise we can output 0 for the partition function. By Lemma 39 we have
that

𝑍𝐺 (𝜆, 𝑏) = 2𝑛
(1 + 𝑏

2

)𝑚 ∑
𝑆⊆𝐸 ; 𝑆 odd

(1 − 𝑏

1 + 𝑏

) |𝑆 |
. (42)

To formulate this in terms of perfect matchings, we construct a graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) as follows,
resembling the construction in [14]. For 𝑣 ∈ 𝑉 , let 𝑑𝑣 be the degree of v in G. For a vertex 𝑣 ∈ 𝑉 , if
𝑑𝑣 = 3, replace v with a triangle of vertices 𝑇𝑣 = {𝑣1, 𝑣2, 𝑣3}; otherwise, keep v in 𝐺 ′ as well and let for
convenience 𝑇𝑣 = {𝑣}. For every edge (𝑢, 𝑣) ∈ 𝐸 , add an edge in 𝐺 ′ between a vertex in 𝑇𝑢 and 𝑇𝑤 so
that 𝐺 ′ has maximum degree 3; note that edges of G that are not incident to degree-3 vertices belong to
𝐺 ′ as well. We call internal all edges of 𝐺 ′ whose endpoints belong to some 𝑇𝑣 and external all other
edges of 𝐺 ′. Note that an edge e of G maps to an external edge ex(𝑒) of 𝐺 ′ bijectively under the natural
mapping. We use ex(𝐺 ′) to denote the external edges of 𝐺 ′.

For 𝑣 ∈ 𝑉 , observe that any perfect matching in 𝐺 ′ must contain exactly one external edge incident
to a vertex in 𝑇𝑣 if |𝑇𝑣 | = 1 and two or three edges if |𝑇𝑣 | = 3, either one internal and one external or
three external, respectively. Based on this, we have that a perfect matching 𝑀 ′ in 𝐺 ′ maps bijectively to
an odd subset S of G, by adding an edge e of G to S iff ex(𝑒) ∈ 𝑀 ′. Therefore, with M′ denoting the
set of perfect matchings in 𝐺 ′, we can rewrite (42) as

𝑍𝐺 (𝜆, 𝑏) = 2𝑛
(1 + 𝑏

2

)𝑚 ∑
𝑀 ′ ∈M′

(1 − 𝑏

1 + 𝑏

) |𝑀 ′∩ex(𝐺′) |

.

Let 𝑛′ = |𝑉 ′ | ≤ 3𝑛 and 𝑚′ = |𝐸 ′ |. Let 𝑝, 𝑞 be positive integers with gcd(𝑝, 𝑞) = 1 such that 𝑝𝑞 = 1−𝑏
1+𝑏 .

Let 𝐺 ′′ be the multigraph obtained from 𝐺 ′ by replacing every external edge 𝑒 = (𝑢, 𝑣) with p parallel
edges connecting u to a new vertex 𝑤𝑒, q parallel edges connecting 𝑤𝑒 to a new vertex 𝑧𝑒 and an edge
between 𝑧𝑒 and v; note that internal edges of 𝐺 ′ are left intact. Let M′ and M′′ be the set of perfect
matchings of 𝐺 ′ and 𝐺 ′′ Then, there is a one-to-many correspondence between perfect matchings
𝑀 ′ ∈ M′ in 𝐺 ′ and perfect matchings 𝑀 ′′ ∈ M′′, where an internal edge e is matched in 𝑀 ′ iff e is
matched in 𝑀 ′′, while an external edge 𝑒 = (𝑢, 𝑣) is matched in 𝑀 ′ iff (𝑧𝑒, 𝑣) is matched in 𝑀 ′′. Note
that, for an external edge e and a perfect matching 𝑀 ′′ of 𝐺 ′′, if (𝑧𝑒, 𝑣) belongs to 𝑀 ′′, then u must be
matched by one of the p parallel edges connecting u to 𝑤𝑒, whereas if (𝑧𝑒, 𝑣) does not belong to 𝑀 ′′,
𝑤𝑒 and 𝑧𝑒 must be matched by one of the q parallel edges connecting u to 𝑤𝑒. It follows that

|M′′ | =
∑

𝑀 ∈M′

𝑝 |𝑀∩ex(𝐺′) |𝑞𝑚−|𝑀∩ex(𝐺′) | .
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Finally, if we let 𝐺 ′′′ be the graph obtained from 𝐺 ′′ by replacing every edge of 𝐺 ′′ with a path of
length 3, we have that the set of perfect matchings M′′′ off 𝐺 ′′′ is in 1-1 correspondence with M′′ and
we see that 2𝑛

( 1+𝑏
2
)𝑚
𝑞𝑚 |M′′′ | equals 𝑍𝐺 (𝜆, 𝑏), completing the AP-reduction for Δ = 3.

To handle the case Δ ≥ 4, it suffices to show that #IsingNorm(𝜆, 𝑏,Δ) ≤AP #IsingNorm(𝜆, 𝑏, 3),
since AP-reductions are transitive; see [13]. Let 𝐺 = (𝑉, 𝐸) be a graph of maximum degree Δ and set
𝑛 = |𝑉 |. Let 𝑉≤3 = {𝑣 ∈ 𝑉 | 𝑑𝑣 ≤ 3} be the set of vertices in G with degree ≤ 3 and 𝑉>3 be the set of
the remaining vertices.

Construct a graph 𝐺 ′ = (𝑉 ′, 𝐸 ′) from G by replacing every vertex 𝑣 ∈ 𝑉 with 𝑑𝑣 = 𝑡 ≥ 4, with a
path of 2𝑡 − 1 vertices if t is odd and of 2𝑡 − 3 vertices if t is even. We partition the vertices on the path
into two sets 𝑇𝑣 , 𝑇 ′

𝑣 according to their parity, so that the endpoints of the path belong to 𝑇𝑣 ; note that
|𝑇𝑣 | = 𝑡 if t is odd, while |𝑇𝑣 | = 𝑡 − 1 if t is even. We keep vertices 𝑣 ∈ 𝑉≤3 in 𝐺 ′, and for such vertices,
for convenience, we let 𝑇𝑣 = {𝑣}. Then, for every edge (𝑢, 𝑣) ∈ 𝐸 , we add an edge in 𝐺 ′ between a
vertex in 𝑇𝑢 and 𝑇𝑣 so that, in the end, 𝐺 ′ has maximum degree 3 and, further, for vertices 𝑣 ∈ 𝑉>3 with
𝑑𝑣 even, exactly one endpoint of the path on 𝑇𝑣 ∪ 𝑇 ′

𝑣 has degree 3 in 𝐺 ′ (and the other has degree 2).
As before, we call an edge in 𝐺 ′ internal if both of its endpoints lie within a set 𝑇𝑣 for some 𝑣 ∈ 𝑉 and
external otherwise.

The key observation is that the aggregate contribution to 𝑍𝐺′ (𝜆, 𝑏) from configurations on𝐺 ′ where,
for some 𝑣 ∈ 𝑉 , the vertices in 𝑇𝑣 do not get the same spin is zero.13 For a configuration 𝜎 on G, let
Ω𝐺′,𝜎 be the set of configurations on 𝐺 ′ such that all vertices in 𝑇𝑣 get the spin 𝜎𝑣 , and let 𝑍𝐺′,𝜎 (𝜆, 𝑏)
be their aggregate contribution to 𝑍𝐺′ (𝜆, 𝑏), so that, from the observation above, we have

𝑍𝐺′ (𝜆, 𝑏) =
∑

𝜎:𝑉→{+,-}

𝑍𝐺′,𝜎 (𝜆, 𝑏).

For a configuration 𝜎 : 𝑉 → {+, -}, external edges and the external fields on 𝑉≤3 contribute to
𝑍𝐺′,𝜎 (𝜆, 𝑏) a factor of 𝜆 |𝑛+ (𝜎)∩𝑉≤3 |𝑏 |𝛿𝐺 (𝜎) | . For 𝑣 ∈ 𝑉>3 with 𝜎𝑣 = +, the edges in 𝑇𝑣 ∪ 𝑇 ′

𝑣 and the
external fields on 𝑇𝑣 ∪𝑇 ′

𝑣 contribute to 𝑍𝐺′,𝜎 (𝜆, 𝑏) a factor of −(1− 𝑏2) |𝑇𝑣 | and a factor of (1− 𝑏2) |𝑇𝑣 |

if 𝜎𝑣 = -. It follows that 𝑍𝐺′,𝜎 (𝜆, 𝑏) = (1 − 𝑏2) |𝑇 |𝜆 |𝑛+ (𝜎) |𝑤𝐺,𝜎 (𝜆, 𝑏) where 𝑇 = ∪𝑣 ∈𝑉 ;𝑑𝑣 ≥4 |𝑇𝑣 |. It
follows that

𝑍𝐺′ (𝜆, 𝑏) = (1 − 𝑏2) |𝑇 |𝑍𝐺 (𝜆, 𝑏),

therefore completing the AP-reduction, since by construction 𝐺 ′ is a graph of maximum degree 3.
This finishes the proof of Theorem 40. �
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