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Abstract

Environmental stress screening (ESS) of manufactured items is used to reduce the
occurrence of future failures that are caused by latent defects by eliminating the items with
these defects. Some practical descriptions of the relevant ESS procedures can be found
in the literature; however, the appropriate stochastic modeling and the corresponding
thorough analysis have not been reported. In this paper we develop a stochastic model
for the ESS, analyze the effect of this operation on the population characteristics of the
screened items, and also consider the relevant optimization issues.

Keywords: Environmental stress screening; burn-in; stress–strength model; shock model;
nonhomogeneous Poisson process

2010 Mathematics Subject Classification: Primary 60K10
Secondary 62P30

1. Introduction

There are different ways of improving reliability characteristics of manufactured items. The
most common methodology adopted in industry is burn-in, which is a method of ‘elimination’of
initial failures (infant mortality). Usually, to burn-in a component or a system means to subject
it to a fixed time period of simulated use prior to actual operation. Due to the high failure rate
during the early stages of the component’s life, burn-in has been widely accepted as an effective
method of screening out these initial failures. Thus, the ‘sufficient condition’ for employing the
traditional burn-in is the initially decreasing failure rate. For example, when a population of
items is heterogeneous and, therefore, consists of subpopulations with ordered failure (hazard)
rates, it obviously contains weaker (with larger failure rates) subpopulations. As the weakest
populations die out first (see Finkelstein (2008)), the failure rate of this population is often
initially decreasing and burn-in can be effectively applied (see Mi (1994a), (1994b), (1996) and
Cha and Finkelstein (2010)).

It should be noted that not all populations of engineering items that contain ‘weaker’ items
to be eliminated exhibit this shape of failure rate. For example, the ‘weakness’ of some
manufactured items can result from the latent defects that can create additional failure modes.
The failure rate in this case is not necessarily decreasing (see Example 1) and, therefore,
traditional burn-in should not be applied. However, by applying the short-time excessive
stress, the weaker items in the population with increasing failure rate can be eliminated by
the environmental stress screening (ESS) and, therefore, the reliability characteristics of the
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population of items that have successfully passed the ESS test can still improve. This is the
crucial distinction between this operation and burn-in. In fact, the formal difference between
the ESS and burn-in has not been clearly defined in the literature. In this paper we understand
the ESS as the method of elimination of items with additional (nonconventional) failure modes,
whereas burn-in targets elimination of weaker items with conventional failure modes and it
is effective only when the population failure rate is initially decreasing. Another important
distinction of the proposed model from burn-in is that the ESS can also create new defects in
items that were previously defect free.

Numerous stochastic models of burn-in have been intensively studied in the literature during
the last decades (see Mi (1991) and Cha (2009) for the corresponding review). Although some
practical engineering approaches to the ESS modeling were reported (see, e.g. Fiorentino and
Saari (1983) andYan and English (1997)), to the best of the authors’ knowledge, there has been
little research dealing with adequately advanced stochastic modeling and analysis of the ESS.

In this paper we develop a stochastic model for the ESS, analyze its effect on the population
characteristics of the screened items, and describe related optimization problems. We assume
that, due to substandard materials or a faulty manufacturing process, some of the manufactured
items are susceptible to additional causes of failure (failure mode), i.e. shocks (such as electrical
or mechanical shocks). We define the ESS as a procedure of applying a shock of controlled
magnitude, i.e. a short-time excessive stress. In practice, for example, a shock can be understood
as a short-time electric impulse. For the ESS to be effective, the corresponding magnitude should
be reasonably larger than the magnitude of shocks that occur in field usage.

Our modeling is within the framework of the general stress–strength model. Indeed, the
failure of an item occurs when the magnitude of the stress (shock) exceeds its strength. A larger
ESS shock magnitude (within ‘physical limits’) implies better reliability characteristics of
survived items in field usage, but at the same time, incurs a larger ESS cost as more items with
defects are discarded. An important feature of our model is that we assume that the item during
field usage is exposed to a point process of environmental shocks with an ordinary, not excessive
magnitude. These shocks can obviously destroy only defective items that have passed the ESS
or were induced by the ESS.

The paper is organized as follows. In Section 2 we provide a general supplementary result
for the stress–strength model that will be used intensively throughout this paper. Section 3 is
devoted to the detailed probabilistic analysis of the suggested model. In Section 4 we discuss
and illustrate the corresponding optimization problem. Finally, some concluding remarks are
given in the last section.

2. General stress–strength-type shock model

In this section we consider a rather general stress–strength shock model, which will be used
as a crucial supplementary result for considering the ESS model of the subsequent sections.
For other related shock models, see, e.g. Cha and Finkelstein (2011).

Consider a system (item) subject to the nonhomogeneous Poisson process (NHPP) of shocks
N(t), t ≥ 0, with rate λ(t) and arrival times Ti, i = 1, 2, . . . . Let, for simplicity, shocks
be the only cause of a system’s failure. We assume that the initial shock process, N(t),

t ≥ 0, is external for the system in the sense that N(t), t ≥ 0, may influence the system’s
performance but is not influenced by it (see Fleming and Harrington (1991)). Denote by Si

the magnitude (stress) of the ith shock. Assume that Si, i = 1, 2, . . . , are independent and
identically distributed (i.i.d.) random variables with common cumulative distribution function
(CDF) M(s) = Pr(Si ≤ s) (M̄(s) ≡ 1−M(s)) and corresponding probability density function
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(PDF) m(s). Let U be a random strength of the system with the corresponding CDF, survival
function (SF), PDF, and failure rate (FR) respectively denoted by GU(u), ḠU (u), gU(u), and
rU (u). For each i = 1, 2, . . . , the operable system survives if Si ≤ U and fails if Si > U ,
independently of everything else. Thus, we are interested in the probability of survival of our
system in [0, t), t > 0.

Let TS be the lifetime of the system described above, and let λS(t) be the corresponding FR
function. Note that a more general discussion of the history-dependent shock models can be
found in Cha and Finkelstein (2012), (2013). However, for the sake of presentation and further
applications to ESS problems, the following result will be obtained in the described specific
setting only.

Theorem 1. The failure rate function of the described system corresponding to TS is given by

λS(t) = p(t)λ(t),

where

p(t) ≡ P(SN(t−)+1 > U | TS ≥ t) =
∫ ∞

0

∫ v

0 exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) drm(v) dv∫ ∞
0 exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) dr
.

Proof. Assume first that N(t), t ≥ 0, is a general, orderly shock process. Let Ht− ≡ {N(s),

0 ≤ s < t} be its history up to t . Then the conditional probability of failure in the infinitesimal
interval of time can be formally written as

P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U)

= P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U, N((t + dt)−) − N(t−) = 1)

× P(N((t + dt)−) − N(t−) = 1 | TS ≥ t, Ht−, U)

+ P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U, N((t + dt)−) − N(t−) = 0)

× P(N((t + dt)−) − N(t−) = 0 | TS ≥ t, Ht−, U)

= P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U, N((t + dt)−) − N(t−) = 1)

× P(N((t + dt)−) − N(t−) = 1 | Ht−), (1)

where
P(N((t + dt)−) − N(t−) = 1 | TS ≥ t, Ht−, U)

reduces to
P(N((t + dt)−) − N(t−) = 1 | Ht−)

as Ht− completely defines the corresponding conditional probability due to our assumption that
the initial shock process is external. Accordingly, from (1),

P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U)

= P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U, N((t + dt)−) − N(t−) = 1)ν(t | Ht−) dt,

(2)

where ν(t | Ht−) is the conditional intensity function of a point process (see Cox and Isham
(1980) and Andersen et al. (1993)) defined by

ν(t | Ht−) ≡ lim
�t→0

P(N((t + �t)−) − N(t−) = 1 | Ht−)

�t
.
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For the NHPP, obviously, ν(t | Ht−) = λ(t). It is also clear that

P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U, N((t + dt)−) − N(t−) = 1) = 1(SN(t−)+1 > U),

where 1(·) is the corresponding indicator. Therefore, (2) now becomes

P(TS ∈ [t, t + dt) | TS ≥ t, Ht−, U) = 1(SN(t−)+1 > U)λ(t) dt,

and, thus
P(TS ∈ [t, t + dt) | TS ≥ t) = E[1(SN(t−)+1 > U)]λ(t) dt, (3)

where the expectation is with respect to the conditional distribution of U | TS ≥ t . From (3),
λS(t) is given by

λS(t) = P(SN(t−)+1 > U | TS ≥ t)λ(t). (4)

As the distribution of SN(t−)+1 does not depend on the event {TS ≥ t}, it is sufficient to derive
the distribution for U | TS ≥ t . Observe that

P(TS ≥ t | N(t−) = n, U = u) = P(u ≥ max{S1, S2, . . . , Sn}) = (M(u))n.

Thus,

P(TS ≥ t, U > u) =
∫ ∞

u

∞∑
n=0

(M(r))n
(
∫ t

0 λ(x) dx)n

n! exp

{
−

∫ t

0
λ(x) dx

}
gU(r) dr

=
∫ ∞

u

exp

{
−M̄(r)

∫ t

0
λ(x) dx

}
gU(r) dr

and

P(U > u | TS ≥ t) =
∫ ∞
u

exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) dr∫ ∞
0 exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) dr
.

Therefore, from (4) we have

λS(t) =
∫ ∞

0

∫ v

0 exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) drm(v) dv∫ ∞
0 exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) dr
λ(t).

As stated, our system survives if Si ≤ U and fails if Si > U for each i = 1, 2, . . . ,
independently of everything else. Thus, at first glance, one may expect that the corresponding
failure probability p(t) is given by p(t) ≡ P(SN(t−)+1 > U) (cf. Brown and Proschan (1983)).
However, from Theorem 1, p(t) is given by P(SN(t−)+1 > U | TS ≥ t). Observe that the proof
of Theorem 1 is based on a procedure similar to a Bayesian approach when the strength of an
item is updated according to information on the survival up to a current time. The understanding
of this ‘Bayesian reasoning’ behind our model will be crucial for our further discussions in the
next sections.

3. Stochastic model for ESS

The description and assumptions of our model are as follows. During the manufacturing
process, items with failure rate r(t) and corresponding lifetime TN (which is due only to
the ‘normal’ failure mode), and also defective items with lifetime TD are produced. Let the
proportion of the nondefective items be π and that of the defective items be 1 − π .
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The defective items, in addition to the normal failure mode of the nondefective items, are
characterized by a new additional failure mode. In this paper we assume that this additional
failure mode describes susceptibility to external shocks. For example, consider the case when
the normal (nondefective) items, in accordance with specifications, should not be susceptible
to electrical or mechanical shocks. However, due to substandard materials or a faulty man-
ufacturing process, some of the produced items are susceptible to these shocks (see Yan and
English (1997)). For instance, during the manufacturing process, the items can be exposed to a
strong electric shock and this shock may result in some defective items which are even sensitive
to electrical shocks of a ‘normal’ magnitude, whereas the nondefective items are not sensitive
to them (see Landers et al. (1994)). Another example is when a small crack in the material
of a defective item is sensitive to mechanical impulses (e.g. vibration) in field use, which can
eventually result in its failure. Thus, we assume that shocks of a ‘normal’ magnitude also occur
in field operations and, therefore, the defective items can fail due to this failure mode. On
the other hand, the nondefective items do not fail from external shocks of this type in field
operations as they do not have the corresponding failure mode.

In accordance with our description, the survival function of TN is

P(TN > t) = exp

{
−

∫ t

0
r(u) du

}
.

Let the two failure modes of the defective items be independent. Then, the corresponding
survival function is given by the competing risks model (series system):

P(TD > t) = exp

{
−

∫ t

0
r(u) du

}
P(TE > t). (5)

Here TE is the lifetime that accounts only for the external shock failure mode.
Suppose that during the field operation the external shocks occur in accordance with the

NHPP N(t), t ≥ 0, with rate λ(t). As in Section 2, denote by Si the magnitude (stress) of the
ith shock and assume that Si, i = 1, 2, . . . , are i.i.d. random variables with the common CDF
M(s) = Pr(Si ≤ s) (M̄(s) ≡ 1 − M(s)) and corresponding PDF m(s). The defective item
is characterized by its random strength U , i.e. the resistance ability to external shocks. Here
the strength is understood as the maximum stress level that the defective item can survive. The
corresponding CDF, SF, PDF, and FR of U are respectively denoted by GU(u), ḠU (u), gU(u),
and rU (u). For each i = 1, 2, . . . , the operable system survives if Si ≤ U and fails if Si > U ,
independently of everything else. Then, in accordance with Theorem 1, (5) now reads

P(TD > t) = exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(u)λ(u) du

}
, (6)

where

p(t) ≡
∫ ∞

0

∫ v

0 exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) drm(v) dv∫ ∞
0 exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) dr
. (7)

From (6) we see that the lifetimes of the nondefective and defective items are obviously
stochastically ordered: TD <fr TN , where ‘<fr’ denotes the failure (hazard) rate ordering
of two random variables (see Shaked and Shanthikumar (2007)).
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Denote the population lifetime by T . As it consists of defective and nondefective items with
given proportions, the corresponding survival function is the following mixture

F̄ (t) ≡ P(T > t)

= π exp

{
−

∫ t

0
r(u) du

}
+ (1 − π) exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(u)λ(u) du

}
.

(8)

Thus, (8) defines the survival function of an item in field usage that is chosen at random from
the population of manufactured items.

In what follows, we will describe the impact of the ESS on the population structure and on
the corresponding population lifetime distribution. Therefore, we must first define the ESS that
we consider in this paper.

Definition 1. (ESS process.) During the ESS, all items are exposed to a single shock with fixed
magnitude s. If the strength of a defective item is larger than s then it survives; otherwise, it
fails. Depending on the magnitude s, a proportion of nondefective items, ρ(s), 0 ≤ ρ(s) < 1,
becomes defective, where ρ(s) is an increasing function of its argument. The items failed
during the ESS are discarded and only the survived items are put into the field operation.

Thus, the ESS, in principle, can induce defects. Furthermore, as those with induced defects
but not failed are not identifiable, they are also put into the field operation.

Recall that the shock magnitudes in field operations are i.i.d. random variables. We assume
that the corresponding mean is substantially smaller than the magnitude of stress allowed for the
ESS (otherwise, there is no reason to perform the ESS). Therefore, the shocks in field operations
can hardly ‘produce’ defective items out of nondefective items (or this effect is negligible). On
the other hand, these shocks can still destroy the defective item with a given strength.

Denote by TESS the population lifetime after the ESS with magnitude s.

Theorem 2. Under the above assumptions, the population distribution and the corresponding
failure rate (after the ESS) are given by

F̄E(t, s) = P(TESS > t) =
3∑

i=1

π(i)F̄i(t) (9)

and

λE(t, s) = r(t)
π(1)F̄1(t)∑3
i=1 π(i)F̄i(t)

+ [r(t) + p(t)λ(t)] π(2)F̄2(t)∑3
i=1 π(i)F̄i(t)

+ [r(t) + p(s, t)λ(t)] π(3)F̄3(t)∑3
i=1 π(i)F̄i(t)

, (10)

where

F̄1(t) ≡ exp

{
−

∫ t

0
r(u) du

}
,

π(1) ≡ (1 − ρ(s))π

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
,

F̄2(t) ≡ exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(u)λ(u) du

}
,
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π(2) ≡ ρ(s)π

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
,

F̄3(t) ≡ exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(s, u)λ(u) du

}
,

π(3) ≡ ḠU (s)(1 − π)

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
,

and

p(s, t) =
∫ ∞
s

∫ v

s
exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) drm(v) dv∫ ∞
s

exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) dr
.

Proof. Observe that there are now three subpopulations after the ESS and we can define the
corresponding frailty variable Z:

• the subpopulation with nondefective items (Z = 1);

• the subpopulation with defective items which were originally nondefective (Z = 2);

• the subpopulation with defective items which were originally defective but have survived
the ESS (Z = 3).

Then, in accordance with our notation, the distribution of Z is given by

π(1) ≡ P(Z = 1) = (1 − ρ(s))π

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
,

π(2) ≡ P(Z = 2) = ρ(s)π

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
,

π(3) ≡ P(Z = 3) = ḠU (s)(1 − π)

(1 − ρ(s))π + ρ(s)π + ḠU (s)(1 − π)
.

Therefore,

F̄1(t) ≡ P(TESS > t | Z = 1) = exp

{
−

∫ t

0
r(u) du

}

and

F̄2(t) ≡ P(TESS > t | Z = 2) = exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(u)λ(u) du

}
,

where p(t) is given by (7).
The derivation of P(TESS > t | Z = 3) is not so straightforward. Indeed, it should be taken

into account that, when we apply a shock of controlled magnitude s during the ESS, this means
that the strength of the defective item that had passed the ESS is larger than s and, therefore,
the distribution of the remaining strength Us (given that the strength is larger than s) is

GU(u | s) ≡ P(U ≤ u | U > s) = 1 − Ḡ(u)

Ḡ(s)
, u > s.

https://doi.org/10.1239/jap/1402578632 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578632


394 J. H. CHA AND M. FINKELSTEIN

Thus, the function p(t) in (7) should be modified to

p(s, t) =
∫ ∞

0

∫ v

0 exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r | s) drm(v) dv∫ ∞
0 exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r | s) dr

=
∫ ∞
s

∫ v

s
exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) drm(v) dv∫ ∞
s

exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) dr
, (11)

where gU(u | s) is the corresponding PDF of GU(u | s), which is given by

gU(u | s) =
⎧⎨
⎩

0 if u ≤ s,
gU(u)

ḠU (s)
if u > s.

Finally,

F̄3(t) ≡ P(TESS > t | Z = 3) = exp

{
−

∫ t

0
r(u) du

}
exp

{
−

∫ t

0
p(s, u)λ(u) du

}
.

Therefore, (9) and (10) hold.

We will now discuss the effect of the ESS on the quality of the population after the screening
by comparing F̄E(t, s) to the survival function without screening, F(t) defined by (8). As the
ESS in our model can create defective items, theoretically, in some cases this operation may
have a negative effect on the population of items.

Definition 2. The severity (stress) level s is said to be inadmissible under the survival function
criterion if F̄ (t) ≥ F̄E(t, s) for all t > 0. Otherwise, the severity (stress) level s is said to be
admissible.

Obviously, the inadmissible severity levels should not be considered in the ESS practice as
the reliability of items in field use is worse than that without the ESS in this case. Note that
the condition for the ‘admissibility’ in Definition 2 means that F̄ (t) < F̄E(t, s) for some t > 0
and not for all t > 0. However, for obvious practical reasons, we are mostly interested in the
latter case. The following definition addresses this setting.

Definition 3. The severity (stress) level s is said to be positively admissible under the survival
function criterion if F̄ (t) < F̄E(t, s) for all t > 0.

Theorem 3. (i) If ρ(s) < (1−π)GU(s) then the severity level s is positively admissible under
the survival function criterion.

(ii) If ρ(s)π ≥ π(1 − π) + (1 − π)2ḠU (s) then the severity level s is inadmissible under the
survival function criterion.

Proof. Define, for convenience, λ1(t) ≡ r(t), λ2(t) ≡ r(t) + p(t)λ(t), and λ3(t) ≡ r(t) +
p(s, t)λ(t). Note that (11) can be written in a compact and a meaningful way as

p(s, t) =
∫ ∞

0
1(v ∈ [s, ∞))h(s, t, v)m(v) dv,

where

h(s, t, v) ≡
∫ v

s
exp{−M̄(r)

∫ t

0 λ(x) dx}gU(r) dr∫ ∞
s

exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) dr
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and 1(·) is the corresponding indicator. Observe that, for all fixed t and v,

∂

∂s
h(s, t, v)

= 1

(
∫ ∞
s

exp{−M̄(r)
∫ t

0 λ(x) dx}gU(r) dr)2

×
[
− exp

{
−M̄(s)

∫ t

0
λ(x) dx

}
gU(s)

∫ ∞

s

exp

{
−M̄(r)

∫ t

0
λ(x) dx

}
gU(r) dr

+ exp

{
−M̄(s)

∫ t

0
λ(x) dx

}
gU(s)

∫ v

s

exp

{
−M̄(r)

∫ t

0
λ(x) dx

}
gU(r) dr

]
< 0

for all s > 0. Therefore, the function p(s, t) is strictly decreasing in s for each fixed t . This
implies that p(s, t) < p(t) for all t > 0 and s > 0. Thus, we have the failure rate ordering

λ1(t) < λ3(t) < λ2(t) for all t > 0, (12)

and, accordingly,

F̄1(t) > F̄3(t) > F̄2(t) for all t > 0,

where F̄i(t) ≡ exp{− ∫ t

0 λi(u) du}, i = 1, 2, 3. Observe that, in accordance with (8),

F̄ (t) = πF̄1(t) + (1 − π)F̄2(t),

whereas, in accordance with (9),

F̄E(t, s) = π(1)F̄1(t) + π(2)F̄2(t) + π(3)F̄3(t).

Therefore, if π(2) + π(3) < 1 − π , or, equivalently, π(1) > π , then

F̄E(t, s) − F̄ (t) > (π(1) − π)F̄1(t) + [π(2)F̄2(t) + π(3)F̄2(t) − (1 − π)F̄2(t)]
= (π(1) − π)F̄1(t) − (π(1) − π)F̄2(t)

> 0

for all t > 0. The condition π(2) + π(3) < 1 − π is equivalent to ρ(s) < (1 − π)GU(s). This
completes the proof of (i).

By a similar reasoning, if π(2) ≥ 1−π , or, equivalently, ρ(s)π ≥ π(1−π)+(1−π)2ḠU (s),
then the severity level s is inadmissible under the survival function criterion.

Remark 1. (i) The conditions of Theorem 3 do not imply the admissibility/inadmissibility
of the corresponding severity level under the failure rate criterion. That is, the condition
π(2) + π(3) < 1 − π does not imply that λT (t) > λE(t, s) for all t > 0, where λT (t) is the
failure rate which corresponds to F̄ (t) defined in (8).

(ii) The failure rate ordering (12) will be important for further reasoning later. This ordering
implies that the quality of defective items improves after the ESS, but they are still obviously
‘worse’ than the nondefective items.
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Remark 2. The effect of applying two consecutive shocks with severity s during the ESS can
also be considered. After this type of ESS, we also have three subpopulations with failure rates
λ1(t) = r(t), λ2(t) = r(t) + p(t)λ(t), and λ3(t) = r(t) + p(s, t)λ(t), and corresponding
proportions

π(2)(1) = (1 − ρ(s))π(1)

(1 − ρ(s))π(1) + ρ(s)π(1) + [π(3) + ḠU (s)π(2)] ,

π(2)(2) = ρ(s)π(1)

(1 − ρ(s))π(1) + ρ(s)π(1) + [π(3) + ḠU (s)π(2)] ,

π(2)(3) = π(3) + ḠU (s)π(2)

(1 − ρ(s))π(1) + ρ(s)π(1) + [π(3) + ḠU (s)π(2)] .

4. Optimal severity

In this section we consider the problem of determining the optimal severity level (magnitude)
of the ESS. Let τ be the mission time of an item in the field operation. If it does not fail during
this time then the mission is considered to be successful. Thus, the probability of the mission
success needs to be maximized and we should find the optimal severity level s∗ that satisfies

F̄E(τ, s∗) = max
s>0

F̄E(τ, s).

Alternatively, let MRL(s) denote the mean time to failure of an item in the field operation as a
function of s, i.e. MRL(s) ≡ ∫ ∞

0 F̄E(t, s) dt . Then, the optimal severity level which maximizes
the mean time to failure should be obtained as

MRL(s∗) = max
s>0

MRL(s).

For defining the optimal severity, we consider the admissible severity class rather than the
positively admissible class as we have to take into account all admissible severity levels. It is
often more convenient to describe the dual inadmissible class. The following theorem provides
the upper bound for the optimal severity level that maximizes the mission success probability
or mean time to failure in field usage.

Theorem 4. Suppose that ρ(∞) ≡ lims→∞ ρ(s) > 1 − π , and let

s0 ≡ inf
s≥0

{s : ρ(s)π ≥ π(1 − π) + (1 − π)2ḠU (s)}.

Then the severity levels in (s0, ∞) are inadmissible. Therefore, s0 is the upper bound for the
optimal severity level.

Proof. From Theorem 3, the condition for inadmissibility is

ρ(s)π ≥ π(1 − π) + (1 − π)2ḠU (s).

Here the function ρ(s)π is increasing from 0 to ρ(∞)π , whereas the function π(1−π)+ (1−
π)2ḠU (s) decreases from (1 −π) to π(1 −π). Thus, if ρ(∞)π > π(1 −π), or, equivalently,
ρ(∞) > (1 − π), then there exists s0 ∈ (0, ∞) such that the severity levels in (s0, ∞) are
inadmissible. Therefore, s0 is the upper bound for the optimal severity.

Remark 3. It is reasonable to assume that in practice lims→∞ ρ(s) = 1 and that the proportion
of the defective items, 1 − π , is relatively small. Therefore, the condition ρ(∞) > 1 − π can
be satisfied in almost all practical cases.
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Figure 1: The graph of λT (t).
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Figure 2: The graph of F̄E(τ, s).

Example 1. Let r(t) = 0.1t, t ≥ 0, λ(t) = 1, t ≥ 0, m(s) = 3 exp{−3s}, s ≥ 0, gU(u) =
4u exp{−2u2}, u ≥ 0, π = 0.7, τ = 4.0, and

ρ(s) =
{

0, 0 ≤ s < 1,

1 − exp{−0.05(s − 1)}, s ≥ 1.

In Figure 1 we plot the failure rate of the population distribution before the ESS, which is
obtained based on (8). Therefore, as λT (t) is increasing, the burn-in procedure should not be
applied to this population. On the other hand, as ρ(s) is strictly increasing for s ≥ 1, there
exists a unique solution to the equation

ρ(s)π = π(1 − π) + (1 − π)2ḠU (s),

which is the upper bound for the optimal severity level. Therefore, the ESS as a method of
elimination of defective items is justified in this case. Solving this equation numerically results
in s0 ≈ 8.13. Therefore, it is now sufficient to search for the optimal severity level in the interval
[0, 8.13]. The graph of F̄E(τ, s) is given in Figure 2. The optimal severity level in this case is
s∗ ≈ 1.08 and the maximum probability of the mission success is F̄E(τ ; s∗) ≈ 0.447.
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Based on the above results, we now consider certain cost structures for determining the
cost-based optimal severity level. As previously, an item is chosen at random from our initial
population and is exposed to a shock of magnitude s during the ESS. If it survives, it is put
into the field operation; otherwise, the failed item is discarded and a new item is chosen from
the population, etc. This procedure is repeated until the first survived item is obtained. Let csr

be the shop replacement cost (actually, it is the cost of a new item), and let cs be the cost for
conducting the ESS. Let c1(s), as a function of s, be the expected cost for eventually obtaining
a component which has survived the ESS. Then

c1(s) = cs + csr [1 − {π + (1 − π)ḠU (s)}]
π + (1 − π)ḠU (s)

,

where 1/[π + (1 − π)ḠU (s)] is the total number of trials until the first ‘success’.
Assume that if a mission (of length τ) is successful (in the field operation) then the gain K

is ‘earned’; otherwise, a penalty C is imposed, where K > C > 0. Then the expected cost
during the field operation is

c2(s) = −KF̄E(τ, s) + CFE(τ, s) = −(K + C)F̄E(τ, s) + C (13)

and the total expected cost c(s) is

c(s) = c1(s) + c2(s)

= cs + csr [1 − {π + (1 − π)ḠU (s)}]
π + (1 − π)ḠU (s)

− (K + C)F̄E(τ ; s) + C.

The objective is now to find the optimal severity level s∗ that satisfies

s∗ = arg min
s∈[0,∞] c(s).

Similar to Theorem 4, if ρ(∞) ≡ lims→∞ ρ(s) > 1 − π , then the optimal severity level which
minimizes c2(s) (maximizes F̄E(τ, s), as follows from (13)) does not exist in the interval
(s0, ∞), where s0 is also defined by Theorem 4. Furthermore, as c1(s) is strictly increasing
to ∞, we can conclude that the optimal severity level s∗ should exist in the interval [0, s0].

Assume now that during field operation the gain is proportional to the mean time to failure.
Therefore, the total average cost function in this case is

c(s) = cs + csr [1 − (1 − π)ḠU (s)]
(1 − π)ḠU (s)

− K

∫ ∞

0
F̄E(t; s) dt.

By similar arguments, the optimal severity level s∗ should exist in the interval [0, s0].

5. Concluding remarks

The ESS is an important tool for increasing reliability characteristics and for decreasing
costs in usage for the manufactured items with latent defects. In contrast to burn-in, for which
numerous models and applications have been elaborated and reported in the literature, the ESS
has not been so formally described. One of the reasons for this is because burn-in usually
mimics the actual usage of items in real time, whereas the ESS applies the excessive stress
that can ‘quickly’ destroy the defected items and, therefore, does not resemble the actual usage
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at all. On the other hand, there are situations when the effect of the ESS can be described in
similar terms as the effect of an environment on the item in field use. One of these situations
is described in this paper using the stress–strength concept.

We assumed that the defective item possesses resistance to external stress, whereas the ESS
applies stress that can destroy this item if its magnitude is large enough. We also assumed that
in field use the items are subjected to the NHPP of shocks (although of the smaller magnitude)
that can destroy the defective item as well. Therefore, we were able to discuss the joint model
for ESS-field use in a unified way.

An important and novel feature of our modeling takes into account the fact that the ESS
can also create new defects from items that were previously defect free. We assumed that
the proportion of these items increases as the magnitude of the stress increases. Therefore,
the corresponding optimization problem of obtaining an optimal magnitude of the ESS for
maximizing characteristics in field use can be formulated and studied.
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