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Abstract

The paper is concerned with the determination of the degree of convergence of a sequence of linear
operators connected with the Fourier series of a function of class Lp (p > 1) to that function and
some inverse results in relating the convergence to the classes of functions. In certain cases one can
obtain the saturation results too. In all cases Lp norm is used.

1980 Mathematics subject classification (Amer. Math. Soc): 41 A 40.

1

Let f(x) be a periodic, Lebesgue integrable function with period 2m. Let the
Fourier series for/(x) be given by

OC 00

(1) 2#o + 2 (a*coskx + bksin kx) = 2 Ak{x).
A r = l k = 0

Let Sn(f\ x) be the nlh. partial sum of the series (1). The conjugate series of the
series (1) is

00 00

2 Bn(x) = 2 (bkcoskx — aksin kx).
n=\ k=\

The conjugate function/of/, is given by

(2) f{x) = (2^)"' f {f(x + t) -fix - t)}cot±dt

the integral being interpreted as a Cauchy integral. It is known that/exists almost
everywhere whenever/is integrable.
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144 R. N. Mohapatra and D. C. Russell [2 ]

The space Lp\ — m,-n\ when p — oo will be replaced by the space c2w of all
continuous functions defined over [ — 77,77-]. Throughout the paper, norms will be
taken with respect to the variable JC and || • II ̂  will denote the usual Lp norm for
1 <p < 00, and the supremum norm when/> = 00. F o r / G Lp[ — ir, 77] (1 <p <
00), the modulus of continuity and the modulus of smoothness w(p)(8, / ) and

S; f) are defined respectively by

(3) w<"(8;/) = sup \\f{x + h) -f(x)\\p, and

(4) « 4 p \ 8 ; f ) = s up \\f(x + h) + f { x - h ) - 2f(x)\\p.

The classes Lip a, Lip(a, p) (p > 1) will be as usual (see [5], page 612; also see
[18], pages 42, 45). The class Lip(o, p) with/; — 00 will be taken as Lip a.

Two functions / and g are said to be equivalent if f(x) — g(x) almost
everywhere.

Let {cn}, {dn} be two non-zero sequences with cn, dn > 0. Suppose Cn = 2^= 0 ck

a n d Dn = 2 n
k = 0 dk. L e t R n = c o d n + c x d n _ x + ••• + c n d 0 (n = 0 , 1 , . . . ) .

Given/, let us associate with it the operator tn{ f) defined by

(5) tn(f;x) = (Rnyi ic^kdkSk(x).
k=\

It should be remarked that tn(f; x) is the (N, c, d) transform of {Sk(f; x)} (see
[2]).

We shall write tn(f; x) = Nn(f; x) or Nn(f; x) according as dn = 1 for all n or
cn = 1 for all n.

If there exists a positive non-increasing function §(n) and a normed linear
space K of functions such that

(6) II f(x) — tn(f; x)\\ = o(<j>(n)) =>/is a constant a.e.,

(7) \\f(x)-tn(f;x)\\ = O(4>(n))~fGK, and

(8) f&K~\\f(x)-tn(f;x)\\

then we say that the operator tn{f) or the corresponding method (N,c,d) is
saturated with order <f>(«) and class K.

Ever since the definition of saturation of summability methods was given by
Favard [3] many authors have studied the saturation property of operators which
are obtained as transforms of the nth partial sum of the Fourier series by
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summability methods. Sunouchi and Watari [15], [16] have obtained the satura-
tion order and class for Cesaro, Abel and the Riesz method (R, n^, 1) (f =
1,2,...). Mohapatra and Sahney [11] have obtained results on saturation for a
general class of summability methods in the supremum norm. Sunouchi [14] has
studied the local saturation properties of the convolution operator (also see [13],
[17]).

Concerning the saturation property of the Norlund method, Goel, Holland,
Nasim and Sahney [4] have proved the following theorem:

THEOREM A ([4], compare [9]). Letf G c2w and Cn > 0 (all n). Then the following
hold:

(9) Wf-Nn{f)\\K =o{~\ ^ f is a constant a.e.

(10)

whenever

(11)

(12)

vfhenever

U-K(f)Wx =

Cn~k

n-oo Cn

/ G { / | / G L i p l )

= 0,l,...;cn>0foralln).

| | / - Nn(f)\\x = o ( ^

(13) 2 \ck-ck^\=O(cn) ( c _ , = 0 ) .
k = 0

In Section 3 we obtain the order and class of saturation of the method (N, c, d)
or the operator *„(/) in the Lp (1 < p < oo) norm. Special cases of this result
extend Theorem A and yield a saturation result for a type of Riesz method.

The other object of this paper is to obtain the degree of convergence of / „ ( / ) to
/ G Lp in terms of the integral modulus of continuity and integral modulus of
smoothness with a view to generalizing the following results:

THEOREM B ([12]). IffG Lip(o, p) (0 < a < 1, p > 1, />"' + / / " ' = 1) and if
Cn -> oo and

(where C(y) — C[y]) then
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THEOREM C ([10]). Let Cn -> oo as n -» oo, and R(y)/y" be nondecreasing where
R(y) = R[y]- Thenfe Lip(a, p) (0 < a < \,p > 1) implies

(16) \\f-

THEOREM D ([8]). Ifw(t) is the modulus of continuity off G C[-w, w] a«J cn > 0,
cn/Cn = O(n - ' ) ,

07) (^

In Section 4 we shall generalize these results and obtain some other special
cases.

Following the method of Sunouchi and Watari [16] we can obtain

THEOREM 1. Let 1 <p *£ 00. The following hold:

( c \
-r2- ^fis equivalent to a constant.

When cn_k/cn -» 1 as n -> 00, k fixed, we have

(19) 1 1 / - / „
k=l p

= 0(1).

Thus | | / - tnU)\\p = O(cJRn) implies
00

(20) 2 Dk_i A k(x) is the Fourier series ofabounded function, when p = oo;
k=\

oo

(21) 2 D k_x A k{x) is the Fourier series of a function of class Lp,
k=\

when 1 < p < oo;
00 ^

(22) 2 Dk_lAk(x) is the Fourier-Stieltjes series of a function

~ of bounded variation, when p = 1.

Throughout the paper, we write for 1 ^p < 00, Kp = {/ G Lp | / G Lip(l, /?)},
and *„, = { / G c 2 i r | / e l i p 1}.
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If dn — 1 for all n, then we have, from Theorem 1:

COROLLARY 1. Let Cn > 0 (alln). Then

(23) Wf~ Nn{f)\\p = o{cn/Cn) => /'is equivalent to a constant,

and if'(11) holds then

(24) \\f-Nn(f)\\p = O(cn/Cn)^feKp (Kp< co).

PROOF. It is enough to deduce (24). When (11) holds we observe that the
conclusion in (19) shows that the (C, 1) mean of 2'j°=lkAk(x) is uniformly
bounded in the Lp norm (1 < / ; < o o ) . Since — '2kkAk(x) = '2kB'k(x) where
2 Bk(x) is the conjugate series of the Fourier series of f(x), we have || a'N II p — 0(1)
where aN(x) is the first Cesaro mean of 2 Bk. This is known to be equivalent to

REMARKS. 1. If p > 1, then the conclusion / G Kp in Corollary 1 can be
replaced b y / G Lip(l, p) (see [6], Lemma 13, page 621).

2. (20), (21) and (22) refer to the Fourier series lk°=iDk_lAk(x). Since we do
not know much about the behaviour of that series the saturation problem for
(N, d) turns out to be difficult. However when/> = 2 we get the following as an
easy consequence of Parseval's identity:

COROLLARY 2. Let f G L2. Corresponding to the order of saturation l/Dn the
saturation class of the method (N, d) or of the operator Nn(f) is the class of all
functions f G L2 with Fourier series 2JL \Dk_ tAk(x) .

Our next result gives an estimate for the error in approximating a function
/ G Kp by /„( / ) . Precisely, we prove

THEOREM 2. Let 1 < p < oo and {cn} and {dn} satisfy
n

(25) 2 \c*-kdk-cn-k-xdk+x\=O{cn).
k = 0

Then, for f E Kp,

(26) Wf-tn{f)\\p=O{cJRn).

We shall need the following lemmas for the proof of our theorem:

LEMMA 1 ([5], Theorem 24(i), page 599). If f belongs to Lip(l, p) (1 <p =£ oo)
then f is equivalent to the indefinite integral of a function belonging to L . If
f G Lip 1 then f is the indefinite integral of a bounded function.
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LEMMA 2 ([6], Theorem 5, page 627). Suppose/ G Lip(a, p) where p s* 1,0 < a

< 1.

(i) Ifap < 1 andp < q<p/(\ - ap), thenfe Lip(a - \/p + \/q, q).
(ii) If ap > 1 then f G Lip(a — l/p + \/q, q) for all q > p, and f is equivalent

to a function o/Lip(a — l/p).

LEMMA 3. Let

V c .1
Z C n ~ k d k . : „ , n

and

(28) Ln(t)=fKn(u)du.

Then

(29) fGKp(Kp< oo)-implies \\f-tn(f)\\p = O(cn/Rn)

iff\Ln(t)\dt=O{cn/Rn).

PROOF. Let Sn(f; x) denote the partial sums of the conjugate series associated
with/(.x). We have, from the definition,

(30) tH(Sn(f;x)) = (2vRn)-
1 2 cn_kdk f [f(x + t) - f(x - t)]cot jdt

k=o

cn_kdkf [f(x + t) - f(x - t)]cos(k + \

By M. Riesz's theorem (Zygmund [18], Theorem (2.4), page 253)/G Lp (1 < p
< oo) ==>/£ Lp =*/G Lp and S(f) - S(f). If p - oo,/G Lip 1 (by hypothesis)
and then —/ + ja0 is identical to/ . Thus from (30) and (27),

( 3 1 ) f { x ) ~ t n ( f ; x ) = ( 2 7 7 ) " 1 f { f { x + t ) - f ( x - t ) } K n { t ) dt
Jo

almost everywhere.
Since / G Kp, by Lemma 1, we can take f(u) equivalent to the indefinite

integral of a function, say / '(«) G Lp (p > 1). By integration by parts, we have
from (31)

fix) ~ tn{f\ x) = (2«r)"'jf' {/'(* + 0 +f'(x ~ t)}Lnit) dt.

https://doi.org/10.1017/S144678870002317X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002317X


171 Approximation of functions 149

By using the generalized Minkowski's inequality ([7], page 148, 6.13.9)

= o[f\Ln{t)\dt}=O{cn/Rn).

(32)

LEMMA 4 ([4]).

w sin(/c + \)u

Jf du

2(k+ l)log
1

forO<(k+ \)t< l/e;
(k+\)t

2/(k+\)t2 foranyk^0,t>0.

The lemma can be proved easily.

PROOF OF THEOREM 2. In view of Lemma 3, it is enough to prove (29). By
Abel's transformation

(33) - * „ ( ' ) =

Since

k = C

(cn-kdk ~ cn_k_tdk+l)sin(k + \)t.

- 12sin4) = f
we get, from (33) and (25), that

k = Q

From (33), we observe that (29) holds if

(34) 2 \ ( c n - k d k - c n _ k _ x d k + x ) \ f f
r" sin(k

In view of (25), (34) is true whenever

•"• sin(A: +
(35)

uniformly in k.

f I -du dt = O(\)

\)t + O(cn/Rn).

-du dt =
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By Lemma 4, the integral on the left of (35) does not exceed

\/e(k+l)

Jf
\)u

du
\/e(k+\)

m sin(A:
-du dt

I"\/e(k+\)

Since each integral is bounded the result follows.

COROLLARY 3. Let {dn} <Ebv,dn> 0, Dn > 0. / / / G K p ( \ <p< oo), then

COROLLARY 4. Let {cn} satisfy Cn > 0, Cn > 0, and
n

(36) 2 \ck-ck.x\=O{cn) ( c _ , = 0 ) .

ThenfEKp implies \\f- Nn(f)\\p = O(cn/Cn) (Kp< oo).

The case/? = oo is given in [4, Lemma 2.3].
Combining Corollary 1 and Corollary 4, we get the following:

THEOREM 3. Let {<•„} satisfy (11) and (36). Then the Norlund method (N, cn) is
saturated with order cn/Cn and class Kp.

REMARK. Lemma 3 shows that (29) is a sufficient condition for 11/— tn(f)\\
= O(cn/Rn) whenever / G Kp (1 <p < oo). We do not know if (29) is also
necessary.

Let us write R(y) = R[y]. With a view to generalizing Theorem B and Theorem
C, and extending Theorem D, we prove the following:

THEOREM 4. Let {cn}, {dn} be non-negative, non-increasing sequences and
Rn>0.Letf£Lp[-v,n](\ <p< oo) orf G c2rr (p = oo). Then

(42)
1 HiA), O
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REMARK. If in addition to the hypotheses assumed on the sequences {cn} and
{dn}, we assume that there exists / > 0 such that

(43)

then

> - l 2 (Rk/k)>l ( « = 1 , 2 , . . . )

.,-j,
Hence we can get from (42) that

We shall need the following lemma for the proof of our theorem.

LEMMA 5 ([10]). / / {cn} and {dn} are non-negative, non-increasing sequences and
T = [\/t\ then for 0 < a < b < n (any n), andO <\t\<n,we have

b

cn_kdksinkt
k=\

= O(R(r))ast

PROOF OF THEOREM 4. We easily get

f(x) - /„(/; x) = f {f(x + t) +f(x - /) - 2f(x)}Mn(t) dt

where

sin t/2 '

Hence, by generalized Minkowski's inequality

(45) Wf(x)-tnU;x)\\<I,+I2,

where

/, = r/nv4pKt\f) | Mn(r) I *, and J2 = f w^(t;f)\Mn(t) | dt.

Since 0 < sin(A: + {)t < (2k + l)sin f/2 for 0 < k < n, 0 < r < w/«, we have

/, = O[(2n +
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By Lemma 5,

R. N. Mohapatra and D. C. Russell

= o T "2 /
(k+\)/v T./W)

" k=\

On collecting the estimates, the theorem follows.

[10]

REMARK. I f O < a < l , / > > l , ap > I then, by Lemma 2(ii), / G Lip(a, p)
implies w2

(^(5;/) = O(8a~l/p). In this case

' n ) = O(n'a+l/p)

and

/?. k=\
= oN-2^

1

R» k=\
j<a+\-\/p

Let S > 0 and y4* be given by 2^= 0^*x" = (1 - x)""8"1 ( | x | < 1). Let #„
be written as o£(f) or Hn(f) according as cn = As

n ~' or cn = (n 4- 1) ' for all w
By putting dn = 1 for all n, we get the following results:

COROLLARY 5. Letf e Lip(a, />), 1 < ^ =£ oo. Then

REMARK. The case/? = oo of Corollary 5 was proved by Alexits [1].

COROLLARY 6. If {cn} is a positive non-increasing sequence and f G Lp[— -IT, IT]

(1 < p < oo) orfE c2v(p — oo), then

•"" * = i

REMARK. The case p = oo of this Corollary is Theorem D.
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COROLLARY 7. / / / G Lip(a, p), ap > 1, 0 < a «s \,p > 1, then

In what follows, we shall write Hn(f) for Nn(f) when dn - \/{n + 1).

COROLLARY 8. Let {dn} be a non-negative, non-increasing sequence. Then for
/ G L p H M r K l <p<<x>lorfEc2n (p= oo),

COROLLARY 9. / / / G Lip(a, /?), a/> > 1, 0 < a < l,/> > 1,

11/- / /„( / ) ! ! , = o((log«)"')•

REMARKS, (i) Since w±p\8, f) < 2w(p\S, / ) , Corollary 6 and Corollary 8 are
stated with estimates using modulus of continuity in place of integral modulus of
smoothness.

(ii) It can be observed that our corollaries contain assumptions on {cn} and
{dn} but we do not use conditions of the type (14) (see Theorem B and Theorem
C).

Finally we are grateful to the referee for his valuable comments.
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