SOME DIRECT AND INVERSE THEOREMS IN APPROXIMATION OF FUNCTIONS

R. N. MOHAPATRA and D. C. RUSSELL

(Received 25 February 1980; revised 12 May 1981)

Communicated by E. Strzelecki

Abstract

The paper is concerned with the determination of the degree of convergence of a sequence of linear operators connected with the Fourier series of a function of class L_p (p > 1) to that function and some inverse results in relating the convergence to the classes of functions. In certain cases one can obtain the saturation results too. In all cases L_p norm is used.

1980 Mathematics subject classification (Amer. Math. Soc.): 41 A 40.

1

Let f(x) be a periodic, Lebesgue integrable function with period 2π . Let the Fourier series for f(x) be given by

(1)
$$\frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) \equiv \sum_{k=0}^{\infty} A_k(x).$$

Let $S_n(f; x)$ be the *n*th partial sum of the series (1). The conjugate series of the series (1) is

$$\sum_{n=1}^{\infty} B_n(x) = \sum_{k=1}^{\infty} (b_k \cos kx - a_k \sin kx).$$

The conjugate function \tilde{f} of f, is given by

(2)
$$\tilde{f}(x) = (2\pi)^{-1} \int_0^{\pi} \{f(x+t) - f(x-t)\} \cot \frac{t}{2} dt$$

the integral being interpreted as a Cauchy integral. It is known that \tilde{f} exists almost everywhere whenever f is integrable.

[©] Copyright Australian Mathematical Society 1983

The space $L_p[-\pi,\pi]$ when $p=\infty$ will be replaced by the space $c_{2\pi}$ of all continuous functions defined over $[-\pi,\pi]$. Throughout the paper, norms will be taken with respect to the variable x and $\|\cdot\|_p$ will denote the usual L_p norm for $1 , and the supremum norm when <math>p=\infty$. For $f \in L_p[-\pi,\pi]$ ($1), the modulus of continuity and the modulus of smoothness <math>w^{(p)}(\delta,f)$ and $w_2^{(p)}(\delta;f)$ are defined respectively by

(3)
$$w^{(p)}(\delta; f) = \sup_{|h| \le \delta} ||f(x+h) - f(x)||_p, \quad \text{and}$$

(4)
$$w_2^{(p)}(\delta; f) = \sup_{|h| \leq \delta} \|f(x+h) + f(x-h) - 2f(x)\|_p.$$

The classes Lip α , Lip (α, p) ($p \ge 1$) will be as usual (see [5], page 612; also see [18], pages 42, 45). The class Lip (α, p) with $p = \infty$ will be taken as Lip α .

Two functions f and g are said to be equivalent if f(x) = g(x) almost everywhere.

Let $\{c_n\}$, $\{d_n\}$ be two non-zero sequences with c_n , $d_n \ge 0$. Suppose $C_n = \sum_{k=0}^n c_k$ and $D_n = \sum_{k=0}^n d_k$. Let $R_n = c_0 d_n + c_1 d_{n-1} + \cdots + c_n d_0$ $(n = 0, 1, \ldots)$.

Given f, let us associate with it the operator $t_n(f)$ defined by

(5)
$$t_n(f;x) = (R_n)^{-1} \sum_{k=1}^n c_{n-k} d_k S_k(x).$$

It should be remarked that $t_n(f; x)$ is the (N, c, d) transform of $\{S_k(f; x)\}$ (see [2]).

We shall write $t_n(f; x) = N_n(f; x)$ or $\overline{N_n}(f; x)$ according as $d_n = 1$ for all n or $c_n = 1$ for all n.

If there exists a positive non-increasing function $\phi(n)$ and a normed linear space K of functions such that

(6)
$$||f(x) - t_n(f; x)|| = o(\phi(n)) \Rightarrow f \text{ is a constant} \quad \text{a.e.},$$

(7)
$$||f(x)-t_n(f;x)|| = O(\phi(n)) \Rightarrow f \in K, \quad \text{and}$$

(8)
$$f \in K \Rightarrow || f(x) - t_n(f; x)|| = O(\phi(n)),$$

then we say that the operator $t_n(f)$ or the corresponding method (N, c, d) is saturated with order $\phi(n)$ and class K.

2

Ever since the definition of saturation of summability methods was given by Favard [3] many authors have studied the saturation property of operators which are obtained as transforms of the nth partial sum of the Fourier series by

summability methods. Sunouchi and Watari [15], [16] have obtained the saturation order and class for Cesàro, Abel and the Riesz method $(R, n^{\xi}, 1)$ ($\xi = 1, 2, ...$). Mohapatra and Sahney [11] have obtained results on saturation for a general class of summability methods in the supremum norm. Sunouchi [14] has studied the local saturation properties of the convolution operator (also see [13], [17]).

Concerning the saturation property of the Nörlund method, Goel, Holland, Nasim and Sahney [4] have proved the following theorem:

THEOREM A ([4], compare [9]). Let $f \in c_{2\pi}$ and $C_n > 0$ (all n). Then the following hold:

(9)
$$\|f - N_n(f)\|_{\infty} = o\left(\frac{c_n}{C_n}\right) \Rightarrow f \text{ is a constant} \quad a.e.$$

(10)
$$\|f - N_n(f)\|_{\infty} = O\left(\frac{c_n}{C_n}\right) \Rightarrow f \in \{f | \tilde{f} \in \text{Lip } 1\}$$

whenever

(11)
$$\lim_{n \to \infty} \frac{c_{n-k}}{c_n} = 1 \qquad (k = 0, 1, ...; c_n > 0 \text{ for all } n).$$

(12)
$$f \in \left\{ f | \tilde{f} \in \text{Lip 1} \right\} \Rightarrow \| f - N_n(f) \|_{\infty} = O\left(\frac{c_n}{C_n}\right)$$

whenever

(13)
$$\sum_{k=0}^{n} |c_k - c_{k-1}| = O(c_n) \qquad (c_{-1} = 0).$$

In Section 3 we obtain the order and class of saturation of the method (N, c, d) or the operator $t_n(f)$ in the L_p (1 norm. Special cases of this result extend Theorem A and yield a saturation result for a type of Riesz method.

The other object of this paper is to obtain the degree of convergence of $t_n(f)$ to $f \in L_p$ in terms of the integral modulus of continuity and integral modulus of smoothness with a view to generalizing the following results:

THEOREM B ([12]). If $f \in \text{Lip}(\alpha, p)$ (0 < $\alpha \le 1$, p > 1, $p^{-1} + p'^{-1} = 1$) and if $C_n \to \infty$ and

(14)
$$\left(\int_{1}^{n} \frac{C(y)}{v^{p'\alpha+2-p'}} dy\right)^{1/p'} = O\left(C_{n}/n^{\alpha-p^{-1}}\right)$$

(where $C(y) = C_{\{y\}}$) then

$$||f - N_n(f)||_p = O(n^{-\alpha+p^{-1}}).$$

THEOREM C ([10]). Let $C_n \to \infty$ as $n \to \infty$, and $R(y)/y^{\alpha}$ be nondecreasing where $R(y) = R_{[y]}$. Then $f \in \text{Lip}(\alpha, p)$ $(0 < \alpha < 1, p > 1)$ implies

(16)
$$||f - t_n(f)||_p = O(n^{-\alpha + p^{-1}}).$$

THEOREM D ([8]). If w(t) is the modulus of continuity of $f \in C[-\pi, \pi]$ and $c_n > 0$, $c_n/C_n = O(n^{-1})$,

(17)
$$||f - N_n(f)||_{\infty} = O\left(\frac{1}{C_n} \sum_{k=1}^n \frac{w(1/k)}{k} C_k\right).$$

In Section 4 we shall generalize these results and obtain some other special cases.

3

Following the method of Sunouchi and Watari [16] we can obtain

Theorem 1. Let $1 \le p \le \infty$. The following hold:

(18)
$$||f - t_n(f)||_p = o\left(\frac{c_n}{R_n}\right) \Rightarrow f \text{ is equivalent to a constant.}$$

When $c_{n-k}/c_n \to 1$ as $n \to \infty$, k fixed, we have

(19)
$$\|f - t_n(f)\|_p = O\left(\frac{c_n}{R_n}\right) \Rightarrow \left\|\sum_{k=1}^N D_{k-1}\left(1 - \frac{k}{N+1}\right)A_k(x)\right\|_p = O(1).$$

Thus $||f - t_n(f)||_p = O(c_n/R_n)$ implies

(20)
$$\sum_{k=1}^{\infty} D_{k-1} A_k(x) \text{ is the Fourier series of a bounded function, when } p = \infty;$$

(21)
$$\sum_{k=1}^{\infty} D_{k-1} A_k(x) \text{ is the Fourier series of a function of class } L_p,$$

when 1 ;

(22)
$$\sum_{k=1}^{\infty} D_{k-1} A_k(x) \text{ is the Fourier-Stieltjes series of a function}$$
 of bounded variation, when $p = 1$.

Throughout the paper, we write for $1 \le p < \infty$, $K_p = \{f \in L_p \mid \tilde{f} \in \text{Lip}(1, p)\}$, and $K_{\infty} = \{f \in c_{2\pi} \mid f \in \text{Lip} 1\}$.

If $d_n = 1$ for all n, then we have, from Theorem 1:

COROLLARY 1. Let $C_n > 0$ (all n). Then

(23)
$$||f - N_n(f)||_n = o(c_n/C_n) \Rightarrow f \text{ is equivalent to a constant,}$$

and if (11) holds then

PROOF. It is enough to deduce (24). When (11) holds we observe that the conclusion in (19) shows that the (C,1) mean of $\sum_{k=1}^{\infty} kA_k(x)$ is uniformly bounded in the L_p norm $(1 \le p \le \infty)$. Since $-\sum_k kA_k(x) = \sum_k B'_k(x)$ where $\sum B_k(x)$ is the conjugate series of the Fourier series of f(x), we have $\|\sigma'_N\|_p = O(1)$ where $\sigma_N(x)$ is the first Cesàro mean of $\sum B_k$. This is known to be equivalent to $f \in K_p$.

REMARKS. 1. If p > 1, then the conclusion $f \in K_p$ in Corollary 1 can be replaced by $f \in \text{Lip}(1, p)$ (see [6], Lemma 13, page 621).

2. (20), (21) and (22) refer to the Fourier series $\sum_{k=1}^{\infty} D_{k-1} A_k(x)$. Since we do not know much about the behaviour of that series the saturation problem for (\overline{N}, d) turns out to be difficult. However when p = 2 we get the following as an easy consequence of Parseval's identity:

COROLLARY 2. Let $f \in L_2$. Corresponding to the order of saturation $1/D_n$ the saturation class of the method (\overline{N}, d) or of the operator $\overline{N}_n(f)$ is the class of all functions $f \in L_2$ with Fourier series $\sum_{k=1}^{\infty} D_{k-1} A_k(x)$.

Our next result gives an estimate for the error in approximating a function $f \in K_n$ by $t_n(f)$. Precisely, we prove

THEOREM 2. Let $1 and <math>\{c_n\}$ and $\{d_n\}$ satisfy

(25)
$$\sum_{k=0}^{n} |c_{n-k}d_k - c_{n-k-1}d_{k+1}| = O(c_n).$$

Then, for $f \in K_p$,

(26)
$$||f - t_n(f)||_p = O(c_n/R_n).$$

We shall need the following lemmas for the proof of our theorem:

LEMMA 1 ([5], Theorem 24(i), page 599). If f belongs to Lip(1, p) ($1) then f is equivalent to the indefinite integral of a function belonging to <math>L_p$. If $f \in \text{Lip } 1$ then f is the indefinite integral of a bounded function.

LEMMA 2 ([6], Theorem 5, page 627). Suppose $f \in \text{Lip}(\alpha, p)$ where $p \ge 1, 0 < \alpha \le 1$.

- (i) If $\alpha p \le 1$ and $p < q < p/(1 \alpha p)$, then $f \in \text{Lip}(\alpha 1/p + 1/q, q)$.
- (ii) If $\alpha p > 1$ then $f \in \text{Lip}(\alpha 1/p + 1/q, q)$ for all q > p, and f is equivalent to a function of $\text{Lip}(\alpha 1/p)$.

LEMMA 3. Let

(27)
$$K_n(t) = (R_n)^{-1} \sum_{k=1}^n c_{n-k} d_k \frac{\cos(k+1/2)t}{\sin t/2},$$

and

(28)
$$L_n(t) = \int_t^{\pi} K_n(u) du.$$

Then

(29)
$$f \in K_p \ (1
$$if \int_0^{\pi} |L_n(t)| \ dt = O(c_n/R_n).$$$$

PROOF. Let $\tilde{S}_n(\tilde{f}; x)$ denote the partial sums of the conjugate series associated with $\tilde{f}(x)$. We have, from the definition,

(30)
$$t_n(\tilde{S}_n(\tilde{f};x)) = (2\pi R_n)^{-1} \sum_{k=0}^n c_{n-k} d_k \int_0^{\pi} \left[\tilde{f}(x+t) - \tilde{f}(x-t) \right] \cot \frac{t}{2} dt$$
$$- (2\pi R_n)^{-1} \sum_{k=0}^n c_{n-k} d_k \int_0^{\pi} \left[\tilde{f}(x+t) - \tilde{f}(x-t) \right] \cos \left(k + \frac{1}{2} \right) t \csc \frac{t}{2} dt$$

By M. Riesz's theorem (Zygmund [18], Theorem (2.4), page 253) $f \in L_p$ ($1) <math>\Rightarrow \tilde{f} \in L_p \Rightarrow \tilde{\tilde{f}} \in L_p$ and $\tilde{S}(\tilde{f}) = S(\tilde{\tilde{f}})$. If $p = \infty$, $\tilde{f} \in \text{Lip 1}$ (by hypothesis) and then $-f + \frac{1}{2}a_0$ is identical to \tilde{f} . Thus from (30) and (27),

(31)
$$f(x) - t_n(f; x) = (2\pi)^{-1} \int_0^{\pi} \{\tilde{f}(x+t) - \tilde{f}(x-t)\} K_n(t) dt$$

almost everywhere.

Since $f \in K_p$, by Lemma 1, we can take $\tilde{f}(u)$ equivalent to the indefinite integral of a function, say $\tilde{f}'(u) \in L_p$ (p > 1). By integration by parts, we have from (31)

$$f(x) - t_n(f; x) = (2\pi)^{-1} \int_0^{\pi} \left\{ \tilde{f}'(x+t) + \tilde{f}'(x-t) \right\} L_n(t) dt.$$

By using the generalized Minkowski's inequality ([7], page 148, 6.13.9)

$$\|f - t_n(f)\|_p \le (2\pi)^{-1} \int_0^{\pi} \|\tilde{f}'(x+t) + \tilde{f}'(x-t)\|_p \|L_n(t)\| dt$$

$$= O\left(\int_0^{\pi} |L_n(t)| dt\right) = O(c_n/R_n).$$

LEMMA 4 ([4]).

(32)
$$\left| \int_{t}^{\pi} \frac{\sin(k+1)u}{u^{2}} du \right| \le \begin{cases} 2(k+1)\log \frac{1}{(k+1)t} & \text{for } 0 < (k+1)t < 1/e; \\ 2/(k+1)t^{2} & \text{for any } k \ge 0, t > 0. \end{cases}$$

The lemma can be proved easily.

PROOF OF THEOREM 2. In view of Lemma 3, it is enough to prove (29). By Abel's transformation

(33)
$$-K_n(t) = \left(2R_n \sin^2 \frac{t}{2}\right)^{-1} \sum_{k=0}^n \left(c_{n-k} d_k - c_{n-k-1} d_{k+1}\right) \sin(k+1)t.$$

Since

$$\left(2\sin^2\frac{t}{2}\right)^{-1} = \frac{2}{t^2} + O(1),$$

we get, from (33) and (25), that

$$-K_n(t) = (2/R_n t^2), \sum_{k=0}^n (c_{n-k} d_k - c_{n-k-1} d_{k+1}) \sin(k+1)t + O(c_n/R_n).$$

From (33), we observe that (29) holds if

(34)
$$\sum_{k=0}^{n} \left| \left(c_{n-k} d_k - c_{n-k-1} d_{k+1} \right) \right| \int_{0}^{\pi} \left| \int_{t}^{\pi} \frac{\sin(k+1)u}{u^2} du \right| dt = O(1).$$

In view of (25), (34) is true whenever

(35)
$$\int_0^{\pi} \left| \int_t^{\pi} \frac{\sin(k+1)u}{u^2} du \right| dt = O(1)$$

uniformly in k.

By Lemma 4, the integral on the left of (35) does not exceed

$$\int_0^{1/e(k+1)} \left| \int_t^{\pi} \frac{\sin(k+1)u}{u^2} du \right| dt + \int_{1/e(k+1)}^{\pi} \left| \int_t^{\pi} \frac{\sin(k+1)u}{u^2} du \right| dt$$

$$\leq \int_0^{1/e(k+1)} 2\log(1/(k+1)t) dt + \int_{1/e(k+1)}^{\pi} 2(k+1)^{-1} t^{-2} dt.$$

Since each integral is bounded the result follows.

COROLLARY 3. Let
$$\{d_n\} \in bv$$
, $d_n \ge 0$, $D_n > 0$. If $f \in K_p$ $(1 , then $\|f - \overline{N}_n(f)\|_p = O(D_n^{-1})$.$

COROLLARY 4. Let $\{c_n\}$ satisfy $C_n \ge 0$, $C_n > 0$, and

(36)
$$\sum_{k=0}^{n} |c_k - c_{k-1}| = O(c_n) \qquad (c_{-1} = 0).$$

Then $f \in K_p$ implies $||f - N_n(f)||_p = O(c_n/C_n)$ (1 .

The case $p = \infty$ is given in [4, Lemma 2.3]. Combining Corollary 1 and Corollary 4, we get the following:

THEOREM 3. Let $\{c_n\}$ satisfy (11) and (36). Then the Nörlund method (N, c_n) is saturated with order c_n/C_n and class K_p .

REMARK. Lemma 3 shows that (29) is a sufficient condition for $||f - t_n(f)||_p = O(c_n/R_n)$ whenever $f \in K_p$ (1). We do not know if (29) is also necessary.

4

Let us write $R(y) = R_{[y]}$. With a view to generalizing Theorem B and Theorem C, and extending Theorem D, we prove the following:

THEOREM 4. Let $\{c_n\}$, $\{d_n\}$ be non-negative, non-increasing sequences and $R_n > 0$. Let $f \in L_p[-\pi, \pi]$ $(1 or <math>f \in c_{2\pi}$ $(p = \infty)$. Then

(42)
$$||f - t_n(f)||_p = O\left(\frac{1}{R_n} \sum_{k=1}^n \frac{w_2^{(p)}(1/k)}{k} R_k\right) + O\left(w_2^{(p)}\left(\frac{1}{n}\right)\right).$$

REMARK. If in addition to the hypotheses assumed on the sequences $\{c_n\}$ and $\{d_n\}$, we assume that there exists l > 0 such that

(43)
$$(R_n)^{-1} \sum_{k=1}^{n} (R_k/k) \ge l (n = 1, 2, ...)$$

then

(44)
$$w_2^{(p)} \left(\frac{1}{n} \right) \le (lR_n)^{-1} \sum_{k=1}^n \left\{ \frac{R_k w_2^{(p)} (1/k)}{k} \right\}.$$

Hence we can get from (42) that

$$\|f - t_n(f)\|_p = O\left(\frac{1}{R_n} \sum_{k=1}^n \left(\frac{R_k w_2^{(p)}(1/k)}{k}\right)\right).$$

We shall need the following lemma for the proof of our theorem.

LEMMA 5 ([10]). If $\{c_n\}$ and $\{d_n\}$ are non-negative, non-increasing sequences and $\tau = [1/t]$ then for $0 \le a < b \le n$ (any n), and $0 < |t| \le \pi$, we have

$$\left|\sum_{k=1}^{b} c_{n-k} d_k \sin kt\right| = O(R(\tau)) \text{ as } t \to 0.$$

PROOF OF THEOREM 4. We easily get

$$f(x) - t_n(f; x) = \int_0^{\pi} \{ f(x+t) + f(x-t) - 2f(x) \} M_n(t) dt$$

where

$$M_n(t) = (2\pi R_n)^{-1} \sum_{k=0}^n c_{n-k} d_k \frac{\sin(k+\frac{1}{2})t}{\sin t/2}.$$

Hence, by generalized Minkowski's inequality

$$|| f(x) - t_n(f; x) || \le I_1 + I_2,$$

where

$$I_1 = \int_0^{\pi/n} w_2^{(p)}(t;f) |M_n(t)| dt$$
, and $I_2 = \int_{\pi/n}^{\pi} w_2^{(p)}(t;f) |M_n(t)| dt$.

Since $0 < \sin(k + \frac{1}{2})t < (2k + 1)\sin t/2$ for $0 \le k \le n$, $0 < t < \pi/n$, we have

$$I_1 = O\Big((2n+1)\int_0^{\pi/n} w_2^{(p)}(t;f) dt\Big) = O\Big(w_2^{(p)}\Big(\frac{\pi}{n};f\Big)\Big).$$

By Lemma 5,

$$I_{2} = O\left(\frac{1}{R_{n}} \int_{\pi/n}^{\pi} \frac{R(1/t)}{t} w_{2}^{(p)}(t; f) dt\right)$$

$$= O\left(\frac{1}{R_{n}} \sum_{k=1}^{n-1} \int_{k/\pi}^{(k+1)/\pi} \frac{w_{2}^{(p)}(\frac{1}{t}, f) R(t)}{t} dt\right)$$

$$= O\left(\frac{1}{R_{n}} \sum_{k=1}^{n} \left(\frac{R_{k} w_{2}^{(p)}(1/k)}{k}\right)\right).$$

On collecting the estimates, the theorem follows.

REMARK. If $0 < \alpha \le 1$, p > 1, $\alpha p > 1$ then, by Lemma 2(ii), $f \in \text{Lip}(\alpha, p)$ implies $w_2^{(p)}(\delta; f) = O(\delta^{\alpha - 1/p})$. In this case

$$w_2^{(p)}(1/n) = O(n^{-\alpha+1/p})$$

and

$$\frac{1}{R_n} \sum_{k=1}^n \frac{R_k w_2^{(p)}(1/k)}{k} = O\left(\frac{1}{R_n} \sum_{k=1}^n R_k \frac{1}{k^{\alpha+1-1/p}}\right).$$

Let $\delta \ge 0$ and A_n^{δ} be given by $\sum_{n=0}^{\infty} A_n^{\delta} x^n = (1-x)^{-\delta-1}$ (|x| < 1). Let $N_n(f)$ be written as $\sigma_n^{\delta}(f)$ or $H_n(f)$ according as $c_n = A_n^{\delta-1}$ or $c_n = (n+1)^{-1}$ for all n. By putting $d_n = 1$ for all n, we get the following results:

COROLLARY 5. Let $f \in \text{Lip}(\alpha, p)$, 1 . Then

$$\|f - \sigma_n^{\delta}(f)\|_p = \begin{cases} O(n^{-\delta + 1/p}) & (0 < \delta < \alpha \le 1); \\ O\left(\frac{\log n}{n^{\delta - 1/p}}\right) & (0 < \delta \le \alpha \le 1). \end{cases}$$

Remark. The case $p = \infty$ of Corollary 5 was proved by Alexits [1].

COROLLARY 6. If $\{c_n\}$ is a positive non-increasing sequence and $f \in L_p[-\pi, \pi]$ $(1 or <math>f \in c_{2\pi}$ $(p = \infty)$, then

$$||f - N_n(f)||_p = O\left(\frac{1}{C_n} \sum_{k=1}^n \frac{C_k}{k} w^{(p)}\left(\frac{1}{k}; f\right)\right).$$

Remark. The case $p = \infty$ of this Corollary is Theorem D.

COROLLARY 7. If $f \in \text{Lip}(\alpha, p)$, $\alpha p > 1$, $0 < \alpha \le 1$, p > 1, then

$$||f - H_n(f)||_p = O((\log n)^{-1}).$$

In what follows, we shall write $\overline{H}_n(f)$ for $\overline{N}_n(f)$ when $d_n = 1/(n+1)$.

COROLLARY 8. Let $\{d_n\}$ be a non-negative, non-increasing sequence. Then for $f \in L_p[-\pi, \pi]$ $(1 , or <math>f \in c_{2\pi}$ $(p = \infty)$,

$$\|f - \overline{N}_n(f)\|_p = O(w^{(p)}(1/n)) + O\left(\frac{1}{D_n}\sum_{k=1}^n \frac{D_k w^{(p)}(1/k)}{k}\right).$$

COROLLARY 9. If $f \in \text{Lip}(\alpha, p)$, $\alpha p > 1$, $0 < \alpha \le 1$, p > 1, then

$$\|f - \overline{H}_n(f)\|_p = O((\log n)^{-1}).$$

REMARKS. (i) Since $w_2^{(p)}(\delta, f) \le 2w^{(p)}(\delta, f)$, Corollary 6 and Corollary 8 are stated with estimates using modulus of continuity in place of integral modulus of smoothness.

(ii) It can be observed that our corollaries contain assumptions on $\{c_n\}$ and $\{d_n\}$ but we do not use conditions of the type (14) (see Theorem B and Theorem C).

Finally we are grateful to the referee for his valuable comments.

References

- [1] G. Alexits, 'Über die Annäherung einer stetigen Funktion durch die Cesàroschen Mittel ihrer Fourrierreihe', *Math. Ann.* 100 (1928), 264–277.
- [2] D. Borwein, 'On products of sequences', J. London Math. Soc. 33 (1958), 212-220.
- [3] J. Favard, 'Sur la saturation des procédés de sommation', J. Math. Pures Appl. 36 (1957), 359-372.
- [4] D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney, 'Best approximation by a saturation class of polynomial operators', *Pacific J. Math.* 55 (1974), 149–155.
- [5] G. H. Hardy and J. E. Littlewood, 'Some properties of fractional integrals Γ', Math. Z. 27 (1928), 565-600.
- [6] G. H. Hardy and J. E. Littlewood, 'A convergence criterion for Fourier series', Math. Z. 28 (1928), 612-634.
- [7] G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities* (Cambridge, 1934, 1967).
- [8] A. S. B. Holland, B. N. Sahney and J. Tzimbalario, 'On the degree of approximation of a class of functions by Fourier Series', *Acta. Sci. Math.* (Szeged) 38 (1976), 69-72.
- [9] H. H. Khan and S. M. Rizvi, 'On the saturation classes of functions by (N, p_n, q_n) method', Indian J. Pure Appl. Math. 6 (1974), 1262-1269.
- [10] H. H. Khan, 'On the degree of approximation of functions belonging to class Lip(α , p)', *Indian J. Pure Appl. Math.* **5** (1974), 132–136.

- [11] R. N. Mohapatra and B. N. Sahney, 'Saturation of a class of linear operators involving a lower-triangular matrix', *Acta Sci. Math.* (Szeged), to appear.
- [12] B. N. Sahney and V. G. Rao, 'Error bounds in the approximation of functions', Bull. Austral. Math. Soc. 6 (1972), 11-18.
- [13] G. Sunouchi, 'On the class of saturation in the theory of approximation II, III', Tôhoku Math. J. 13 (1961), 112-118; 320-328.
- [14] G. Sunouchi, 'Local saturation in convolution operators', to appear.
- [15] G. Sunouchi and C. Watari, 'On determination of the class of saturation in the theory of approximation of functions', Proc. Japan Acad. 34 (1958), 477-481.
- [16] G. Sunouchi and C. Watari, 'On determination of the class of saturation in the theory of approximation of functions II', Töhoku Math. J. 11 (1959), 480-488.
- [17] M. Zamanski, 'Classes de saturation de certains procédés d'approximation des séries de Fourier', Ann. Sci. Ecole Norm. Sup. 66 (1949), 19-93.
- [18] A. Zygmund, Trigonometric Series, Vol. I and Vol. II (Cambridge University Press, 1968).

Department of Mathematics American University of Beirut Beirut Lebanon Department of Mathematics York University Downsview, Ontario M3J 1P3 Canada