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MINIMAX INEQUALITIES IN G-CONVEX SPACES

MlRCEA BALAJ

In this paper we establish two minimax theorems of Sion-type in G-convex spaces.
As applications we obtain generalisations of some theorems concerning compatibility
of some systems of inequalities.

1. INTRODUCTION AND PRELIMINARIES

Motivated by Nash equilibrium and the theory of non-cooperative games, Fan [4]
generalised Sion's minimax theorem obtaining the following two-function minimax in-
equality:

THEOREM 1. Let X and Y be compact convex subsets of topological vector
spaces and f, g : X x Y —> R. Suppose that f is lower semicontinuous on Y and
quasiconcave on X, g is upper semicontinuous on X and quasiconvex on Y, and f < g
on X xY. Then minsup/(x, y) ^ max inf g{x,y).

Granas and Liu [6, 7] obtained generalisations and versions of Theorem 1 involving
three real functions /, g, h. On the other hand Park [14] extended Ky Fan's result to
G-convex spaces. In this paper we obtain a unified generalisation of all these results. Also
we give a version of our main result for the case when X is a convex subset of a topological
vector space. As applications we obtain generalisations of some theorems of Granas and
Liu [6, 7] and Liu [11] concerning compatibility of some systems of inequalities.

Let us recall some notions necessary in our paper.
A generalised convex space or a G-convex space (X, D\ F) consists of a topological

space X and a nonempty set D such that for each A e (D) with the cardinality \A\ = n+1,
there exist a subset T(A) of X and a continuous function $A : An —• T(A) such that
J e (A) implies $A{&j) C F(J).

Here (D) denotes the set of all nonempty finite subsets of D, An any n-simplex
with vertices {ej}"=0 and Aj the face of An corresponding to J G (A); that is, if
A = {uo,uu...,un} a n d J = { u i o , u , , , . . .,uik} C A , t h e n A j = c o { e i o , e j l ...,eik}.

In case D C X then (X, D; F) will be denoted by (X D D;T). For (X D D; F), a
subset C of X is said to be G-convex if T(A) C C whenever A e (G n D).
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368 M. Balaj [2]

The main example of G-convex space corresponds to the case when X — D is a
convex subset of a Hausdorff topological vector space and for each A G (X), T(A) is the
convex hull of A. For other major examples of G-convex spaces see [15, 16].

Let (X D D; F) be a G-convex space. A function / : X -»• R = R U {±00} is said

to be G-quasiconcave (respectively, G-quasiconvex) if for any finite set {u\,..., un} C D

and for each x G T({,ui,... ,un}) we have f(x) ^ min /(u<) (respectively, f(x)

^ max f(ui)). We note that / is G-quasiconcave (respectively, G-quasiconvex) if and

only if, for each A € R the set {x £ X : f{x) > A} (respectively, {x £ X : f(x) < A})
is G-convex. A function / : X x Y -> R (Y nonempty set) is said to be G-quasiconcave
(respectively, G-quasiconvex) on X if for each y £ Y the function x —> f(x,y) is
G-quasiconcave (respectively, G-quasiconvex). Inspirated by [1] and [9] we shall in-
troduce two more general concepts.

Let (X, D; F) be a G-convex space, Y be a nonempty set and / : D x Y —> R, g :

X xY -¥ WL. We say that g is G-f-quasiconcave on X if for any finite set {ui,..., un} C D

and for each y € Y we have

9(x,y) > ^ n f ^ y ) for all z e r ({«! , . . . ,u n }) .

Note that the notion introduced above coincides with the corresponding notion in [9,
Definition 2] only when D = X.

When X is a convex subset of a topological vector space the concept of
G-/-quasiconcavity reduces to that of /-quasiconcavity introduced by Chang and Yen
in [1]. More precisely, in this case, if f, g : X x Y -t R we say that g is /-quasiconcave

on X if for any {x\,..., xn} G (X) and each y G Y we have

g{x,y) ^ min /(x,-,y) for all x e co{xi,... ,x n } .

Similarly, if X is a nonempty set, (Y, D; F) a G-convex space and

g : X x Y -> I ,

h: X x D - > 1

two functions, we say that g is G-h-quasiconvex on Y if for any {vi,...,vn} € (£>) and

each x £ X we have

g(x,y) ^ max h{x,vt) for all y G F({u1 , . . . ,wn}).

REMARK 1. It is easy to see that if D C Y, g is G-/i-quasiconvex on Y whenever there

exists a function k : X x Y —¥ R such that:

(i) g ^ k on X xY;

(ii) k ^ h on X x D;
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(iii) A; is G-quasiconvex on Y.

Let A" be a nonempty set, (Y,D;T) be a G-convex space and G : Y —o X, H :

D - o I b e two mappings (that is, set-valued functions). We say that if is a generalised

G-KKM mapping with respect to G if for each A € (D), G(T(A)) C H(A). If X is a
topological space, G : Y —o X is said to have the G-KKM property if for any mapping
H : D -o X generalised G-KKM with respect to G, the family {~H(v) : v G D) has the
finite intersection property (where H(v) denotes the closure of H(v)).

Let X be a topological space and F b e a nonempty set. A function / : X x Y -¥ R is
said to be X-transfer upper semicontinuous (respectively X-transfer lower semicontinuous)
on X for some A G R [2] if for all x G X, y G Y with f{x,y) < X (respectively f{x,y)
> X) there exist a neighbourhood V(x) of x and a point y' € Y such that f(z,y') < X
(respectively f{z,y') > A) for all z G V(x). If / is A-transfer upper (respectively lower)
semicontinuous on X for any A € R, we say that / is transfer upper (respectively lower)
semicontinous on X.

It is clear that every function upper semicontinuous (respectively, lower semicontin-
uous) on X is A-transfer upper semicontinuous (respectively, A-transfer lower semicon-
tinuous) on X for any real A, but the converse is not true (see [2]).

2. MAIN RESULTS

First we state three results from the literature which will be used in this section.
The following continuous selection theorem is well-known (see [10, 13, 17]).

LEMMA 2 . Let (X, D; T) be a G-convex space and Y be a compact topological
space. Let F :Y —o D, G :Y —° X be two mappings satisfying the following conditions:

(a) for each y€Y,Ae (F(y)) implies T{A) C G(y);
(b) Y = u{ in tF- x (u) :u€£>}.

Then G has a continuous selection; that is, there exists a continuous function p : Y —> X
such that p{y) G G(y) for each y G.Y.

The next result is a particular case of Corollary in [12].

LEMMA 3 . Let X be a topological space and (Y, D; T) be a G-convex space,
Then any continuous function p :Y -t X has the G-KKM property.

Combining assertions (ii) and (iii) in Lemma 3 and assertion (ii) in Lemma 4 in [8]
one obtains

LEMMA 4 . Let X be a topological space and D a nonempty set. If h : X x D
—> R is X-transfer upper semicontinuous, then f\ H(v) = f) H(v), where

USD v£D

H{v) = {x € X : h{x,v) > A}.

The main result of the paper is as shown in the following theorem.
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THEOREM 5 . Let (X,D;Ti) and (Y,D;T2) be two compact G-convex spaces

and let f : D\ x Y -+ M, g : X x Y —»• R, h : X x D2 -+ R be three functions such that:

(i) g is G-f-quasiconcave on X;

(ii) g is G-h-quasiconvex on Y;

(iii) / is transfer lower semicontinuous on Y;

(iv) h is transfer upper semicontinuous on X;

Then inf sup f{u,y) ^ sup inf h(x,v).

P R O O F : We may suppose that inf sup f(u,y) > — oo. It suffices to prove that for
yeYueDi

any real A < inf sup f(u,y) we have A ̂  sup inf h(x, v). Fix such a A and define the
yeYueDi x€X veD2

mappings F : Y -o Du G : Y - o X, H : D2 - ° X by

F(y) = { u e D i : f(u, y) ^ A}, G(y) = {x G X : g(x, y) ^ A} and

H(v) = {xeX : h{x,v) ^ A}.

First we show that G and F satisfy the conditions of Lemma 2. Let y € Y,

{ui,...,un} C F(y) and x e Fi ({ui , . . . , u n } ) . Since g is /-quasiconcave on X,

g{x, y) ^ min }(uu y) ^ A, hence x € G(y). Thus Ti ({uu ..., un}) C G(y).

For each y G Y there exists u € D\ such that f(u,y) > A (as consequence of
A < inf sup f(u,y)). By (iii) there exist u' e D\ and a neighbourhood V(t/) of y such

that

u'e f l { « e A :/(«,«)> A} c f l F(«),

hence y G i n t F " 1 ^ ' ) . Thus condition (b) in Lemma 2 is satisfied. By Lemma 2, there

exists a continuous function p :Y -> X such that p(y) G G(y) for every y G Y.

Next we prove that H is a generalised G-KKM mapping with respect to G. Suppose

that there exist a nonempty finite set {v\,... ,vn} C D2 and a point x G X such that

Since x G G f r 2 ( { u i , . . . , vn})J, there exists y G r2({wj, ...,*;„}) such that g(x, y) ^ A.
n

By x ^ | J H(wi) we get h(x, Vi) < A for each i G { 1 , . . . , n} . Taking into account (ii) we
i=l

obtain the following contradiction

A ^ g{x, y) ^ max h(x, w<) < A.

Thus H is a generalised G-KKM mappings with respect to G, and consequently it

is generalised G-KKM mapping with respect to p, too. By Lemma 3, the family of sets
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{H(v) : v 6 D2) has the finite intersection property. Since for each v € D2, H(v) is a
closed subset of compact space Y, by Lemma 4 we infer that f] H(v) = f] H(v) ^ 0,
that is, sup inf h(x,v)>\. v€°2 ve°2 D

REMARK 2. Following the proof of Theorem 5 it seems that if inf sup f(u,y) > -00,

instead of conditions (iii) and (iv) it would be sufficient to put the following conditions:

(iii') / is A-transfer lower semicontinuous on Y for any A < inf sup f(u,y);

(iv;) h is A-transfer upper semicontinuous on X for any A < inf sup f(u,y).

But this clearly less demanding conditions make really no difference. In fact, assume

a = inf sup f(u,y) > —00

and define the functions

f'(u,y) =min(/(u,2/),a),

g'{x,y) = min(g{x,y),a),

h'{x, v) = min(h(x, v),a).

We observe that:

(a) if conditions (i), (ii) in Theorem 5 hold for f,g,h, then they hold also for

(b) if / is A-transfer lower semicontinuous on Y (respectively, h is A-transfer
upper semicontinuous on X) whenever A < a, then / ' is transfer lower
semicontinuous on Y (respectively, h! is transfer upper semicontinuous on

(c) inf sup f'{u,y) ^ sup inf h'(x,v) implies inf sup f{u,y) ^ sup inf h(x,v).
:Dj y€Y u€Di x€X vEDi

A mapping F : Y —o X (X nonempty set, Y topological space) is said to have the
local intersection property (see [18]) if for each y £ Y with F(y) ^ 0, there exists an
open neighbourhood V(y) of y such that f) F(z) / 0.

The following continuous selection theorem is [18, Theorem 1].

LEMMA 6 . Let X be a nonempty subset of a topological vector space and Y be a
paracompact topological space. Suppose that F, G : Y —o X are two mappings satisfying

the following conditions:

(a) for each y EY, F(y) is nonempty and co F(y) C G(y);

(b) F has local intersection property.

Then G has a continuous selection.
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It can be easily prove that if D — X and F is a mapping with nonempty values,
then conditions (b) in Lemmas 2 and 6 are equivalent (see [8, Proposition 1]).

The following version of Theorem 5 shows that in the case when X is a convex subset
of a topological vector space the conclusion holds if the G-convex space (Y, D\ T) is only
paracompact. The proof is similar to that of Theorem 5 using as argument Lemma 6
instead of Lemma 2.

THEOREM 7 . Let X be a compact convex subset of a topological vector space
and {Y, D\ T) be a paracompact G-convex space. Let f,g : XxY ->R and h : X x D -¥ R
be three functions such that:

(i) g is f -quasiconcave on X;

(ii) g is G-h-quasiconvex on Y;

(iii) / is transfer lower semicontinuous on Y;

(iv) h is transfer upper semicontinuous on X.

Then inf sup f(x: y) ^ sup inf h(x, v).
X XD

Let Y be an arbitrary set and D a nonempty subset of Y. Given two families of
functions Q = {g : Y -> 1 } and U = {h : D -> R} we write Q ^ U on D if for
every g e Q there is h € H such that g(v) ^ h(v) for all v € D. Following Ky Fan
[3] a family of functions H = {h : D —> R} is said to be concave provided given any

n
hi,. •.,hn € H and xi,... ,xn € R such that Xi ^ 0 and Ylxi — 1 there is an h e H

n i=l
satisfying h(v) ^ Ylxihi(v) f°r a ^ v E D.

i=l
In what follows we denote by An_! the standard (n - l)-simplex; that is

n _ i = | x = ( z i , . . M x n

The next result generalises under many aspects in [7, Theorem 9.2].

THEOREM 8 . Let (Y D D\ T) be a compact G-convex space and let

G= {g:r->(-oo,+oo]},
H= {h:D->{-o

be three families of functions such that:

(i) T ^ g on Y and Q ^ U on D;

(ii) for any finite subfamily {glt..., <?„} ofQ and for each {x\,..., xn) e An_i
n

the function y —> ^Z xi9>{y) IS G-quasiconvex on Y;

(iii) each / € T is lower semicontinuous on Y;
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(iv) the family H is concave.

Then inf sup f(x) ^ sup inf h(v).
yeY fer henvtD

PROOF: Let /3 = sup inf h(v). We may suppose that /? is finite. For each / € T let

S(f) = {y&Y: f(y) ^ 0} .

We have to show that f) S(f) ^ 0. Since Y is compact and the sets S(f) are closed

it suffices to prove that the family {S(/) : / € F} has the finite intersection property.

Let fu ..., fn e T\ choose gu ..., gn e Q and hx,...,hneH such t ha t

fi ^ g{ on Y and gt ^ /ij on D.

Define the functions f,g : An_! x Y —> ( - c o , +oo], h : An_i x f l - + ( - co , +oo] by

i 2/) = X!x*/<(y)' 5(^, y) = ̂ 2Xi9i(y) and

i/ij(t;) f o r i = ( i x , . . . , a ; n ) € An_!, j / 6 V, v 6

One readily verifies that f.g.h satisfy assertions (i), (iii), (iv) in Theorem 7, for
X — An_!. Assertion (ii) of the same theorem is also proved taking into account condition
(ii) in present theorem and Remark 1.

Since An_i and Y are compact and / is continuous on An_! and lower semicontinuous
on Y the conclusion of Theorem 7 becomes

min max f(x,y)^ sup inf

On the other hand by (iv) we have

n

sup inf Y^ Xihi(v) < sup inf h(v) = p.
i€An-iu6D~^ h€Hv€D

Consequently, there exists yo&Y such that for each x 6 An_i

t = l

thus we have necessarily fi(yo) ^ /3 for each i € { 1 , . . . , n}, that is, t/o 6 f| S(fi). U
1 = 1

Theorem 8 can be stated for convenience in the form of an alternative, obtaining in

this way generalisations of [5, Theorem 1] and of [7, Theorem 9.1].
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THEOREM 9 . Assume that Y,T,Q,U satisfy conditions of Theorem 8. Then

given any A € R one of the following properties holds:

(a) there is a h G H such that h(y) > A for all y G Y;

(b) there is a y0 G Y such that /(j/o) ^ ^ for all f G T.

The following theorem generalises under many aspects a result of Liu [11, Theorem
3] which in turn improves a well-known theorem of Ky Fan concerning compatibility of
some systems of inequalities.

THEOREM 10 . Let (Y D D; T) be a compact G-convex space and let

{fi-.Y^ (-oo, +oo]}.6/, {9i : Y -• (-oo, +oo]}.£/

be two families of functions such that:

(i) fi < 9i for each i G I;

(ii) for each i € / fi is lower semicontinuous on Y;

(Hi) for each n > 1, {ii,...,in} C / and (xi,...,xn) € An_! the function
n

y —> 5Z ^t5i(2/) is G-quasiconvex on Y;
i=l

(iv) for each n ^ 1, { i i , . . . , i n } C / and ( i i , . . . , xn) € An_i there is a v € D
n

such that ^2 Xigi(v) ^ 0.

Then there exists y0 G Y such that fi(yo) ^ 0.

P R O O F : Apply Theorem 8 when

Xi9i : n > l>9i € 5 , ( x i , . . . , i n ) G An_! 1.
J

Our last result generalises [7, Theorem 9.3].

THEOREM 1 1 . Let (Y D D; V) be a compact G-convex space, X an arbitrary

set and let / , g : X x Y —> (-oo, +oo], h : X x D -> (-oo, +oo] be three functions such

that

(i) f(x,y) < g{x, y) for each (x,y) £ X xY and g{x,y) ^ h(x,y) for all

(x, y) G X x D;

(ii) for any xi,...,xn G X and for each ( a i , . . . , o n ) G An_! the function
n

y —¥ 53 <*i<7(zj, y) is G-quasiconvex on Y;

(iii) / is lower semicontinuous on Y;

(iv) for any x i , . . . , xn G X and for each ( a i , . . . , an) G An_! there is an x £ X
n

such that h(x,y) ^ Ẑ ^^(xi,!/) for ally eY.
t=i
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Tien

inf sup f(x,y) ^ sup inf h(x,y).
y£Y zex v^Y

PROOF: Apply Theorem 8 when
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