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Continuity of Convolution of Test Functions
on Lie Groups

Lidia Birth and Helge Glöckner

Abstract. For a Lie group G, we show that the map C∞c (G) × C∞c (G) → C∞c (G), (γ, η) 7→ γ ∗ η,
taking a pair of test functions to their convolution, is continuous if and only if G is σ-compact. More
generally, consider r, s, t ∈ N0 ∪ {∞} with t ≤ r + s, locally convex spaces E1, E2 and a continuous
bilinear map b : E1 × E2 → F to a complete locally convex space F. Let β : Cr

c (G, E1)× C s
c(G, E2) →

Ct
c(G, F), (γ, η) 7→ γ ∗b η be the associated convolution map. The main result is a characterization

of those (G, r, s, t, b) for which β is continuous. Convolution of compactly supported continuous
functions on a locally compact group is also discussed as well as convolution of compactly supported
L1-functions and convolution of compactly supported Radon measures.

1 Introduction and Statement of Results

It has been known since the beginnings of distribution theory that the bilinear convo-
lution map β : C∞c (Rn)×C∞c (Rn)→ C∞c (Rn), (γ, η) 7→ γ∗η (and even convolution
C∞(Rn) ′ ×C∞c (Rn) → C∞c (Rn)) is hypocontinuous [39, p. 167]. However, a proof
for continuity of β was published only recently [29, Proposition 2.3]. The second au-
thor gave an alternative proof [22] that is based on a continuity criterion for bilinear
mappings on locally convex direct sums. Our goal is to adapt the latter method to the
case where Rn is replaced with a Lie group and to the convolution of vector-valued
functions.

Let b : E1 × E2 → F be a continuous bilinear map between locally convex spaces
such that b 6= 0. Let r, s, t ∈ N0 ∪ {∞} with t ≤ r + s. If r = s = t = 0, let G
be a locally compact group; otherwise, let G be a Lie group. Let λG be a left Haar
measure on G. If G is discrete, we need not impose any completeness assumptions
on F. If G is metrizable and not discrete, we assume that F is sequentially complete
or satisfies the metric convex compactness property (i.e., every metrizable compact
subset of F has a relatively compact convex hull). If G is not metrizable (and hence
not discrete), we assume that F satisfies the convex compactness property (i.e., every
compact subset of F has a relatively compact convex hull); this is guaranteed if F is
quasi-complete.1 These conditions ensure the existence of the integrals needed to
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1See [41] for a discussion of these properties.
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Continuity of Convolution of Test Functions on Lie Groups 103

define the convolution γ ∗b η : G→ F of γ ∈ C r
c(G, E1) and η ∈ C s

c(G, E2) via

(γ ∗b η)(x) :=

∫
G

b(γ(y), η(y−1x)) dλG(y) for x ∈ G.

Then γ ∗b η ∈ C r+s
c (G, F) (Proposition 3.2), enabling us to consider the map

(1.1) β : C r
c(G, E1)×C s

c(G, E2)→ Ct
c(G, F), (γ, η) 7→ γ ∗b η.

The mapping β is bilinear, and it is always hypocontinuous (Proposition 3.7). If G
is compact, then β is continuous (Corollary 3.3). If G is an infinite discrete group,
then β is continuous if and only if G is countable and b “admits product estimates”
(Proposition 7.1), in the following sense:

Definition 1.1 Let b : E1 × E2 → F be a continuous bilinear map between locally
convex spaces. We say that b admits product estimates if, for each double sequence
(pi, j)i, j∈N of continuous seminorms on F, there exists a sequence (pi)i∈N of contin-
uous seminorms on E1 and a sequence (q j) j∈N of continuous seminorms on E2 such
that

(∀i, j ∈ N) (∀x ∈ E1) (∀y ∈ E2) pi, j(b(x, y)) ≤ pi(x)q j(y).

Having dealt with compact groups and discrete groups, only one case remains:

Theorem 1.2 If G is neither discrete nor compact, then the convolution map β from
(1.1) is continuous if and only if all of the following are satisfied:

(i) G is σ-compact;
(ii) if t =∞, then also r = s =∞;
(iii) b admits product estimates.

We mention that (iii) is automatically satisfied whenever both E1 and E2 are norm-
able [23, Corollary 4.2]. As a consequence, for normable E1, E2 and a Lie group G, the
convolution map β : C∞c (G, E1)×C∞c (G, E2)→ C∞c (G, F) is continuous if and only
if G is σ-compact. In particular, the convolution map C∞c (G)×C∞c (G)→ C∞c (G) is
continuous for each σ-compact Lie group G (as first established in the unpublished
thesis [10], by a different reasoning), but fails to be continuous if G is not σ-compact.

Further examples of bilinear maps admitting product estimates can be found
in [23]. For instance, the convolution map C∞(G) × C∞(G) → C∞(G) ad-
mits product estimates whenever G is a compact Lie group. Of course, not ev-
ery continuous bilinear map admits product estimates, e.g., the multiplication map
C∞[0, 1] × C∞[0, 1] → C∞[0, 1] [23, Example 5.2]. In particular, this gives us
an example of a topological algebra A such that the associated convolution map
C∞c (R,A) × C∞c (R,A) → C∞c (R,A) is discontinuous. It is also interesting that the
convolution map C∞c (R) × C0

c (R) → C∞c (R) is discontinuous (as Theorem 1.2(ii)
is violated here). This had not been recorded yet in the works [22, 29] devoted to
G = Rn.
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104 L. Birth and H. Glöckner

Irrespective of local compactness, we have some information concerning convo-
lution on the space Mc(G) = lim−→MK (G) of compactly supported complex Radon
measures on a Hausdorff topological group G. Recall that a topological space X
is called hemicompact if X =

⋃∞
n=1 Kn with compact subsets K1 ⊆ K2 ⊆ · · ·

of X such that each compact subset K ⊆ X is contained in some Kn. A locally
compact space is hemicompact if and only if it is σ-compact. We call a Hausdorff
topological group G spacious if there exist uncountable subsets A,B ⊆ G such that
{(x, y) ∈ A× B : xy ∈ K} is finite for each compact subset K ⊆ G. A locally com-
pact group is spacious if and only if it is not σ-compact (see Remark 5.5).

Theorem 1.3 Let G be a Hausdorff group and let β : Mc(G) × Mc(G) → Mc(G),
(µ, ν) 7→ µ ∗ ν be the convolution map.

(i) If G is hemicompact, then β is continuous.
(ii) If G is spacious, then β is not continuous.

Thus, for locally compact G, the convolution map β from Theorem 1.3 is contin-
uous if and only if G is σ-compact. An analogous conclusion applies to convolution
of compactly supported L1-functions on a locally compact group (Corollary 5.6).
Hemicompact groups arise in the duality theory of abelian topological groups, be-
cause dual groups of abelian metrizable groups are hemicompact and dual groups of
abelian hemicompact groups are metrizable ([2]; see [1, 3, 4, 25] for recent studies of
such groups).

We also discuss the convolution map C r
c(G, E1) × C s(G, E2) → Ct (G, F). It is

hypocontinuous, but continuous only if G is compact (Proposition 8.1). As a conse-
quence, neither the action C∞c (G) × E → E (nor the action C∞c (G) × E∞ → E∞

on the space of smooth vectors) associated with a continuous action G × E → E
of a Lie group G on a Fréchet space E need to be continuous (contrary to a claim
recently made [17, pp. 667–668]). In fact, if G is R and R × C∞(R) → C∞(R) is
the translation action, then C∞c (R) acts on C∞(R) by the convolution map, which
is discontinuous by Proposition 8.1 (or the independent study [32]). For details, we
refer the reader to [24, Proposition A].

The (G, r, s, t, b) for which β admits product estimates are also known [23].

For recent studies of convolution of vector-valued distributions, we refer to [5, 6]
and the references therein. Larcher [32] gives a systematic account of the continuity
properties of convolution between classical spaces of scalar-valued functions and dis-
tributions on Rn, and proves discontinuity in some cases in which convolution was
previously considered continuous by some authors (like [14, 40]).

Structure of the article Sections 2 through 4 are of a preparatory nature and provide
basic notation and facts that are similar to familiar special cases and easy to take on
faith. Because no direct references are available in the required generality, we do
not omit the proofs (which follow classical ideas), but relegate them to an appendix
(Appendix C). Appendices A and B compile further preliminaries concerning vector-
valued integrals and hypocontinuous bilinear maps. On this footing, our results are
established in Sections 5 through 8.
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2 Preliminaries and Notation

In this section, we compile notation and basic facts concerning spaces of vector-
valued C r-functions. The proofs are given in Appendix C.

Basic conventions We write N = {1, 2, . . . } and N0 := N ∪ {0}. By a locally convex
space, we mean a Hausdorff locally convex real topological vector space. If E is such a
space, we write E ′ for the space of continuous linear functionals on E. A map between
topological spaces is called a topological embedding if it is a homeomorphism onto its
image. If E is vector space and p a seminorm on E, we define

Bp
r (x) :=

{
y ∈ E : p(y − x) < r

}
and B

p
r (x) :=

{
y ∈ E : p(y − x) ≤ r

}
for x ∈ E and r > 0. If X is a set and γ : X → E is a map, we let ‖γ‖p,∞ :=
supx∈X p(γ(x)). If (E, ‖ · ‖) is a normed space and p = ‖ · ‖, we write ‖γ‖∞ instead
of ‖γ‖p,∞, and BE

r (x) for Bp
r (x). Apart from ρ dµ, we shall also write ρ� µ for mea-

sures with a density. The manifolds considered in this article are finite-dimensional,
but not necessarily σ-compact or paracompact (unless the contrary is stated). The
Lie groups considered are finite-dimensional, real Lie groups.

Vector-valued C r-functions Let E and F be locally convex spaces, U ⊆ E an open
set, and r ∈ N0 ∪ {∞}. Then a map γ : U → F is called C r if it is continuous,
the iterated directional derivatives d( j)γ(x, y1, . . . , y j) := (Dy j · · ·Dy1γ)(x) exist for
all j ∈ N such that j ≤ r, x ∈ U and y1, . . . , y j ∈ E, and, moreover, each of
the maps d( j)γ : U × E j → F is continuous. See [18, 27, 33, 34] for the theory of
such functions (in varying degrees of generality as regards E and F). If E = Rn,
then a vector-valued function γ as before is C r if and only if the partial derivatives
∂αγ : U → F exist and are continuous for all multi-indices α = (α1, . . . , αn) ∈ Nn

0

such that |α| := α1 + · · · + αn ≤ r. Since compositions of C r-maps are C r, it makes
sense to consider C r-maps from C r-manifolds to locally convex spaces. If M is a C1-
manifold and γ : M → E a C1-map to a locally convex space, we write dγ for the
second component of the tangent map Tγ : TM → TE ∼= E× E. If X is a vector field
on M, we define

(2.1) DX(γ) := X.γ := dγ ◦ X.

Function spaces and their topologies Let r ∈ N0 ∪ {∞} now and let E be a locally
convex space. If r = 0, let M be a (Hausdorff) locally compact space, and equip
the space C0(M, E) := C(M, E) of continuous E-valued functions on M with the
compact-open topology given by the seminorms

‖ · ‖p,K : C(M, E) −→ [0,∞[, γ 7−→ ‖γ|K‖p,∞,

for K ranging through the compact subsets of M, and p through the continuous
seminorms on E. If (E, ‖ · ‖E) is a normed space, we abbreviate ‖ · ‖K := ‖ · ‖‖ · ‖E,K .
To harmonize notation, write T0M := M and d0γ := γ for γ ∈ C0(M, E). If
r > 0, let M be a C r-manifold. For k ∈ N with k ≤ r, set TkM := T(Tk−1M)
and dkγ := d(dk−1γ) : TkM → E for Ck-maps γ : M → E. Thus T1M = TM
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and d1γ = dγ. Equip C r(M, E) with the initial topology with respect to the
maps dk : C r(M, E) → C(TkM, E) for k ∈ N0 with k ≤ r, where C(Tk(M), E) is
equipped with the compact-open topology. Returning to r ∈ N0 ∪ {∞}, endow
C r

A(M, E) := {γ ∈ C r(M, E) : supp(γ) ⊆ A}with the topology induced by C r(M, E),
for each closed subset A ⊆ M. Let K(M) be the set of compact subsets of M. Give
C r

c(M, E) :=
⋃

K∈K(M) C r
K (M, E) the locally convex direct limit topology. Since each

inclusion map C r
K (M, E) → C r(M, E) is continuous and linear, the linear inclu-

sion map C r
c(M, E) → C r(M, E) is also continuous. Since C r(M, E) is Hausdorff,

this implies that C r
c(M, E) is also Hausdorff. We abbreviate C r(M) := C r(M,R),

C r
K (M) := C r

K (M,R), and C r
c(M) := C r

c(M,R).

Facts concerning direct sums If (Ei)i∈I is a family of locally convex spaces, we shall
always equip the direct sum E :=

⊕
i∈I Ei with the locally convex direct sum topol-

ogy [12]. We often identify Ei with its image in E.

Remark 2.1 If Ui ⊆ Ei is a 0-neighbourhood for i ∈ I, then the convex hull
U := conv

( ⋃
i∈I Ui

)
is a 0-neighbourhood in E, and a basis of 0-neighbourhoods

is obtained in this way (as is well-known). If I is countable, then the corresponding
“boxes”

⊕
i∈I Ui := E ∩

∏
i∈I Ui form a basis of 0-neighbourhoods in E (cf. [30]).

It is clear from this that the topology on E is defined by the seminorms q : E →
[0,∞[ taking x = (xi)i∈I to

∑
i∈I qi(xi), for qi ranging through the set of continuous

seminorms on Ei (because Bq
1(0) = conv(

⋃
i∈I Bqi

1 (0)).) If I is countable, we can take
the seminorms q(x) := max{qi(xi) : i ∈ I} instead (because Bq

1(0) =
⊕

i∈I Bqi

1 (0)).

Lemma 2.2 Let (Ei)i∈I and (Fi)i∈I be families of locally convex spaces and for i ∈ I
let λi : Ei → Fi be a linear map that is a topological embedding. Then⊕

i∈I
λi :

⊕
i∈I

Ei →
⊕
i∈I

Fi , (xi)i∈I 7→ (λi(xi))i∈I

is a topological embedding.

Mappings to direct sums

Lemma 2.3 Let r ∈ N0 ∪ {∞}. If r = 0, let M be a locally compact space. If r > 0,
let M be a C r-manifold. Let E be a locally convex space, and let (h j) j∈ J be a family of
functions h j ∈ C r

c(M) whose supports K j := supp(h j) form a locally finite family. Then
the map

Φ : C r
c(M, E) −→

⊕
j∈ J

C r
K j

(M, E), γ 7−→ (h j · γ) j∈ J

is continuous and linear. If (h j) j∈ J is a partition of unity (i.e., h j ≥ 0 and
∑

j∈ J h j = 1
pointwise), then Φ is a topological embedding.

Lemma 2.4 Let r ∈ N0 ∪ {∞}. If r = 0, let M be a locally compact space. If r > 0,
let M be a C r-manifold. Let E be a locally convex space, and let P be a set of disjoint,
open and closed subsets of M, such that (S)S∈P is locally finite. Then

Φ : C r
c(M, E) −→

⊕
S∈P

C r
c(S, E), γ 7−→ (γ|S)S∈P
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is a continuous linear map. If P is a partition of M into open sets, then Φ is an isomor-
phism of topological vector spaces.

Seminorms arising from frames If M is a smooth manifold of dimension m, we call
a set F = {X1, . . . ,Xm} of smooth vector fields a frame on M if X1(p), . . . ,Xm(p) is
a basis for Tp(M), for each p ∈ M. If G = {Y1, . . . ,Ym} is also a frame on M, then
there exist ai, j ∈ C∞(M) for i, j ∈ {1, . . . ,m} such that Y j =

∑m
i=1 ai, jXi .

Lemma 2.5 Let M be a smooth manifold, let E be a locally convex space, k, ` ∈ N0, and
let F1, . . . ,Fk be frames on M. Let γ : M → E be a Ck-mapping such that X j · · ·X1.γ ∈
C`(M, E) for all j ∈ N0 with j ≤ k and Xi ∈ Fi for i ∈ {1, . . . , j}. Then γ is Ck+`.

Lemma 2.6 Let E be a locally convex space, let M be a smooth manifold, r ∈ N, and
let F := (F1, . . . ,Fr) be an r-tuple of frames on M. Then the usual topology O on
C r(M, E) coincides with the initial topology TF with respect to the maps

DX j ,...,X1 : C r(M, E) −→ C0(M, E)c.o., γ 7−→ X j . . .X1.γ,

where j ∈ {0, . . . , r} and Xi ∈ Fi for i ∈ {1, . . . , j}. As a consequence, for each
closed subset K ⊆ M, the topology on C r

K (M, E) is initial with respect to the maps
C r

K (M, E) → C0
K (M, E)c.o., γ 7→ X j . . .X1.γ, where j ∈ {0, . . . , r} and Xi ∈ Fi for

i ∈ {1, . . . , j}.

Definition 2.7 Let G be a Lie group, with identity element 1. Given g ∈ G, we
define the left translation map Lg : G → G, Lg(x) := gx and the right translation
map Rg : G → G, Rg(x) := xg. Let B be a basis of the tangent space T1(G), and let
E be a locally convex space. For v ∈ B, let Lv be the left-invariant vector field on G
defined via Lv(g) := T1(Lg)(v), and let Rv be the right-invariant vector field given by
Rv(g) := T1(Rg)(v). Write

FL := {Lv : v ∈ B} and FR := {Rv : v ∈ B}.

Let K ⊆ G be compact. Given r ∈ N0 ∪ {∞}, k, ` ∈ N0 with k + ` ≤ r, and a
continuous seminorm p on E, we define ‖γ‖L

k,p (resp., ‖γ‖R
k,p) for γ ∈ C r

K (G, E) as
the maximum of the numbers

‖X j . . .X1.γ‖p,∞,

for j ∈ {0, . . . , k} and X1, . . . ,X j ∈ FL (resp., X1, . . . ,X j ∈ FR). We also define

‖γ‖L,R
k,`,p (resp., ‖γ‖R,L

k,`,p) as the maximum of the numbers

‖Xi . . .X1.Y j . . .Y1.γ‖p,∞,

for i ∈ {0, . . . , k}, j ∈ {0, . . . , `}, and X1, . . . ,Xi ∈ FL, Y1, . . . ,Y j ∈ FR (resp.,

X1, . . . ,Xi ∈ FR and Y1, . . . ,Y j ∈ FL). Then ‖ · ‖L
k,p, ‖ · ‖R

k,p, ‖ · ‖L,R
k,`,p, and ‖ · ‖R,L

k,`,p

are seminorms on C r
K (G, E). If E = R and p = | · |, we relax notation and

also write ‖ · ‖L
k , ‖ · ‖R

k , ‖ · ‖L,R
k,` , and ‖ · ‖R,L

k,` instead of ‖ · ‖L
k,p, ‖ · ‖R

k,p, ‖ · ‖L,R
k,`,p, and
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‖ · ‖R,L
k,`,p, respectively. The same symbols will be used for the corresponding semi-

norms on C r
c(G, E) (defined by the same formulas). For ` ∈ N0 with ` ≤ r, we shall

also need the seminorm ‖ · ‖L
`,K on C r

c(G) defined as the maximum of the numbers
‖X j . . .X1.γ|K‖∞ for j ∈ {0, . . . , `} and X1, . . . ,X j ∈ FL. For each compact set
A ⊆ G, we have ‖γ‖L

`,K ≤ ‖γ‖L
` for each γ ∈ C r

A(G). Hence ‖ · ‖L
`,K is continuous on

C r
A(G) for each A and hence continuous on the locally convex direct limit C r

c(G).

To enable uniform notation in the proofs for Lie groups and locally compact
groups, we shall write ‖ · ‖L

0,p := ‖ · ‖R
0,p := ‖R,L

0,0,p := ‖ · ‖L,R
0,0,p := ‖ · ‖p,∞ if p is a

continuous seminorm on E and G is a locally compact group. If E = R and K ⊆ G is
a compact set, we shall also write ‖ · ‖L

0,K := ‖ · ‖K .
In the situation of Definition 2.7, we have the following lemma.

Lemma 2.8 For each t ∈ N0 ∪ {∞}, compact set K ⊆ G and locally convex space E,
the topology on Ct

K (G, E) coincides with the topologies defined by each of the following
families of seminorms:

(i) the family of the seminorms ‖ · ‖L
j,p, for j ∈ N0 such that j ≤ t and continuous

seminorms p on E;
(ii) the family of the seminorms ‖ · ‖R

j,p, for j ∈ N0 such that j ≤ t and continuous
seminorms p on E.

If t <∞ and t = k + `, then the topology on Ct
K (G, E) is also defined by the seminorms

‖ · ‖L,R
k,`,p, for continuous seminorms p on E (respectively, by the seminorms ‖ · ‖R,L

k,`,p).

Useful automorphisms We record for later use several isomorphisms of topological
vector spaces.

Definition 2.9 If G is a group, γ : G → E a map to a vector space and g ∈ G,
we define the left translate τ L

g (γ) : G → E and the right translate τR
g (γ) : G → E via

τ L
g (γ)(x) := γ(gx) and τR

g (γ)(x) := γ(xg) for x ∈ G.

Lemma 2.10 Let r ∈ N0 ∪ {∞} and let E be a locally convex space. If r = 0, let G be
a locally compact group; otherwise, let G be a Lie group. Let g ∈ G. Then γ 7→ τ L

g (γ)
defines isomorphisms C r(G, E) → C r(G, E), C r

K (G, E) → C r
g−1K (G, E) (for K ⊆ G

compact) and C r
c(G, E) → C r

c(G, E) of topological vector spaces. Likewise, γ 7→ τR
g (γ)

defines isomorphisms C r(G, E) → C r(G, E), C r
K (G, E) → C r

Kg−1 (G, E) (for K ⊆ G
compact) and C r

c(G, E)→ C r
c(G, E) of topological vector spaces.

Lemma 2.11 For each ` ∈ N0 such that ` ≤ r, γ ∈ C r
c(G), compact subset K ⊆ G

and g ∈ G, we have ‖τ L
g (γ)‖L

`,g−1K = ‖γ‖L
`,K .

Definition 2.12 If G is a locally compact group, we let λG be a Haar measure on G,
i.e., a left invariant, non-zero Radon measure (cf. Section 4). We let ∆G : G→ ]0,∞[
be the modular function, determined by λG(Ex) = ∆G(x)λG(E) for all x ∈ G and
Borel sets E ⊆ G. It is known that ∆G is a continuous homomorphism [16, 2.24]
(and hence smooth if G is a Lie group). If γ : G → E is a mapping to a vector space,
we define γ∗ : G→ E via

γ∗(x) := ∆G(x−1)γ(x−1).
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It is clear from the definition that (γ∗)∗ = γ.

Lemma 2.13 Let E be a locally convex space and r ∈ N0 ∪ {∞}. If r > 0, let G be a
Lie group; if r = 0, let G be a locally compact group. Then all of the following maps are
isomorphisms of topological vector spaces:

Θ : C r(G, E) −→ C r(G, E), γ 7−→ γ∗;

ΘK : C r
K (G, E) −→ C r

K−1 (G, E), γ 7−→ γ∗,

for K a compact subset of G; and

Θc : C r
c(G, E) −→ C r

c(G, E), γ 7−→ γ∗.

Further facts concerning function spaces Whenever we prove that mappings to
spaces of test functions are discontinuous, the following embedding will allow us
to reduce to the case of scalar-valued test functions.

Lemma 2.14 For each C r-manifold M (resp., locally compact space M, if r = 0),
locally convex space E and 0 6= v ∈ E, the map

Φv : C r
c(M) −→ C r

c(M, E), Φv(γ) := γv

is linear and a topological embedding (where (γv)(x) := γ(x)v).

The following related result will be used in Section 7.

Lemma 2.15 Let r ∈ N0 ∪ {∞}. If r > 0, let M be a C r-manifold; if r = 0, let
M be a Hausdorff topological space. Then the bilinear mapping ΨE : C r(M) × E →
C r(M, E), (γ, v) 7→ γv is continuous. If M is locally compact and K ⊆ M compact,
then ΨK,E : C r

K (M)× E→ C r
K (M, E), (γ, v) 7→ γv is also continuous.

Lemma 2.16 Let E be a locally convex space, and r ∈ N0 ∪ {∞}. If r = 0, let M be a
locally compact space. If r > 0, let M be a C r-manifold.

(i) For each compact set K ⊆ M, there exists a family (λi)i∈I of continuous linear
maps λi : E→ Fi to Banach spaces Fi , such that the topology on C r

K (M, E) is initial with
respect to the linear mappings C r

K (M, λi) : C r
K (M, E) → C r

K (M, Fi), γ 7→ λi ◦ γ for
i ∈ I.

(ii) If M is σ-compact, then there exists a family (λi)i∈I of continuous linear maps
λi : E→ Fi to Fréchet spaces Fi , such that the topology on C r

c(M, E) is initial with respect
to the linear mappings C r

c(M, λi) : C r
c(M, E)→ C r

c(M, Fi), γ 7→ λi ◦ γ for i ∈ I.
(iii) If M is paracompact and B ⊆ C r

c(M, E) is a bounded set, then B ⊆ C r
K (M, E)

for some compact set K ⊆ M.

3 Basic Facts Concerning Convolution

Throughout this section, G is a locally compact group, with left Haar measure λG,
and b : E1 × E2 → F a continuous bilinear map between locally convex spaces. As
in the previous section, we refer to Appendix C for all proofs. If G is not metrizable,
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we assume that F satisfies the convex compactness property. If G is metrizable and
not discrete, we assume that F is sequentially complete or satisfies the metric convex
compactness property. Given γ ∈ C(G, E1) and η ∈ C(G, E2) such that γ or η has
compact support, we define

γ ∗b η : G −→ F, (γ ∗b η)(x) :=

∫
G

b
(
γ(y), η(y−1x)

)
dλG(y),

noting that the E-valued weak integral exists by Lemma A.1 as the map G → F,
y 7→ b(γ(y), η(y−1x)) is continuous with support in the compact set

(3.1) supp(γ) ∩ x
(

supp(η)
)−1

.

In particular,

(3.2) (γ ∗b η)(x) =

∫
supp(γ)

b
(
γ(y), η(y−1x)

)
dλG(y).

If b is understood, we simply write γ ∗ η := γ ∗b η. Consider the inversion map
jG : G → G, g 7→ g−1. It is well known (see [16, 2.31]) that the image measure
jG(λG) is of the form

jG(λG) = ∆G(y−1) dλG(y).

Since y−1x = (x−1 y)−1 = jG(Lx−1 (y)), we infer

jG

(
Lx−1 (λG)

)
= jG(λG) = ∆G(y−1) dλG(y).

Now the Transformation Formula implies that2

(γ ∗b η)(x) =

∫
G

b ◦ (γ ◦ Lx ◦ jG, η) ◦ jG ◦ Lx−1 dλG

=

∫
G

b ◦ (γ ◦ Lx ◦ jG, η)d
(

( jG ◦ Lx−1 )(λG)
)

=

∫
G

b ◦ (γ ◦ Lx ◦ jG, η) d
(

∆G( ·−1)� λG

)
=

∫
G

b
(
γ(xz−1), η(z)

)
∆G(z−1) dλG(z).

Thus

(3.3) (γ ∗b η)(x) =

∫
G

b
(
γ(xz−1),∆G(z−1)η(z)

)
dλG(z)

for all γ, η as above and x ∈ G.

2Apply continuous linear functionals and use [7, 17.3 and 19.3].
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Lemma 3.1 Let K, L ⊆ G be closed sets and let K or L be compact. For all γ ∈
CK (G, E1), η ∈ CL(G, E2), we then have γ ∗b η ∈ CKL(G, F), and

supp(γ ∗b η) ⊆ supp(γ) supp(η) ⊆ KL.

The bilinear mapping β : CK (G, E1) × CL(G, E2) → CKL(G, F), (γ, η) 7→ γ ∗b η is
continuous.

Let G be a Lie group now.

Proposition 3.2 Let r, s ∈ N0 ∪ {∞} and K, L ⊆ G be closed subsets such that K or
L is compact. Then γ ∗b η ∈ C r+s

KL (G, F) for all γ ∈ C r
K (G, E1) and η ∈ C s

L(G, E2), with

(3.4) Rw j · · ·Rw1Lvi · · ·Lv1 · (γ ∗b η) = (Rw j · · ·Rw1 · γ) ∗b (Lvi · · ·Lv1 · η)

for all i, j ∈ N0 with i ≤ s and j ≤ r, and all v1, . . . , vi ,w1, . . . ,w j ∈ T1(G). More-
over, the bilinear map

β : C r
K (G, E1)×C s

L(G, E2)→ C r+s
KL (G, F), (γ, η) 7→ γ ∗b η

is continuous.

If G is compact, then C r(G, E) = C r
K (G, E) with K := G, for each r ∈ N0 ∪ {∞}

and locally convex space E. Hence Proposition 3.2 yields the following corollary as a
special case.

Corollary 3.3 If G is compact, then the convolution map

β : C r(G, E1)×C s(G, E2) −→ Ct (G, F), (γ, η) 7−→ γ ∗b η

is continuous, for all r, s, t ∈ N0 ∪ {∞} such that t ≤ r + s.

To each continuous bilinear mapping b : E1 × E2 → F as before, we associate a
continuous bilinear map b∨ : E2 × E1 → F via

b∨(x, y) := b(y, x) for (x, y) ∈ E2 × E1.

Lemma 3.4 If one of the maps γ ∈ C r(G, E1) and η ∈ C s(G, E2) has compact support,
then (γ ∗b η)∗ = η∗ ∗b∨ γ

∗.

Lemma 3.5 Assume that one of the maps γ ∈ C r(G, E1) and η ∈ C s(G, E2) has
compact support. Let g ∈ G. Then

(i) τ L
g (γ ∗b η) = (τ L

g (γ)) ∗b η;
(ii) τR

g (γ ∗b η) = γ ∗b (τR
g (η)).

Lemma 3.6 Let (G, r, s, b) be as in the introduction, K ⊆ G be compact, γ ∈
C r

K (G, E1), η ∈ C s
c(G, E2) and q, p1, p2 be continuous seminorms on F, E1 and E2,
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respectively, such that q(b(x, y)) ≤ p1(x)p2(y) for all (x, y) ∈ E1 × E2. Let k, ` ∈ N0

with k ≤ r and ` ≤ s. Then

‖γ ∗b η‖R
k,q ≤ ‖γ‖R

k,p1
‖η‖p2,∞λG(K),

‖γ ∗b η‖L
`,q ≤ ‖γ‖p1,∞‖η‖L

`,p2
λG(K),

‖γ ∗b η‖R,L
k,`,q ≤ ‖γ‖

R
k,p1
‖η‖L

`,p2
λG(K).

For a definition and necessary background on hypocontinuous bilinear maps, the
reader is referred to Appendix B. In Appendix C, we also prove the following propo-
sition.

Proposition 3.7 For all (G, r, s, t, b) as in the introduction, the convolution map
β : C r

c(G, E1)×C s
c(G, E2)→ Ct

c(G, F), (γ, η) 7→ γ ∗b η is hypocontinuous.

4 Facts on Measures and their Convolution

In this section, we fix our measure-theoretic setting and state basic definitions and
facts concerning spaces of complex Radon measure and convolution of complex
Radon measures. As before, proofs can be looked up in Appendix C.

The Setting If X is a Hausdorff topological space, we write B(X) for the σ-algebra
of Borel sets (which is generated by the set of open subsets of X). A positive measure
µ : B(X) → [0,∞] is called a Borel measure if µ(K) < ∞ for each compact subset
K ⊆ X. Following [8], we shall call a Borel measure µ on X a Radon measure if µ
is inner regular, in the sense that µ(A) = sup{µ(K) : K ⊆ A compact} for each
A ∈ B(X). The support supp(µ) of a Radon measure is the smallest closed subset
of X such that µ(X \ supp(µ)) = 0. A complex measure µ : B(X) → C is called a
complex Radon measure on X if the associated total variation measure |µ| (as in [37,
6.2]) is a (finite) positive Radon measure. In this case, we set supp(µ) := supp(|µ|).
The total variation norm of µ is defined via ‖µ‖ := |µ|(X). We let M(X) be the space
of all complex Radon measures on X. Given a compact set K ⊆ X, we let MK (X) be
the space of all µ ∈ M(X) such that supp(µ) ⊆ K. It is clear that the restriction map
(MK (X), ‖ · ‖) → (M(K), ‖ · ‖) is an isometric isomorphism, and hence MK (X) ∼=
M(K) ∼= (C(K) ′, ‖ · ‖op) is a Banach space (using the Riesz Representation Theorem,
[37, 6.19]). We give Mc(X) :=

⋃
K MK (X) the locally convex direct limit topology,

and note that it is Hausdorff (being finer than the normable topology arising from
the total variation norm). We let M(X)+ be the set of finite positive Radon measures
on X, MK (X)+ be the subset of Radon measures supported in a given compact set K ⊆
X, and Mc(X)+ :=

⋃
K MK (X)+. If G is a Hausdorff topological group, with group

multiplication m : G×G→ G, we let µ⊗ ν be the Radon product measure of µ, ν ∈
M(G)+ (see [8, 2.1.11]). We define µ ⊗ ν for µ, ν ∈ M(G) via bilinear extension;
then |µ ⊗ ν| ≤ |µ| ⊗ |ν| (see, e.g., [26, (5.4)]). The convolution of µ, ν ∈ M(G) is
defined as the measure µ ∗ ν := m∗(µ⊗ ν) taking A ∈ B(G) to (µ⊗ ν)(m−1(A)) (cf.
[8, 2.1.16]). Since

|µ ∗ ν| = |m∗(µ⊗ ν)| ≤ m∗
(
|µ⊗ ν|

)
≤ m∗

(
|µ| ⊗ |ν|

)
= |µ| ∗ |ν|,
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one deduces that

‖µ ∗ ν‖ ≤
(
|µ| ∗ |ν|

)
(G) =

(
|µ| ⊗ |ν|

)
(G× G) = |µ|(G)|ν|(G) = ‖µ‖ ‖ν‖.

We shall use that3

supp(µ ∗ ν) ⊆ supp(µ) supp(ν) for all µ, ν ∈ Mc(G).

Lemma 4.1 Let X be a Hausdorff topological space and (A j) j∈ J be a family of Borel
subsets of X, such that JK := { j ∈ J : A j ∩ K 6= ∅} is finite for each compact subset
K ⊆ X. Then the map

Φ : Mc(X) −→
⊕
j∈ J

M(A j), µ 7−→ (µ|B(A j )) j∈ J

is continuous and linear.

Recall the notation ρ� µ for ρ dµ.

Lemma 4.2 Let X be a Hausdorff topological space that is hemicompact, and let K1 ⊆
K2 ⊆ · · · be compact subsets of X such that each compact subset of X is contained in
some Kn. Let K0 := ∅. Given µ ∈ Mc(X), we have µn := 1Kn\Kn−1

� µ ∈ MKn (X) for
each n ∈ N, and the map

Φ : Mc(X) −→
⊕
n∈N

MKn (X), µ 7−→ (µn)n∈N

is linear and is a topological embedding.

If X is a locally compact space, µ ≥ 0 a Radon measure on X, and K ⊆ X a
compact set, we define (L1(X, µ), ‖ · ‖L1 ) as usual and let L1

K (X, µ) be the set of all
[γ] ∈ L1(X, µ) vanishing µ-almost everywhere outside K. We equip L1

K (X, µ) with
the topology induced by L1(X, µ), and L1

c (X, µ) :=
⋃

K L1
K (X, µ) with the locally

convex direct limit topology. We abbreviate L1
c (G) := L1

c (G, λG).

Lemma 4.3 For each locally compact space X and Radon measure µ ≥ 0 on X, the
map

Φ : Cc(X) −→ Mc(X), γ 7−→ γ � µ

is continuous and linear, and so is Ψ : L1
c (X, µ)→ Mc(X), γ 7→ γ � µ.

As is well known, the definitions of convolution of functions and of measures are
compatible with one another (cf. [16, p. 50]).

Lemma 4.4 If G is a locally compact group, with left Haar measure λG, then (γ�λG)∗
(η � λG) = (γ ∗ η)� λG for all γ, η ∈ Cc(G) (and, more generally, for γ, η ∈ L1

c (G)).

3If z ∈ G \ supp(µ) supp(ν) =: U and x, y ∈ G with xy = z, then x 6∈ supp(µ) or y 6∈ supp(ν).
Hence m−1(U )∩ (supp(µ)× supp(ν)) = ∅ and |µ ∗ ν|(U ) ≤ (|µ| ∗ |ν|)(U ) = (|µ| ⊗ |ν|)(m−1(U )) ≤
(|µ| ⊗ |ν|)(G× (G \ supp(ν))) + (|µ| ⊗ |ν|)((G \ supp(µ))× G) = 0.
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5 Convolution on Non-σ-compact Groups

We prove that convolution of test functions on a non-σ-compact group is always
discontinuous (Proposition 5.3). Notably, this shows the necessity of condition (i) in
Theorem 1.2. It is efficient to discuss convolution of measures in parallel, and all our
results concerning it. Note that [11, Lemma] is essential.

Lemma 5.1 Let I be an uncountable set. Then there exists a function g : I × I →
]0,∞[ such that for each v : I → ]0,∞[, there exist i, j ∈ I such that v(i)v( j) >
g(i, j).

Lemma 5.2 Let G be a Hausdorff topological group and let W ⊆ Mc(G) be a cone
(i.e., [0,∞[ W ⊆W ), equipped with a topology O making the map mµ : [0,∞[→W ,
r 7→ rµ continuous at 0 for each µ ∈W . Assume that there exists an uncountable set I
and families (Yi)i∈I and (Zi)i∈I of Borel sets in G such that

IK := {(i, j) ∈ I × I : YiZ j ∩ K 6= ∅}

is finite for each compact subset K ⊆ G, and there exist non-zero measures µi , νi ∈
Mc(G)+ ∩W such that supp(µi) ⊆ Yi and supp(νi) ⊆ Zi , for all i ∈ I. Then the
convolution map

β : (W,O)× (W,O) −→ Mc(G), (µ, ν) 7−→ µ ∗ ν

is discontinuous (with respect to the usual locally convex direct limit topology on the
right-hand side).

Proof After passing to a positive multiple, we may assume that ‖µi‖ = ‖νi‖ = 1 for
all i ∈ I. Let g : I × I → ]0,∞[ be as in Lemma 5.1. By Lemma 4.1, the restriction
maps combine to a continuous linear mapping Mc(G)→

⊕
(i, j)∈I×I M(YiZ j). Hence

the set
S :=

{
µ ∈ Mc(G) : (∀i, j ∈ I) |µ|(YiZ j) < g(i, j)

}
is an open 0-neighbourhood in Mc(G). We now show that

(5.1) β(U ×V ) = U ∗V 6⊆ S

for any 0-neighbourhoods U ⊆ W and V ⊆ W . Hence β will be discontinuous at
(0, 0). Since U is a 0-neighbourhood and mµi is continuous at 0 for i ∈ I, we find
εi > 0 such that εiµi ∈ U . Likewise, we find θi > 0 such that θiνi ∈ V . By choice
of g, there exist i, j ∈ I such that εiθ j > g(i, j). Since (εiµi) ∗ (θ jν j) ∈ Mc(G)+ and
supp((εiµi) ∗ (θ jν j)) ⊆ supp(µi) supp(ν j) ⊆ YiZ j , we obtain

|(εiµi) ∗ (θ jν j)|(YiZ j) = (εiµi ∗ θ jν j)(YiZ j) = (εiµi ∗ θ jν j)(G)

= εiθ j µi ∗ ν j = εiθi (µi ⊗ ν j)(G× G)

= εiθ j µi(G)ν j(G) = εiθ j > g(i, j).

Hence (εiµi) ∗ (θ jν j) 6∈ S, establishing (5.1).
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Proof of Theorem 1.3 (i) If G is hemicompact, define Φ for X := G as in Lemma 4.2.
For i, j ∈ N, let fi, j : MKi (G) ×MK j (G) → MKi K j (G) ⊆ Mc(G) be the convolution
map. Then fi, j is continuous, because ‖ fi, j(µ, ν)‖ = ‖µ ∗ ν‖ ≤ ‖µ‖ ‖ν‖. Abbreviate
S :=

⊕
i∈N MKi (X). Since each of the spaces MKi (X) is normable, it follows that the

bilinear map f : S× S→ Mc(G), f ((γi)i∈N, (η j) j∈N) :=
∑

i, j∈N fi, j(γi , η j) is contin-
uous [22, Corollary 2.4]. Hence the convolution map β on Mc(G) is also continuous,
as it can be written in the form β = f ◦ (Φ× Φ).

(ii) If G is spacious, then there exist uncountable subsets A,B ⊆ G such that
{(a, b) ∈ A × B : ab ∈ K} is finite for each compact set K ⊆ G. After replacing A
and B by subsets whose cardinality is the smallest uncountable cardinal ℵ1, we may
assume that there exists a bijection f : A → B. Then ({a})a∈A and ({ f (a)})a∈A are
families of (singleton) subsets of G such that {(a, a ′) ∈ A×A : {a}{ f (a ′)}∩K 6= ∅}
is finite for each compact subset K ⊆ G. Now define W := Mc(G), with its usual
topology and note that the point measures µa := δa at a and νa ′ := δ f (a ′) at f (a ′)
on G are contained in W ∩ M{a}(G)+ and W ∩ M{ f (a ′)}(G)+, respectively. Thus
Lemma 5.2 shows that β is not continuous.

Proposition 5.3 Let (G, r, s, t, b) and β : C r
c(G, E1)×C s

c(G, E2)→ Ct
c(G, F) be as in

the introduction. If G is not σ-compact, then β is not continuous.

Our proof of Proposition 5.3 uses a property of non-σ-compact groups:

Lemma 5.4 Let G be a locally compact group that is not σ-compact, and let U ⊆ G be
a σ-compact, open subgroup of G. Then there exist disjoint uncountable subsets A,B ⊆
G such that A and B have the same cardinality,

(5.2)
(
∀(a, b), (a ′, b ′) ∈ A× B

)
aU b ∩ a ′U b ′ 6= ∅⇒ (a, b) = (a ′, b ′),

and (aU b)(a,b)∈A×B is locally finite.

Proof Let ω1 be the first uncountable ordinal. Fix a well-ordering� on G. We prove
the following assertion P(θ) for all ordinals θ ≤ ω1, by transfinite induction:

P(θ): There exist uniquely determined families (Aα)α≤θ and (Bα)α≤θ of subsets
Aα,Bα ⊆ G and a unique family ( fα)α≤θ of bijections fα : Aα → Bα such that A0 =
B0 = ∅, Aα and Bα are countable for all α ≤ θ such that α 6= ω1; moreover,

(5.3) (∀α ≤ θ) (α + 1 ≤ θ)⇒{
Aα+1 = Aα ∪ {xα} with xα = min(G \ 〈U ∪ Aα ∪ Bα 〉),

Bα+1 = Bα ∪ {yα} with yα = min(G \ 〈U ∪ Aα+1 ∪ Bα〉),

Aα =
⋃
β<α Aβ and Bα =

⋃
β<α Bβ for all limit ordinals α ≤ θ, and fα|Aβ = fβ for

all β ≤ α ≤ θ.
Here, the minima in (5.3) refer to the chosen well-ordering on G. Because Aα and

Bα are countable if α + 1 ≤ θ, the group 〈U ∪ Aα ∪ Bα 〉 is σ-compact and hence
not all of G. As a consequence, its complement G \ 〈U ∪ Aα ∪ Bα 〉 is non-empty
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and the first minimum in (5.3) makes sense. Similarly, the second minimum makes
sense.

To prove P(θ) by transfinite induction, note that P(0) is satisfied if and only if
A0 = B0 = f0 = ∅.

If θ is a non-zero limit ordinal and P(θ ′) holds for all θ ′ < θ, write(
(Aθ ′

α )α≤θ ′ , (Bθ
′

α )α≤θ ′ , ( f θ
′

α )α≤θ ′
)

for the triple ((Aα)α≤θ ′ , (Bα)α≤θ ′ , ( fα)α≤θ ′) that is uniquely determined by P(θ ′). If
θ ′ ′ ≤ θ ′ < θ, the uniqueness in P(θ ′ ′) implies that Aθ ′ ′

α = Aθ ′

α , Bθ
′ ′

α = Bθ
′

α and
f θ
′ ′

α = f θ
′

α for all α ≤ θ ′ ′. For α < θ, choose θ ′ < θ such that α ≤ θ ′; then
Aα := Aθ ′

α , Bα := Bθ
′

α , and fα := f θ
′

α are independent of the choice of θ ′ (as just
observed). We also set Aθ :=

⋃
α<θ Aα, Bθ :=

⋃
α<θ Bα and fθ :=

⋃
α<θ fα. Then

P(θ) holds.
If θ = θ ′ + 1, let Aα := Aθ ′

α , Bα := Bθ
′

α , and fα := f θ
′

α for α ≤ θ ′. Define
Aθ := Aθ∪{xθ ′}with xθ ′ = min(G\〈U ∪Aθ ′ ∪ Bθ ′ 〉). Also, define Bθ := Bθ ′∪{yθ ′}
with yθ ′ := min(G \ 〈U ∪ Aθ ∪ Bθ ′〉). Then P(θ) is satisfied. The inductive proof is
complete.

Now, set A := Aω1 and B := Bω1 . These are uncountable sets, as they can be
considered as the disjoint unions A =

⋃
α<ω1
{xα} and B =

⋃
α<ω1
{yα}. Moreover,

fω1 : A→ B is a bijection, and (5.2) can be inferred from P(ω1). In fact, assume that

xαU yβ ∩ xγU yδ 6= ∅.

Thus, there exist u,w ∈ U such that xαuyβ = xγwyδ . Let θ := max{α, β, γ, δ}. If
β = θ and δ < θ, then H := 〈U ∪ Aθ+1 ∪ Bθ〉 would be a subgroup containing U
and all of xα, xγ and yδ . Hence yθ = yβ = u−1x−1

α xγwyδ ∈ H, contradicting (5.3).
Hence β = θ implies δ = θ = β. Thus xαu = xγw in this case. If α > γ, let
I := 〈U ∪ Aα〉. Then u,w, xγ ∈ I and hence also xα = xγwu−1 ∈ I, contradicting
(5.3). The same argument excludes the case α < γ, and thus α = γ.

Likewise, δ = θ implies β = δ, from which α = γ follows as just shown.
If β < θ and δ < θ, we may assume that α = θ (the case γ = θ is analogous). If

we would have γ < α, then H := 〈U ∪ Aα ∪ Bα〉 would be a subgroup containing
{u, yβ , xγ ,w, yδ}. Hence xα = xγwyδ y−1

β u−1 ∈ H, contradicting (5.3). Thus α = γ.
But then uyβ = wyδ . Without loss of generality β ≤ δ. If we would have β < δ,
then I := 〈U ∪Bδ〉 would be a subgroup containing {u, yβ ,w}. Hence yδ = w−1uyβ
would be in I, contradicting (5.3). Thus (5.2) holds.

If K ⊆ G is a compact set, let Φ be the set of all pairs (α, β) with α, β < ω1 such
that xαU yβ ∩ K 6= ∅. To see that Φ is finite, let us suppose that Φ was infinite and
derive a contradiction.

Case 1: Assume that Θ := {max{α, β} : (α, β) ∈ Φ} is finite. Then (1a) the set
C := {β ≤ α0 : (α0, β) ∈ Φ} is infinite for some α0 < ω1, or (1b) the set D := {α ≤
β0 : (α, β0) ∈ Φ} is infinite for some β0 < ω1. In case (1a), K meets xα0U yβ for all
β ∈ C (which are disjoint sets), and hence the compact set x−1

α0
K meets U yβ for all

β ∈ C , and also these sets are disjoint. But the set U\G of all right cosets of U is an
open cover of x−1

α0
K by disjoint open sets, and hence {S ∈ U\G : x−1

α0
K ∩ S 6= ∅}

https://doi.org/10.4153/CJM-2012-035-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-035-6


Continuity of Convolution of Test Functions on Lie Groups 117

must be finite, a contradiction. In case (1b), K meets xαU yβ0 for all α ∈ D (which
are disjoint sets), and hence the compact set Ky−1

β0
meets xαU for all α ∈ D, and

also these sets are disjoint. But the set G/U of all left cosets of U is an open cover of
Ky−1

β0
by disjoint open sets, and hence {S ∈ G/U : Ky−1

β0
∩ S 6= ∅}must be finite, a

contradiction.
Case 2: Assume that Θ is infinite. For each θ ∈ Θ, pick (αθ, βθ) ∈ Φ such that

max{αθ, βθ} = θ. Also, pick zθ ∈ K ∩ xαθU yβθ . Then (2a) C := {θ ∈ Θ : θ = βθ}
is infinite or (2b) the set D := {θ ∈ Θ : θ = αθ > βθ} is infinite. In case (2a), if
θ, θ ′ ∈ C and θ < θ ′, then xαθU yβθ ⊆ 〈U ∪ Aθ ′+1 ∪ Bθ ′〉 =: H and xαθ ′ ∈ H (as
αθ ′ ≤ θ ′). Since yβθ ′ = yθ ′ 6∈ H by (5.3), we have H ∩ H yβθ ′ = ∅ and hence
xαθU yβθU ∩ xαθ ′U yβθ ′ = ∅, entailing that zθ and zθ ′ lie in different left cosets of U ,
i.e., zθU ∩zθ ′U = ∅. Hence K meets infinitely many left cosets of U , a contradiction.
In case (2b), if θ, θ ′ ∈ D and θ < θ ′, then xαθU yβθ ⊆ 〈U ∪ Aθ ′ ∪ Bθ ′〉 =: H and
yβθ ′ ∈ H (as βθ ′ < θ ′). Since xαθ ′ = xθ ′ 6∈ H by (5.3), we have H ∩ xαθ ′H = ∅ and
hence xαθU yβθU ∩ xαθ ′U yβθ ′ = ∅, entailing that zθ and zθ ′ lie in different left cosets
of U . Hence K meets infinitely many left cosets of U , a contradiction.

Proof of Proposition 5.3 We write βb in place of β.
As b 6= 0, there exist non-zero vectors v ∈ E1, w ∈ E2 and z ∈ F such that

β(v,w) = z. Let Φv : C r
c(G) → C r

c(G, E1), Φw : C s
c(G) → C s

c(G, E2) and Φz : Ct
c(G)→

Ct
c(G, F) be the linear topological embeddings from Lemma 2.14. If c : R × R → R,

(s, t) 7→ s · t is the scalar multiplication, then

βb ◦ (Φv × Φw) = Φz ◦ βc.

Hence βb will be discontinuous if we can show that βc is discontinuous. Let
θ : Mc(G) × Mc(G) → Mc(G) be convolution of measures. Let U ⊆ G be a
σ-compact open subgroup. As we assume that G is not σ-compact, Lemma 5.4
provides uncountable subsets A,B ⊆ G and a bijection f : A → B such that
(aU b)(a,b)∈A×B is a locally finite family of disjoint open subsets of G. Define Ya := aU
and Za := U f (a) for a ∈ A. Then (YaZb)(a,b)∈A×A is a locally finite family of disjoint
open subsets of G. The map Φ from Lemma 4.3 (applied with µ := λG) is con-
tinuous linear and injective. We endow its image W := im(Φ) ⊆ Mc(G) with the
topology making Φ a homeomorphism onto W . For all a ∈ A, there exist non-zero
functions ga ∈ C r

c(G) and ha ∈ C s
c(G) with ga, ha ≥ 0 pointwise and supp(ga) ⊆ Ya,

supp(ha) ⊆ Za. Now the hypotheses of Lemma 5.2 are satisfied with µa := ga � λG

and νa := ha � λG. Hence θ|W×W is discontinuous. But βc = θ ◦ (Φ × Φ) (see
Lemma 4.4), entailing that also βc is discontinuous.

Remark 5.5 A locally compact group G is spacious if and only if it is not σ-com-
pact. In fact, if G is spacious, then the convolution map β : Mc(G) × Mc(G) →
Mc(G) is discontinuous (see Theorem 1.3(ii)), whence G is not hemicompact (by
Theorem 1.3(i)) and hence not σ-compact. If G is not σ-compact, then G is spacious,
as a consequence of Lemma 5.4.

Corollary 5.6 Let G be a locally compact group. Then the convolution mapping
β : L1

c (G)× L1
c (G)→ L1

c (G) is continuous if and only if G is σ-compact.
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Proof If G is σ-compact, using the local compactness we find compact sets Kn ⊆ G
such that G =

⋃∞
n=1 Kn and Kn is contained in the interior of Kn+1. Set K0 := ∅ and

abbreviate S :=
⊕

n∈N L1
Kn

(G). Then the map

Φ : L1
c (G)→ S, Φ(γ) := (1Ki\Ki−1

γ)i∈N

is linear, injective, and continuous (as in the proof of Lemma 4.2, using that
‖1Ki\Ki−1

γ‖L1 ≤ ‖γ‖L1 ). Since ‖γ ∗ η‖L1 ≤ ‖γ‖L1‖η‖L1 , the restriction fi, j of β
to L1

Ki
(G) × L1

K j
(G) is continuous for all i, j ∈ N. As all of the spaces L1

Ki
(G) are

normable, [22, Corollary 2.4] shows that

f : S× S→ L1
c (G), f

(
(γi)i∈N, (η j) j∈N

)
:=
∑
i, j∈N

fi, j(γi , η j)

is continuous. Hence β = f ◦ (Φ× Φ) is continuous as well.
If G is not σ-compact, let θ : Mc(G) ×Mc(G) → Mc(G) be convolution of mea-

sures. Let U ⊆ G be a σ-compact open subgroup, (Ya)a∈A, (Za)a∈A, ga and ha ∈
Cc(G) be as in the proof of Proposition 5.3. The map Ψ from Lemma 4.3 (ap-
plied with µ := λG) is continuous linear and injective. We endow its image W :=
im(Ψ) ⊆ Mc(G) with the topology making Ψ a homeomorphism onto W . Now the
hypotheses of Lemma 5.2 are satisfied, whence θ|W×W is discontinuous and hence
also β = θ ◦ (Ψ×Ψ).

6 Convolution of Ck
c -maps and C∞

c -maps

In this section, we prove the necessity of Theorem 1.2(ii). Thus, we assume that (ii)
is violated and deduce that βb := β is discontinuous. In view of Proposition 5.3, it
suffices to show this if (i) is satisfied.

Thus, let G be a σ-compact, non-discrete, non-compact Lie group, and let g :=
T1(G). If r = ∞ and s < ∞, we have βb(γ, η) = (βb∨(η∗, γ∗))∗ for (γ, η) ∈
C∞c (G, E1)×C s

c(G, E2), where βb∨ : C s
c(G, E2)×C∞c (G, E1)→ C∞c (G, F) and ∗ stands

for the involutions on C s
c(G, E2), C∞c (G, E1), and C∞c (G, F), respectively, which are

isomorphisms of topological vector spaces by Lemma 2.13. Hence discontinuity of
βb∨ will entail discontinuity of βb. It therefore suffices to assume that r < ∞ and
s =∞ in the rest of the proof.

We show that the convolution map β : C r
c(G, E1)×C∞c (G, E2)→ C∞c (G, F) is dis-

continuous. As in the proof of Proposition 5.3, we may assume that E1 = E2 = F = R
and that b : R × R → R is multiplication, for the proof of discontinuity. Let K ⊆ G
be a compact identity neighbourhood, and let M ⊆ G be a relatively compact, open
set such that KK ⊆ M. There exists a sequence (xi)i∈N in G such that (xiM)i∈N is lo-
cally finite. For each i ∈ N, let hi ∈ C∞c (G) be a function such that supp(hi) ⊆ xiM
and hi = 1 on some neighbourhood of xiKK. Let Ω be the set of all γ ∈ C∞c (G)
such that ‖γ‖L

i,xi KK = ‖hiγ‖L
i,xi KK < 1 for all i ∈ N (with notation as in Defi-

nition 2.7). Then Ω is an open 0-neighbourhood in C∞c (G) (cf. Lemma 2.3). If
β were continuous, then we could find 0-neighbourhoods V ⊆ C r

c(G) and W ⊆
C∞c (G) such that β(V × W ) ⊆ Ω. There exist s ∈ N0 and τ > 0 such that
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{η ∈ C∞K (G) : ‖η‖L
s ≤ τ} ⊆ W . Also, for each i ∈ N there exists σi > 0 such

that {γ ∈ C r
xi K (G) : ‖γ‖L

r ≤ σi} ⊆ V . Thus β(γ, η) ∈ Ω, and hence

‖γ ∗ η‖L
i,xi KK < 1

for all γ ∈ C r
xi K (G) and η ∈ C∞K (G) such that ‖γ‖L

r ≤ σi and ‖η‖L
s ≤ τ . Hence,

using Lemmas 2.11 and 3.5,

‖γ ∗ η‖L
i,KK = ‖τ L

x−1
i

(γ ∗ η)‖L
i,xi KK = ‖(τ L

x−1
i
γ) ∗ η‖L

i,xi KK < 1

for all γ ∈ C r
K (G) and η ∈ C∞K (G) such that ‖γ‖L

r ≤ σi and ‖η‖L
s ≤ τ . But this

contradicts the following lemma.

Lemma 6.1 Let G be a non-discrete Lie group, let K ⊆ G be a compact identity
neighbourhood, and let r, s ∈ N0. Then the convolution map

(6.1) (C r
K (G), ‖ · ‖L

r )× (C∞K (G), ‖ · ‖L
s )→ C∞KK (G)

is discontinuous, if one uses the ordinary Fréchet space topology on the right-hand side,
but merely the two indicated norms on the left.

Proof Suppose that the map (6.1) were continuous; we shall derive a contradiction.
Let φ : P → Q ⊆ g be a chart for G around 1 such that φ(1) = 0, P = P−1, dφ|g =
idg, and φ(x−1) = −φ(x) for all x ∈ P (for example, a logarithmic chart). After
shrinking K, we may assume that K = φ−1(A) for some compact 0-neighbourhood
A ⊆ Q with [−1, 1]A ⊆ A. Notably, K ⊆ P. Let m > 0 be the dimension of G,
let λg be a Haar measure on (g,+), and let λg|Q be its restriction to a measure on
(Q,B(Q)). Then the image measure φ∗(λG|P) is of the form ρ dλg|Q with a smooth
function ρ : Q → ]0,∞[. Given γ ∈ C∞K (G), let γ̃ := γ ◦ φ−1 ∈ C∞A (Q). Then, for
all γ, η ∈ C∞K (G),

(6.2) (γ ∗ η)(0) =

∫
Q
γ̃(y)η̃(−y) ρ(y) dλg(y).

If Y is a vector field on G and θ := dφ ◦ Y ◦ φ−1 ∈ C∞(Q,Rm) its representative
with respect to the chart φ, then

(6.3) (DYγ )̃ = Dθγ̃,

where DY (γ) is as in (2.1), and Dθγ̃ := dγ̃ ◦ (idQ, θ). Choose n ∈ 2N so large that
m + r + s + 2 − 2n < 0. Pick h ∈ C∞A (g) such that h 6= 0 and h(x) = h(−x) for all
x ∈ g. There is v ∈ A \ {0} such that h(v) 6= 0. Then Dn

v h 6= 0. To see this, find
c > 1 such that ]−c, c[ v ⊆ Q but ]−c, c[ v 6⊆ A. Then g : ]−c, c[→ R, t 7→ h(tv) is a
compactly supported non-zero function, whence g(n)(t0) 6= 0 for some t0 ∈ ]−c, c[,
and thus Dn

v h(t0v) 6= 0. For t ∈ ]0, 1], define γ̃t , η̃t ∈ C∞tA (Q) ⊆ C∞A (Q) via

γ̃t (x) := t r+1h(x/t) and η̃t (x) := t s+1h(x/t)

for x ∈ Q. Define γt , ηt ∈ C∞K (G) via γt (x) := γ̃t (φ(x)) and ηt (x) := η̃t (φ(x)) if
x ∈ P, and by γt (x) := ηt (x) := 0 if x ∈ G \ K.
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Claim γt → 0 in C r
K (G) and ηt → 0 in (C∞K (G), ‖ · ‖L

s ) as t → 0. However,
‖γt ∗ ηt‖R,L

n,n →∞ as t → 0, whence γt ∗ ηt 6→ 0 in C∞KK (G).

Therefore the map in (6.1) is not continuous, a contradiction.
To prove the claim, we first note that

(6.4) (Dξ j . . .Dξ1 γ̃t )(x) =

j∑
i=1

t r+1−igi(t, x)

for j ∈ N, ξ1, . . . , ξ j ∈ C∞(Q, g) and x ∈ Q, where

g j(t, x) = d( j)h(x/t, ξ1(x), . . . , ξ j(x))

and gi(t, x) for i < j is a sum of terms of the form d(i)h(x/t, f1(x), . . . , fi(x)) with
suitable smooth functions f1, . . . , fi ∈ C∞(Q, g). This can be established by a
straightforward induction, using the fact that the application of Dξ to

x 7−→ d(i)h
(

x/t, f1(x), . . . , fi(x)
)

yields4

1

t
d(i+1)h

(
x/t, f1(x), . . . , fi(x), ξ(x)

)
+ d(i)h

(
x/t, (Dξ f1)(x), . . . , fi(x)

)
+ · · · + d(i)h

(
x/t, f1(x), . . . , (Dξ fi)(x)

)
for ξ ∈ C∞(Q, g). A similar description (with s in place of r) can be given for
Dξ j . . .Dξ1 η̃t . We find it useful to abbreviate h(i) := d(i)h and5

‖h(i)‖op,∞ := sup{‖h(i)(y, · )‖op : y ∈ g}.

Note that h(i)(x/t, f1(x), . . . , fi(x)) vanishes for x outside tA and hence for x 6∈ A,
and that its norm is bounded by

‖h(i)‖op,∞ ‖ f1‖∞ · · · ‖ fi‖∞,

irrespective of t and x. A similar estimate is available for g j(t, x). Also, ‖γ̃t‖∞ ≤
‖h‖∞t r+1. Hence, if j ∈ {0, . . . , r}, we can find C > 0 such that

‖Dξ j . . .Dξ1 γ̃t‖∞ ≤
j∑

i=1

t r+1−iC ≤ jtC.

4Recall that d(i)h(x, · ) : Ei → F is i-linear (see, e.g., [18, 27, 34]).
5As usual, for normed spaces (E1, ‖ · ‖1), . . . , (Ei , ‖ · ‖i) and (F, ‖ · ‖F) and a continuous i-linear map

B : E1 × · · · × Ei → F, we define ‖B‖op as the supremum of ‖B(x1, . . . , xi)‖F , where x j ∈ E j with
‖x j‖ j ≤ 1 for j = 1, . . . , i.
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As a consequence,

max
|α|≤r
‖∂αγ̃t‖∞ → 0

as t → 0 and thus γ̃t → 0 in C r
A(Q), entailing that γt → 0 in C r

K (G) ∼= C r
K (P).

Likewise, ηt → 0 in C s
K (G), whose topology can be described by the norm ‖ · ‖L

s , and
thus ηt → 0 in (C∞K (G), ‖ · ‖L

s ).

Next, let X be the right invariant vector field on G with X(1) = v, and let Y be the
left invariant vector field with Y (1) = v. Let ξ := dφ◦X ◦φ−1 and ζ := dφ◦Y ◦φ−1

be the local representatives. By (6.2) and (6.3),

(
Dn

XDn
Y (γt ∗ ηt )

)
(0) = (Dn

Xγt ∗ Dn
Y ηt )(0) =

∫
Q

(Dn
ξ γ̃t )(y)(Dn

ζ η̃t )(−y) ρ(y) dλg(y).

Write

(Dn
ξ γ̃t )(x) =

n∑
i=1

t r+1−igi(t, x) and (Dn
ζ η̃t )(x) =

n∑
j=1

t s+1− jh j(t, x)

as in (6.4). Then

(
Dn

XDn
Y (γt ∗ ηt )

)
(0) = tm+r+s+2−2n

(
t−m

∫
Q

gn(t, y)hn(t,−y) ρ(y) dλg(y) + R(t)
)

where R(t) is the sum of the terms t2n−i− jt−m
∫

Q gi(t, y)h j(t,−y)ρ(y) dλg(y) with
i, j ∈ {1, . . . , n} and (i, j) 6= (n, n). For these (i, j),

∣∣∣∣ t−m

∫
Q

gi(t, y)h j(t,−y)ρ(y) dλg(y)

∣∣∣∣
=

∣∣∣∣ t−m

∫
Q

h(i)
(

y/t, f1(y), . . . , fi(y)
)

h( j)
(
−y/t, k1(−y), . . . , k j(−y)

)
ρ(y) dλg(y)

∣∣∣∣
=

∣∣∣∣∫
Q/t

h(i)
(

z, f1(tz), . . . , fi(tz)
)

h( j)
(
−z, k1(−tz), . . . , k j(−tz)

)
ρ(tz) dλg(z)

∣∣∣∣
=

∣∣∣∣∫
A

h(i)
(

z, f1(tz), . . . , fi(tz)
)

h( j)
(
−z, k1(−tz), . . . , k j(−tz)

)
ρ(tz) dλg(z)

∣∣∣∣
≤ ‖h(i)‖op,∞‖h( j)‖op,∞‖ f1‖∞ · · · ‖ fi‖∞‖k1‖∞ · · · ‖k j‖∞‖ρ|A‖∞λg(A)

(using the substitution y/t = z to obtain the second equality), where the final esti-
mate is independent of t . Since 2n − i − j ≥ 1 and thus t2n−i− j → 0 as t → 0, we
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deduce that R(t)→ 0. Similarly, substituting z = y/t , we get

t−m

∫
Q

gn(t, y)hn(t,−y) ρ(y) dλg(y)

= t−m

∫
Q

h(n)
(

y/t, ξ(x), . . . , ξ(x)
)

h(n)
(
−y/t, ζ(−y), . . . , ζ(−y)

)
ρ(y) dλg(y)

=

∫
Q/t

h(n)
(

z, ξ(tz), . . . , ξ(tz)
)

h(n)
(
−z, ζ(−tz), . . . , ζ(−tz)

)
ρ(tz) dλg(z)

=

∫
A

h(n)
(

z, ξ(tz), . . . , ξ(tz)
)

h(n)
(
−z, ζ(−tz), . . . , ζ(−tz)

)
ρ(tz) dλg(z)

(6.5)

which tends to∫
A

h(n)
(

z, ξ(0), . . . , ξ(0)
)

h(n)
(
−z, ζ(0), . . . , ζ(0)

)
ρ(0) dλg(z)

=

∫
A

h(n)
(

z, v, . . . , v
)

h(n)(−z, v, . . . , v) ρ(0) dλg(z)

= ρ(0)

∫
A

(
Dn

v h(z)
) 2

dλg(z) =: a > 0

as t → 0. Note that the integrand in (6.5) is continuous for (t, y) ∈ [0, 1]×A, whence
Lemma A.2 applies. Since R(t)→ 0, there exists τ ∈ ]0, 1] such that |R(t)| ≤ a/2 for
all t ∈ ]0, τ ]. Then (Dn

XDn
Y (γt ∗ ηt ))(0) ≥ tm+r+s+2−2n a

2 for all t ∈ ]0, τ ], which tends
to∞ as t → 0. Hence also ‖γt ∗ ηt‖R,L

n,n ≥ |(Dn
XDn

Y (γt ∗ ηt ))(0)| goes to∞ as t → 0,
and the claim is established.

7 Convolution on σ-compact Groups

In this section, we complete the proof of Theorem 1.2. As we have already seen in
Sections 5 and 6 that conditions (i) and (ii) of the theorem are necessary for continu-
ity of β, it suffices to consider the case that (i) and (ii) are satisfied, and to show that
β is continuous if and only if condition (iii) of the theorem is satisfied. In parallel,
we shall establish a result concerning discrete groups. To formulate it, let (G, r, s, t, b)
be as in the introduction. If G is discrete, then C p

c (G,H) =
⊕

g∈G H =: H(G) with
the locally convex direct sum topology, for each p ∈ N0 ∪ {∞} and locally convex
space H.

Proposition 7.1 If G is an infinite discrete group, then the map β : E(G)
1 ×E(G)

2 → F(G),
β(γ, η) := γ ∗bη is continuous if and only if G is countable and b : E1×E2 → F satisfies
product estimates.

We need only prove Proposition 7.1 for countable G (as the discontinuity of β for
uncountable G was already established in Proposition 5.3).
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Lemma 7.2 Let G be a σ-compact, non-compact, locally compact group and let V ⊆
G be a compact identity neighbourhood. Then there are sequences (gi)i∈N and (h j) j∈N

in G, such that the family (giV h jV )(i, j)∈N2 is locally finite.

Proof Since G is locally compact and σ-compact, there exists a sequence (Ki)i∈N of
compact subsets of G such that G =

⋃
i∈N Ki and Ki ⊆ K0

i+1, for all i ∈ N. We may
assume that K1 = ∅. It suffices to find sequences (gi)i∈N and (h j) j∈N in G such that

(7.1) giV h jV ∩ Ki∨ j = ∅

for all i, j ∈ N, where i ∨ j denotes the maximum of i and j. Indeed, if K ⊆ G is
compact, then K ⊆ Kn for some n ∈ N, and thus K ∩ giV h jV = ∅ unless i, j ∈
{1, . . . , n − 1} (which is a finite set). To find such sequences, we make an arbitrary
choice of g1, h1 ∈ G. Now let n ∈ N and assume that gi , h j have been chosen for
i, j ∈ {1, . . . , n} such that (7.1) holds. Then the subset

P :=
n⋃

j=1
Kn+1V−1h−1

j V−1

of G is compact. As G is non-compact, we find gn+1 ∈ G \ P. Also,

Q :=
n+1⋃
i=1

V−1g−1
i Kn+1V−1

is compact, whence we find hn+1 ∈ G\Q. Then (7.1) holds for all i, j ∈ {1, . . . , n+1}.
We need only check this if i = n + 1 or j = n + 1. If j = n + 1, then h j = hn+1 6∈ Q,
and thus giV h jV ∩ Kn+1 = ∅. If j ≤ n and i = n + 1, then gi = gn+1 6∈ P, and hence
giV h jV ∩ Kn+1 = ∅.

We shall use the seminorm ‖ · ‖p,L1 on C0
c (G, E) (where p is a continuous semi-

norm on E), defined via ‖γ‖p,L1 :=
∫

G p(γ(y)) dλG(y). For each compact subset
K ⊆ G, we have ‖γ‖p,L1 ≤ λG(K)‖γ‖p,∞ for all γ ∈ C0

K (G, E). Hence ‖ · ‖p,L1 is
continuous on C0

K (G, E) and hence also on C0
c (G, E).

Necessity of product estimates Let (G, r, s, t, b) be as in the introduction. Assume
that G is not compact, and assume that the conditions (i) and (ii) from Theorem 1.2
are satisfied.6 Also, assume that β is continuous. Pick a relatively compact, open
identity neighbourhood V ⊆ G. By Lemma 7.2, there are sequences (xi)i∈N and
(y j) j∈N in G such that the family (Vi, j)(i, j)∈N2 of open sets Vi, j := xiV y jV is locally
finite. Pick gi , h j ∈ C r

c(G) such that

gi , h j ≥ 0, Ki := supp(gi) ⊆ xiV, L j := supp(h j) ⊆ y jV, and ‖gi‖L1 = ‖h j‖L1 = 1.

Pick hi, j ∈ C r
c(G) such that hi, j ≥ 0, supp(hi, j) ⊆ Vi, j and hi, j |Ki L j = 1. For i, j ∈ N,

let pi, j be a continuous seminorm on F. Let Z be the set of all γ ∈ Ct
c(G, F) such that

(∀i, j ∈ N) ‖hi, j · γ‖pi, j ,L1 < 1.

6If G is discrete, these conditions are equivalent to countability of G.
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Lemma 2.3 entails that Z is an open 0-neighbourhood in Ct
c(G, F). As β is assumed to

be continuous, there exist open 0-neighbourhoods X ⊆ C r
c(G, E1) and Y ⊆ C s

c(G, E2)
such that β(X × Y ) ⊆ Z. Using Lemma 2.15, for each i ∈ N we find a continuous
seminorm pi on E1 such that giB

pi

1 (0) ⊆ X. Likewise, for each j ∈ N there is a
continuous seminorm q j on E2 such that h jB

q j

1 (0) ⊆ Y . For v ∈ B
pi

1 (0) and w ∈
B

q j

1 (0), we then have γ := β(giv, h jw) ∈ Z, and thus ‖γ‖pi, j ,L1 = ‖hi, j · γ‖pi, j ,L1 < 1
(noting that supp(γ) ⊆ KiL j on which hi, j = 1). Therefore,

1 > ‖γ‖pi, j ,L1 =

∫
G

pi, j(γ(x)) dλG(x)

=

∫
G

∫
G

pi, j

(
b(gi(y)v, h j(y−1x)w

)
dλG(y) dλG(x)

= pi, j

(
b(v,w)

) ∫
G

∫
G

gi(y)h j(y−1x) dλG(y) dλG(x)

= pi, j

(
b(v,w)

)
‖gi‖L1‖h j‖L1 = pi, j

(
b(v,w)

)
.

Hence b(B
pi

1 (0) × B
q j

1 (0)) ⊆ B
pi, j

1 (0), entailing that pi, j(b(x, y)) ≤ pi(x)q j(y) for all
i, j ∈ N. Thus b satisfies product estimates.

Sufficiency of product estimates As before, let (G, r, s, t, b) be as in the introduc-
tion, and assume that conditions (i) and (ii) of Theorem 1.2 are satisfied. Also,
assume that b satisfies product estimates (condition (iii)). We show that β is con-
tinuous. To this end, let (hi)i∈N be a locally finite partition of unity on G (smooth if
G is a Lie group, continuous otherwise), with compact supports Ki := supp(hi). For
all i, j ∈ N, the convolution map fi, j : C r

Ki
(G, E1)×C s

K j
(G, E2)→ Ct

c(G, F) associated
with b is then continuous (see Lemmas 3.1 and 3.2). We claim that the hypotheses of
[22, Corollary 2.5] are satisfied. If this is true, then the bilinear map

f :
⊕
i∈N

C r
Ki

(G, E1)×
⊕
j∈N

C s
K j

(G, E2)→ Ct
c(G, F)

taking ((γi)i∈N, (η j) j∈N) to
∑

(i, j)∈N2 fi, j(γi , η j) is continuous (by the latter corol-
lary). Since the linear map Φ : C r

c(G, E1) →
⊕

i∈N C r
Ki

(G, E1), γ 7→ (hi · γ)i∈N and
the analogous map Ψ : C s

c(G, E2)→
⊕

i∈N C s
Ki

(G, E2) are also continuous, we deduce
that β = f ◦ (Φ×Ψ) is continuous.

To prove the claim, let Qi, j be continuous seminorms on Ct
c(G, F) for all i, j ∈ N.

If t < ∞, choose k, ` ∈ N0 with k ≤ r, ` ≤ s and k + ` = t . If t = r = s = ∞, let
k := ` := 0. If i < j, then there exist a continuous seminorm Pi, j on F and si, j ∈ N0

such that si, j ≤ s and(
∀γ ∈ Ct

Ki K j
(G, F)

)
Qi, j(γ) ≤ ‖γ‖R,L

k,si, j ,Pi, j

(see Lemma 2.8). If i ≥ j, there exist a continuous seminorm Pi, j on F and ri, j ∈
N0 such that ri, j ≤ r and Qi, j(γ) ≤ ‖γ‖R,L

ri, j ,`,Pi, j
for all γ ∈ Ct

Ki K j
(G, F). By hy-

pothesis (iii), there are continuous seminorms pi on E1 and q j on E2 such that
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Pi, j(b(x, y)) ≤ pi(x)q j(y) for all i, j ∈ N and all x ∈ E1, y ∈ E2. For i, j ∈ N, let
Pi := ‖ · ‖R

k,pi
and Q j := ‖ · ‖L

`,q j
. For i, j ∈ N with i < j, let qi, j := λG(Ki)‖ · ‖L

si, j ,q j
.

Then

(7.2) Qi, j(γ ∗b η) ≤ ‖γ ∗b η‖R,L
k,si, j ,Pi, j

≤ ‖γ‖R
k,pi
‖η‖L

si, j ,q j
λG(Ki) = Pi(γ)qi, j(η)

for all γ ∈ C r
Ki

(G, E1) and η ∈ C s
K j

(G, E2), using Lemma 3.6. If i, j ∈ N with i ≥ j,

let pi, j := λG(Ki)‖ · ‖R
ri, j ,pi

. For γ ∈ C r
Ki

(G, E1) and η ∈ C s
K j

(G, E2),

(7.3) Qi, j(γ ∗b η) ≤ ‖γ ∗b η‖R,L
ri, j ,`,Pi, j

≤ ‖γ‖R
ri, j ,pi
‖η‖L

`,q j
λG(Ki) = pi, j(γ)Q j(η)

(using Lemma 3.6 again). By (7.2) and (7.3), the claim is established.

8 Convolution of C r-maps and C s
c-maps

Proposition 8.1 Let (G, r, s, t, b) be as in the introduction, and

βb : C r
c(G, E1)×C s(G, E2) −→ Ct (G, F),

θb : C r(G, E1)×C s
c(G, E2) −→ Ct (G, F)

be the convolution maps taking (γ, η) to γ ∗b η. Then βb and θb are hypocontinuous.
The map βb is continuous if and only if G is compact. Likewise, θb is continuous if and
only if G is compact. Moreover, the convolution maps

βK : C r
K (G, E1)×C s(G, E2) −→ Ct (G, F),

θK : C r(G, E1)×C s
K (G, E2) −→ Ct (G, F)

taking (γ, η) to γ ∗b η are continuous, for each compact subset K ⊆ G.

Proof Since θb(γ, η) = βb∨(η∗, γ∗)∗ for all (γ, η) ∈ C r(G, E1) × C s
c(G, E2) and

βb(γ, η) = θb∨(η∗, γ∗)∗ for all (γ, η) ∈ C r
c(G, E1)×C s(G, E2), where the involutions

denoted by ∗ are continuous linear maps (Lemma 2.13), the assertions concerning θb

follow if we can establish those concerning β := βb.
We first show that βK is continuous for each compact subset K ⊆ G. To this

end, recall that the topology on Ct (G, F) is initial with respect to the linear maps
ρW : Ct (G, F) → Ct (W, F), γ 7→ γ|W , for W ranging through the set of relatively
compact, open subsets of G (cf. [20, Lemma 4.6]). Since K−1W is compact, there
exists h ∈ C s(G) with compact support L := supp(h) such that h|K−1W = 1. For
γ ∈ C r

K (G, E1) and η ∈ C s(G, E2), we have

(γ ∗b η)(x) =

∫
G

b
(
γ(x), η(y−1x)

)
dλG(y) =

∫
K

b
(
γ(x), η(y−1x)

)
dλG(y)

=

∫
K

b
(
γ(x), (h · η)(y−1x)

)
dλG(y)

=

∫
G

b
(
γ(x), (h · η)(y−1x)

)
dλG(y)

=
(
γ ∗b (h · η)

)
(x)
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for all x ∈W , and hence

ρW

(
βK (γ, η)

)
= ρW

(
βK (γ, h · η)

)
= ρW

(
µ(γ, h · η)

)
,

using the convolution µ : C r
K (G, E1) ×C s

L(G, E2) → Ct
KL(G, F) ⊆ Ct (G, F), which is

continuous by Lemmas 3.1 and 3.2. Since the multiplication operator

mh : C s(G, E2) −→ C s
L(G, E2), η 7−→ h · η

is also continuous (cf. [19, Lemma 3.9 and Proposition 3.10]), ρW ◦ βK , and hence
βK is continuous.

If γ ∈ C r
c(G, E1), then βb(γ, · ) = βsupp(γ)(γ, · ) : C s(G, E2) → Ct (G, F) is con-

tinuous. For η ∈ C r(G, E2), the map βb( · , η) : C r
c(G, E1) → Ct (G, F) is linear and

βb( · , η)|C r
K (G,E1) = βK ( · , η) : C r

K (G, E1) → Ct (G, F) is continuous for each compact
set K ⊆ G. Hence, since C r

c(G, E1) = lim−→C r
K (G, E1) as a locally convex space, βb( · , η)

is continuous. Thus, βb is separately continuous.
If B ⊆ C r

c(G, E1) is a bounded set, then B ⊆ C r
K (G, E1) for some compact set

K ⊆ G (Lemma 2.16(iii)), and thus β|B×C s(G,E2) = βK |B×C s(G,E2) is continuous. Hence
βb is hypocontinuous in the first argument (Remark B.1).

To see that βb is hypocontinuous in the second argument, let (λi)i∈I be a family
of linear maps λi : F → Fi to Banach spaces Fi such that the topology on F is initial
with respect to this family. Then the topology on Ct (G, F) is initial with respect to
the mappings Ct (G, λi) for i ∈ I (see [20, Lemma 4.14] for manifolds; cf. [15, 3.4.6]
for topological spaces). Hence, by Lemma B.2(iii), we need only show that each of
the maps Ct (G, λi) ◦ βb = βλi◦b is hypocontinuous in the second argument. We may
therefore assume now that F is a Banach space. Then there exist continuous linear
mappings ψ1 : E1 → F1 and ψ2 : E2 → F2 to suitable Banach spaces F1 and F2, and
a continuous bilinear map c : F1 × F2 → F such that c ◦ (ψ1 × ψ2) = b. Since
βb = βc ◦ (C r

c(G, ψ1) × C s(G, ψ2)), we need only show that βc is hypocontinuous
(see Lemma B.2(ii)). We may therefore assume that all of E1, E2, and F are Banach
spaces. Then C r

K (G, E1) is a Fréchet space for each compact subset K ⊆ G, and hence
barrelled. Hence C r

c(G, E1) is also barrelled, like every locally convex direct limit of
barrelled spaces [38, II.7.2]. As the first factor of its domain is barrelled, the separately
continuous bilinear map βb : C r

c(G, E1) × C s(G, E2) → Ct (G, F) is hypocontinuous
in the second argument [38, III.5.2]. As we already established its hypocontinuity in
the first argument, βb is hypocontinuous.

Finally, we show that βb (and hence also θb) fails to be continuous if G is not
compact. Pick u ∈ E1, v ∈ E2 such that w := β(u, v) 6= 0. Let K ⊆ G be a com-
pact identity neighbourhood and let p be a continuous seminorm on F such that
p(w) > 0. Then W := {γ ∈ Ct (G, F) : γ(K) ⊆ Bp

1 (0)} is an open 0-neighbourhood
in Ct (G, F). To see that βb is not continuous, let U ⊆ C r

c(G, E1) and let V ⊆ C s(G, E2)
be any 0-neighbourhoods. Let (Ui)i∈I be a locally finite cover of G be relatively com-
pact, open subsets. Since the topology on C s(G, E2) is initial with respect to the
restriction maps ρi : C s(G, E2) → C s(Ui , E2), γ 7→ γ|Ui (cf. [20, Lemma 4.12]), we
find a finite subset I0 ⊆ I and 0-neighbourhoods Qi ⊆ C s(Ui , E2) for i ∈ I0 such that

(8.1)
⋂

i∈I0

ρ−1
i (Qi) ⊆ V.
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Since K :=
⋃

i∈I0
Ui is compact and we assume that G is not compact, the open set

G \ K is non-empty. We pick η ∈ C∞c (G) (resp., η ∈ Co
c (G) if G is not a Lie group)

such that η ≥ 0, η 6= 0 and supp(η) ⊆ G\K. Then ηa := aηv ∈ V for each a > 0 (by
(8.1)). Define γa ∈ C r

c(G, E1) via γa(x) := 1
aη(x−1)u. Since U is a 0-neighbourhood,

there is a0 > 0 such that γa ∈ U for all a ≥ a0. Then

p
(

(γa ∗b ηa2 )(1)
)

= ap(w)

∫
G
η(y−1)η(y−1) dλG(y) = ap(w)‖η‖2

L2 ,

where the right-hand side can be made > 1 for large a. Thus γa ∗b ηa2 6∈W although
γa ∈ U and ηa2 ∈ V . Hence βb(U × V ) 6⊆ W . Since U and V were arbitrary, βb is
not continuous.

A Background on Vector-valued Integrals

If E is a locally convex space, (X,Σ, µ) a measure space [7], and γ : X → E a function,
we call a (necessarily unique) element v ∈ E the weak integral of γ with respect to µ
(and write

∫
X γ(x) dµ(x) := v) if λ ◦ γ : X → R is µ-integrable for each λ ∈ E ′

and λ(v) =
∫

X λ(γ(x)) dµ(x). If p is a continuous seminorm on E, using the Hahn-
Banach Extension Theorem, one finds that

p

(∫
X
γ(x) dµ(x)

)
≤ µ(X)‖γ‖p,∞.

Lemma A.1 Let (E, ‖ · ‖) be a locally convex space, let X be a locally compact space, let
µ be a Borel measure on X (see Section 4), and let γ : X → E be a continuous mapping
with compact support K. If K is metrizable, assume that E is sequentially complete or
satisfies the metric convex compactness property; if K is not metrizable, assume that E
satisfies the convex compactness property. Then the weak integral

∫
X γ(x) dµ(x) exists

in E.

Proof See [28, 1.2.3] for the first case, and [36, 3.27] for the two others.

The next two lemmas can be proved exactly as [9, Proposition 3.5].

Lemma A.2 Let E be a locally convex space, let X be a topological space, let µ be a
Borel measure on a compact space K, and let f : X × K → E be a continuous map.
Assume that the weak integral g(x) :=

∫
K f (x, a) dµ(a) exists in E for each x ∈ X.

Then g : X → E is continuous.

Lemma A.3 In the situation of A.2, assume that n ∈ N, r ∈ N0 ∪ {∞}, X ⊆ Rn

is open, the partial derivatives ∂α1 f (x, a) of f with respect to the variables in X exist
for all α ∈ Nn

0 with |α| ≤ r, and define continuous maps ∂α1 f : X × K → E. Also,
assume that the weak integrals

∫
K ∂

α
1 f (x, a) dµ(a) exist in E for all α as before. Then

g : X → E, x 7→
∫

K f (x, a) dµ(a) is C r, and ∂αg(x)=
∫

K ∂
α
1 f (x, a) dµ(a) for all α∈Nn

0

with |α| ≤ r and x ∈ K.
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B Hypocontinuous Bilinear Maps

Hypocontinuity As a special case of more general concepts, we call a bilinear map
β : E1 × E2 → F between locally convex spaces hypocontinuous if the following con-
ditions are satisfied:

(H1) For each 0-neighbourhood V ⊆ F and bounded set B1 ⊆ E1, there exists a
0-neighbourhood U ⊆ E2 such that β(B1 ×U ) ⊆ V ;

(H2) For each 0-neighbourhood V ⊆ F and bounded set B2 ⊆ E2, there exists a
0-neighbourhood U ⊆ E1 such that β(U × B2) ⊆ V .

In this case, β is separately continuous (as B1, B2 can be chosen as singletons). If β is
separately continuous and satisfies (H1) (resp., (H2)), we say that β is hypocontinu-
ous in its first (resp., its second) argument.

Remark B.1 A separately continuous bilinear map β : E1×E2 → F between locally
convex spaces is hypocontinuous in its second argument if and only if its restrictions
β|E1×B : E1 × B → F are continuous for all bounded subsets B ⊆ E2 (see, e.g., [21,
Proposition 16.8]; cf. [12, Chap. III, §5, no. 3, Proposition 4]).

Simple observations concerning hypocontinuous bilinear maps will be useful.

Lemma B.2
(i) Let β : E1 × E2 → F be a bilinear map between locally convex spaces that is

hypocontinuous in its second argument. Let Λ : F → H be a continuous linear map to a
locally convex space H. Then Λ ◦ β : E1 × E2 → H is also hypocontinuous in its second
argument.

(ii) Let β : E1 × E2 → F be a bilinear map between locally convex spaces that
is hypocontinuous in its second argument. Let H1, H2 be locally convex spaces and
ψ1 : H1 → E1, ψ2 : H2 → E2 be continuous linear maps. Then β ◦ (ψ1 × ψ2) :
H1 ×H2 → F is also hypocontinuous in its second argument.

(iii) Let E1, E2 and F be locally convex spaces. If the topology on F is initial with
respect to a family (Λi)i∈I of linear maps Λi : F → Fi to locally convex spaces Fi , then a
bilinear map β : E1 × E2 → F is hypocontinuous in its second argument if and only if
Λi ◦ β is hypocontinuous in its second argument, for each i ∈ I.

(iv) Let (Ei)i∈I and (F j) j∈ J be families of locally convex spaces and let

β :
( ⊕

i∈I
Ei

)
×
( ⊕

j∈ J
F j

)
−→ H

be a bilinear map to a locally convex space H. Then β is hypocontinuous in its second
argument if and only if βi, j := β|Ei×F j : Ei × F j → H is hypocontinuous in its second
argument, for all (i, j) ∈ I × J.

(v) If E1, E2 are locally convex spaces and β : E1 × E2 → F is a continuous bilinear
map to a Fréchet space F, then there exist continuous linear maps ψ1 : E1 → F1 and
ψ2 : E2 → F2 to Fréchet spaces F1, F2 and a continuous bilinear map θ : F1 × F2 → F
such that β = θ ◦ (ψ1 × ψ2).

Proof (i) Λ ◦ β is separately continuous, and Λ ◦ β|E1×B is continuous for each
bounded subset B ⊆ E2. Hence Λ ◦ β is hypocontinuous in its second argument (see
Remark B.1).
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(ii) The composition γ := β ◦ (ψ1 × ψ2) is separately continuous. If B ⊆ H2 is
bounded, then ψ2(B) is bounded in E2, entailing that

γ|H1×B = β|E1×ψ2(B) ◦ (ψ1 × ψ2|B)

is continuous. Hence γ is hypocontinuous in its second argument (using Remark B.1
again).

(iii) If x ∈ E1, then β(x, · ) : E2 → F is continuous if and only if Λi ◦ β(x, · ) :
E2 → Fi is continuous for each i ∈ I. Likewise, β( · , y) is continuous for y ∈ E2 if
and only if Λi ◦ β( · , y) is continuous for each i. If B ⊆ E2 is bounded, then β|E1×B

is continuous if and only if Λi ◦ β|E1×B is continuous for each i ∈ I. The assertion
follows with Remark B.1.

(iv) Write E :=
⊕

i∈I Ei , F :=
⊕

j∈ J F j . For i ∈ I, let λi : Ei → E be the usual
embedding. Also, let µ j : F j → F be the embedding for j ∈ J. If β is hypocontinuous
in its second argument, then so is βi, j = β ◦ (λi × µ j), by (ii).

Conversely, assume that each βi, j is hypocontinuous in its second argument. If
x = (xi)i∈I ∈ E, then x ∈

⊕
i∈I0

Ei for some finite set I0 ⊆ I. The linear
map β(x, · ) : F → H is continuous on F j for each j ∈ J (as it coincides with∑

i∈I0
βi, j(xi , · ) there). Hence β(x, · ) is continuous (by the universal property of

the locally convex direct sum). Likewise, β( · , y) : E → H is continuous for each
y ∈ F, and thus β is separately continuous.

Let B ⊆
⊕

j∈ J F j be a bounded set and U ⊆ H be an absolutely convex 0-neigh-
bourhood. Then B ⊆

⊕
j∈ J0

F j =: X for some finite subset J0 ⊆ J [30, II.6.3]. Let
n be the number of elements of J0. Excluding only trivial cases, we may assume that
n ≥ 1. For j ∈ J0, let π j : X → F j be the projection onto F j . Then B j := π j(B) is
bounded in F j . For each i ∈ I, using the hypocontinuity of βi, j we now find a convex
0-neighbourhood Vi, j ⊆ Ei such that βi, j(Vi, j × B j) ⊆ 1

nU . Set Vi :=
⋂

j∈ J0
Vi, j .

Then β(Vi × B j) = βi, j(Vi × B j) ⊆ 1
nU and hence, using that B ⊆

∑
j∈ J0

B j ,

β(Vi × B) ⊆
∑
j∈ J0

βi, j(Vi × B j) ⊆
∑
j∈ J0

1

n
U ⊆ U .

Now V := conv(
⋃

i∈I Vi) is a 0-neighbourhood in E. As every Vi is convex, for each
x ∈ V there are a finite set I0 ⊆ I, elements xi ∈ Vi for i ∈ I0, and ti ≥ 0 for i ∈ I0

with
∑

i∈I0
ti = 1 and x =

∑
i∈I0

tixi . Hence, for each y ∈ B,

β(x, y) =
∑
i∈I0

tiβ(xi , y) ∈
∑
i∈I0

tiU ⊆ U .

Thus β(V × B) ⊆ U . Hence β is hypocontinuous in its second argument.
(v) Let (sn)n∈N be a sequence of continuous seminorms on F defining its locally

convex vector topology. For each n ∈ N, we then find continuous seminorms Pn

on E1 and Qn on E2 such that sn(β(x, y)) ≤ Pn(x)Qn(y) for all x ∈ E1, y ∈ E2.
Then N1 := {x ∈ E1 : (∀n ∈ N) Pn(x) = 0} is a vector subspace of E1, and
N2 := {y ∈ E2 : (∀n ∈ N) Qn(y) = 0} a vector subspace of E2. We equip E1/N1 with
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the vector topology defined by the sequence (pn)n∈N of seminorms given by pn(x +
N1) := Pn(x), and let F1 be the completion of E1/N1. Likewise, F2 denotes the com-
pletion of E1/N2, equipped with the seminorms qn obtained from the Qn. If x ∈ N1

and y ∈ E2, then sn(β(x, y)) = 0 for each n ∈ N, and thus β(x, y) = 0. Likewise,
β(x, y) = 0 for all x ∈ E1 and y ∈ N2. As a consequence, B : (E1/N1)×(E2/N2)→ F,
B(x + N1, y + N2) := β(x, y) is a well-defined bilinear map, which is continuous as

sn

(
B(x + N1, y + N2)

)
= sn

(
β(x, y)

)
≤ Pn(x)Qn(y) = pn(x + N1)qn(y + N2).

Since F is complete, B extends to a continuous bilinear map θ : F1 × F2 → F (cf.
[13, III, §6, no. 5, Theorem 1]). Let ψ1 : E1 → F1 be the composition of the inclusion
map E1/N1 → F1 and the canonical mapping E1 → E1/N1. Define ψ2 : E2 → F2

analogously. Then β = θ ◦ (ψ1 × ψ2) indeed.

C Proofs for Sections 2 through 4

Proof of Lemma 2.2 Since λ := ⊕i∈Iλi is linear and continuous on each Ei , it is con-
tinuous (by the universal property of the locally convex direct sum). Moreover, λ is
injective, since each λi is injective. To see that λ is an embedding, let U ⊆

⊕
i∈I Ei =:

E be a 0-neighbourhood. By Remark 2.1, there is a continuous seminorm p on E,
of the form p(x) =

∑
i∈I pi(xi) with continuous seminorms pi on Ei , such that

Bp
1 (0) ⊆ U . Since λi is an embedding, there exists a continuous seminorm qi on Fi

such that λ−1
i (Bqi

1 (0)) ⊆ Bpi

1 (0). Then q(y) :=
∑

i∈I qi(yi) defines a continuous

seminorm on
⊕

i∈I Fi . We now show that λ(E)∩Bq
1(0) ⊆ λ(Bp

1 (0)) ⊆ λ(U ) (whence
λ(U ) is a 0-neighbourhood in λ(E) and hence λ open onto its image – as required).
In fact, λi(Ei) ∩ Bqi

1 (0) ⊆ λi(Bpi

1 (0)). Hence

λ(E) ∩ Bq
1(0) =

{
y ∈

⊕
i∈I
λi(Ei) :

∑
i∈I

qi(yi) < 1
}

= conv
⋃
i∈I

(λi(Ei) ∩ Bqi

1 (0)) ⊆ conv
⋃
i∈I
λi(Bpi

1 (0)) ⊆ λ
(

Bp
1 (0)

)
.

Proof of Lemma 2.3 If K ⊆ M is compact, then F := { j ∈ J : K ∩ K j 6= ∅} is a
finite set, and Φ(C r

K (M, E)) ⊆
⊕

j∈F C r
K j

(M, E), identifying the right-hand side with
a topological vector subspace of

⊕
j∈ J C r

K j
(M, E) in the usual way. Since⊕

j∈F
C r

K j
(M, E) ∼=

∏
j∈F

C r
K j

(M, E)

as topological vector spaces, the restriction ΦK of Φ to C r
K (M, E) will be continuous

if we can show that all of its components with values in C r
K j

(M, E) are continuous, for
j ∈ F. But these are the multiplication operators C r

K (M, E)→ C r
K j

(M, E), γ 7→ h j ·γ,
whose continuity is well-known (cf. [19, Proposition 3.10]).

If the h j form a partition of unity, let

S :
⊕
j∈ J

C r
K j

(M, E) −→ C r
c(M, E), (γ j) j∈ J 7−→

∑
j∈ J

γ j
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be the summation map, which is linear, and continuous because it is continuous on
each summand. Then S ◦ Φ = idC r

c (M,E). Hence Φ has a continuous left inverse and
hence Φ is a topological embedding.

Proof of Lemma 2.4 Because supp(γ|S) ⊆ S ∩ supp(γ) is compact for each γ ∈
C r

c(M, E), the map Φ makes sense, and it is clear that Φ is linear.

Φ is continuous: If K ⊆ M is compact, there is a finite set F ⊆ P such that K ⊆⋃
S∈F S. Then Φ(C r

K (M, E)) ⊆
⊕

S∈F C r
c(S, E), whence the restriction ΦK of Φ to

C r
K (M, E) will be continuous if we can show that all of its components with values in

C r
c(S, E) are continuous, for S ∈ F. But these are the restriction maps C r

K (M, E) →
C r

c(S, E), γ 7→ γ|S, and hence are continuous, because they can be written as a com-
position of the continuous restriction map C r

K (M, E) → C r
K∩S(S, E) (compare [19,

Lemma 3.7]) and the continuous inclusion map C r
K∩S(S, E)→ C r

c(S, E).
If P is a partition of M into open sets, let Ψ :

⊕
S∈P C r

c(S, E) → C r
c(M, E) be

the map taking an element η := (γS)S∈P of the left-hand side to the function γ ∈
C r

c(M, E) defined piecewise via γ(x) := γS(x) for x ∈ S. Then Φ(Ψ(η)) = η, and
thus Φ is surjective. Moreover, Ψ(Φ(γ)) = γ for γ ∈ C r

c(M, E), whence Φ is injective.
Hence Φ is bijective, with Ψ = Φ−1. By the universal property of the locally convex
direct sum, the linear map Ψ will be continuous if its restriction ΨS to the summand
C r

c(S, E) is continuous, for each S ∈ P. To check this property, it suffices to show
that the restriction ΨK of ΨS to C r

K (S, E) is continuous for each compact set K ⊆ S.
But ΨK is continuous, as it is the composition of the map C r

K (S, E) → C r
K (M, E) ex-

tending functions by 0 off S (which is known to be continuous)7 and the continuous
inclusion map C r

K (M, E)→ C r
c(M, E).

Proof of Lemma 2.5 As the Ck+`-property can be tested on the open cover of chart
domains, we may assume that M ⊆ Rm is open. The proof is by induction on k. If
k = 0, then γ is C` by hypothesis (and ` = k + `). Now assume k > 0. Then γ
is C1. For each X ∈ F1, the map X.γ is Ck−1 and X j . . .X1.X.γ is C` for all j ∈ N0

such that j ≤ k − 1 and Xi ∈ Fi+1 for i ∈ {1, . . . , j}. Hence X.γ is Ck+`−1, by
induction. Let F1 = {X1, . . . ,Xm} and write E j = ∂/∂x j for j ∈ {1, . . . ,m}.
Then E j =

∑m
i=1 ai, jXi with smooth functions ai, j ∈ C∞(M) and thus ∂γ/∂x j =∑m

i=1 ai, j (Xi .γ) is Ck+`−1. Since γ is C1 and its first order partial derivatives are
Ck+`−1, the map γ is Ck+`.

Proof of Lemma 2.6 Step 1. Let U be the set of all open subsets of M which are
diffeomorphic to open subsets of Rm (where m is the dimension of M). For each
s ∈ N0 ∪ {∞}, the topology on C s(M, E) is initial with respect to the restriction
maps ρs

U : C s(M, E) → C s(U , E), γ 7→ γ|U (see [20, Lemma 4.12]). Taking s = r,
we deduce the following.8 If the lemma holds for each space C s(U , E), then O on
C r(M, E) is initial with respect to the maps

(C.1) DX j |U ,...,X1|U ◦ ρ
r
U = ρ0

U ◦ DX j ,...,X1 .

7See [20, Lemma 4.24] if r > 0; the case r = 0 is elementary.
8If the topology on a space X is initial with respect to maps fi : X → Xi , with i ∈ I, and the topology

on Xi is initial with respect to maps g j,i : Xi → X j,i to topological spaces X j,i , for j ∈ Ji , then the topology
on X is initial with respect to the maps g j,i ◦ fi .
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Taking s = 0, we deduce that TF is initial with respect to the maps on the right-hand
side of (C.1). Hence O = TF.

Step 2. In view of Step 1, it only remains to prove the lemma assuming that there exists
a C r-diffeomorphism φ : M → V onto an open set V ⊆ Rm. If X is a smooth vector
field on M, let us write X ′ := Tφ ◦ X ◦ φ−1 for the corresponding vector field on V .
Define Φs : C s(M, E) → C s(V, E), γ 7→ γ ◦ φ−1 for s ∈ N0 ∪ {∞}. If s ∈ N ∪ {∞},
then Φs−1(X.γ) = X ′.Φs(γ) for each vector field X on M and γ ∈ C s(M, E), whence

Φ0 ◦ DX j ,...,X1 = DX ′j ,...,X
′
1
◦ Φr

for all j ∈ {0, . . . , r} and Xi ∈ Fi for i ∈ {1, . . . , j}. Hence, since Φ0 and Φr are
isomorphisms of topological vector spaces (cf. [20, Lemma 4.11]), the topology on
C r(M, E) is initial with respect to the DX j ,...,X1 if and only if the topology on C r(V, E)
is initial with respect to the DX ′j ,...,X

′
1
.

Step 3. By Step 2, we may assume that M = V is an open subset of Rm. We claim: If
also G = (G1, . . . ,Gr) is an r-tuple of frames on V , then TG ⊆ TF. Hence also TF ⊆
TG (reversing the roles of F and G) and thus TF = TG. But it is known that O = TG

if we choose Gi := { ∂
∂x1
, . . . , ∂

∂xm
} for all i ∈ {1, . . . , r} (cf. [19, Proposition 4.4]).

Thus TF = TG = O, as required.
To establish the claim, recall that the multiplication operators

m f : C0(V, E) −→ C0(V, E), m f (γ) := f · γ

are continuous for each f ∈ C0(V ) (cf. [19, Lemma 3.9]). Let Fi = {Yi,1, . . . ,Yi,m}.
Then each X ∈ Gi is a linear combination X =

∑m
k=1 akYi,k with coefficients ak ∈

C∞(V ). Hence, for all j ∈ {0, . . . , r} and X1 ∈ G1, . . . , X j ∈ G j , it follows from
the product rule that DX j ,...,X1 can be written as a sum of operators of the form
m fki ,...,k1

◦ DYi,ki
...,Y1,k1

, where i ∈ {0, . . . , j}, k1, . . . , ki ∈ {1, . . . ,m}, and fki ,...,k1 ∈
C∞(V ). Since TF makes the map DYi,ki

...,Y1,k1
: C r(V, E) → C0(V, E) continuous and

the multiplication operator m fki ,...,k1
: C0(V, E) → C0(V, E) is also continuous, it fol-

lows that TF makes DX j ,...,X1 : C r(V, E)→ C0(V, E) continuous. Hence TG ⊆ TF.

Proof of Lemma 2.8 By definition, the topology on C∞K (G, E) is initial with respect
to the inclusion maps C∞K (G, E) → Cn

K (G, E) with n ∈ N0. It hence suffices to
prove the lemma for t ∈ N0. For (i), let Fi := FL for i ∈ {1, . . . , t} (with notation
from Definition 2.7). For the proof of (ii), let Fi = FR for i ∈ {1, . . . , t}. In ei-
ther case, let F := (F1, . . . ,Ft ). Because the topology on C0

K (G, E) is defined by the
seminorms ‖ · ‖p,∞, it follows with Lemma 2.6 that the topology on Ct

K (G, E) is de-
fined by the seminorms γ 7→ ‖X j . . .X1.γ‖p,∞ with j ∈ {0, . . . , t} and Xi ∈ Fi for
i ∈ {1, . . . , j}. The pointwise maximum of these (for fixed p) is ‖ · ‖L

t,p in (i), ‖ · ‖R
t,p

in (ii), from which the descriptions in (i) and (ii) follow. We now prove the first half
of the final assertion (the second half can be shown analogously). If i ∈ {0, . . . , `}
and j ∈ {0, . . . , k} are given, let F = (F1, . . . ,Ft ) be the t-tuple whose first i en-
tries are FR, followed by j entries FL, followed by t − i − j arbitrary frames. Then
Lemma 2.6 implies that γ 7→ ‖Xi+ j . . .X1.γ‖∞,p is continuous on Ct

K (G, E), for all
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X1 ∈ F1, . . . , Xi+ j ∈ Fi+ j . The maximum of all these seminorms for i ≤ ` and j ≤ k

is ‖ · ‖L,R
k,`,p, which is therefore continuous. Hence, the topology defined by these semi-

norms is coarser than the given topology. On the other hand, taking Fi := FR for
i ∈ {1, . . . , `} and Fi = FL for i ∈ {`+1, . . . , t}, Lemma 2.6 shows that the topology
on Ct

K (G, E) is defined by the seminorms γ 7→ ‖X j . . .X1.γ‖p,∞, for j ∈ {0, . . . , t},
continuous seminorms p on E and Xi ∈ Fi . For fixed p, each of the latter seminorms
is bounded by ‖ · ‖L,R

k,`,p. Hence the topology defined by the ‖ · ‖L,R
k,`,p is also finer than

the given topology, and thus coincides with it.

Proof of Lemma 2.10 We discuss only τ L
g , as τR

g can be treated analogously. Since
left translation Lg : G → G, Lg(x) := gx is a C r-diffeomorphism, the map
Ξg : C r(G, E) → C r(G, E), γ 7→ τ L

g (γ) = γ ◦ Lg is continuous and linear [19,
Lemma 3.7]. Hence its restriction Ξg,K : C r

K (G, E) → C r
g−1K (G, E) is also continu-

ous, and so is the map Ξg,c : C r
c(G, E) → C r

c(G, E), γ 7→ τ L
g (γ) (as it is linear and

its restriction Ξg,K to C r
K (G, E) is continuous for each K). It is clear that each of the

preceding maps is bijective; the inverse map is given by Ξg−1 , Ξg−1,g−1K and Ξg−1,c,
respectively, and hence is continuous.

Proof of Lemma 2.11 If X is a left invariant vector field on G and γ ∈ C1(G), then
(X.(τ L

g γ))(a) = d(γ ◦ Lg)(X(a)) = dγT(Lg)(X(a)) = dγX(ga) = (X.γ)(ga) for
a ∈ G and thus X.(τ L

g (γ)) = τ L
g (X.γ). Hence

‖X j . . .X1.(τ
L
g (γ))|g−1K‖∞ = ‖τ L

g (X j . . .X1.γ)|g−1K‖∞ = ‖X j . . .X1.γ|K‖∞

for all j ∈ {0, . . . , `} and X1, . . . ,X j ∈ FL (using the notation from Definition 2.7).
Now take the maximum over all j and X1, . . . ,X j .

Proof of Lemma 2.13 The map ηG : G→ G, x 7→ x−1 is C r. Hence

(ηG)∗ : C r(G, E) −→ C r(G, E), γ 7−→ γ ◦ ηG

is continuous linear [19, Lemma 3.7]. As f : G → ]0,∞[, f (x) := ∆G(x−1) is C r,
we can consider the multiplication operator m f : C r(G, E)→ C r(G, E), m f (γ)(x) :=
f (x)γ(x), which is continuous linear (cf. [20, Proposition 4.16] if r > 0, and [19,
Lemma 3.9] otherwise). Thus Θ = m f ◦ (ηG)∗ is continuous linear. Because Φ◦Φ =
id, we deduce that Φ is an isomorphism of topological vector spaces. As a restriction
of Θ, the bijection ΘK (with inverse ΘK−1 ) is also an isomorphism of topological
vector spaces. Finally, the linear map Φc is continuous (as its restricions ΦK to the
spaces C r

K (G, E) are continuous) and hence an isomorphism of topological vector
spaces (as Φc ◦ Φc = id).

Proof of Lemma 2.14 As Φv is linear, it will be continuous on C r
c(M) = lim−→C r

K (M)
if its restriction ΦK : C r

K (M) → C r
K (M, E) ⊆ C r

c(M, E), γ 7→ γv to C r
K (M) is contin-

uous for each compact subset K ⊆ M. Let µ : R × E → E be the scalar multiplica-
tion, and let h : M → R be a smooth map such that L := supp(h) is compact and
h|K = 1. Because µ is smooth and µ(0, 0) = 0, the bilinear map C r

L(M, µ) : C r
L(M)×

C r
L(M, E) ∼= C r

L(M,R × E)→ C r
L(E),

(γ, η) 7→ µ ◦ (γ, η) = γη
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is also smooth and hence continuous [19, Proposition 3.10]. Hence ΦK (γ) = γv =
hγv = µ(γ, hv) is also continuous in γ. To complete the proof, pick λ ∈ E ′ such
that λ(v) = 1. Then C r

c(M, λ) : C r
c(M, E) → C r

c(M), γ 7→ λ ◦ γ is a continuous
linear map (by [19, Lemma 3.3] and the locally convex direct limit property), and
C r

c(M, λ) ◦ Φv = idC r
c (M), because λ ◦ (γv) = γ. Since Φv has a continuous left

inverse, it is a topological embedding.

Proof of Lemma 2.15 We first observe that the map Θ : E → C r(M, E) taking v ∈ E
to the constant map Θ(v) : M → E, x 7→ v is continuous. In fact, the linear map
Θ : E→ C0(M, E) is continuous, as

(∀v ∈ E) ‖Θ(v)‖p,K := ‖Θ(v)|K‖p,∞ ≤ p(v)

for each continuous seminorm p on E and compact subset K ⊆ M. Since dk(Θ(v)) =
0 for all k ∈ N with k ≤ r, we see that Θ is also continuous as a map to C r(M, E).
We now use that C r(M, E) is a topological C r(M)-module under pointwise multipli-
cation. Scalar multiplication µ : R × E → E being continuous bilinear and hence
smooth,

C r(M, µ) : C r(M)×C r(M, E) ∼= C r(M,R × E)→ C r(M, E),

(γ, η) 7→ µ ◦ (γ, η) =: γη

is also smooth (see [20, Proposition 4.16] if r > 0, [19, Lemma 3.9] if r = 0) and
hence continuous. Thus ΨE(γ, v) = γΘ(v) = C r(M, µ)(γ,Θ(v)) is a continuous
function of (γ, v).

Proof of Lemma 2.16 (i) It is clear from the definition of the topology that any
0-neighbourhood U ⊆ C r

K (M, E) contains an intersection U1 ∩ · · · ∩ Un of 0-
neighbourhoods of the form Ui := {γ ∈ C r

K (M, E) : ‖d`iγ‖pi ,Ki < εi} with n ∈ N,
εi > 0, `i ∈ N0 such that `i ≤ r, a continuous seminorm pi on E and a compact
set Ki ⊆ T`i M. Let (Ẽp, ‖ · ‖p) be the Banach space associated with the continuous

seminorm p := p1 + · · · + pn on E, and let λp : E → Ẽp be the canonical map.

Then Vi := {γ ∈ C r
K (M, Ẽp) : ‖d`iγ‖‖ · ‖p ,Ki

< εi} is an open 0-neighbourhood in

C r
K (M, Ẽp), and hence so is V := V1 ∩ · · · ∩ Vn. Since C r

K (M, λp)−1(V ) ⊆ U , the
assertion follows.9

(ii) Since M is σ-compact, there exists a locally finite C r-partition of unity (h j) j∈N

on M such that each h j has compact support K j := supp(h j) (take a partition of unity
subordinate to a relatively compact open cover using Theorem 3.3 and Corollary 3.4
in [31, Chapter II] if r > 0, [15, Theorem 5.1.9] if r = 0). Then Φ from Lemma 2.3 is
a topological embedding. Thus, for each 0–neighbourhood U ⊆ C r

c(M, E), there
exist 0-neighbourhoods U j ⊆ C r

K j
(M, E) such that Φ−1(

⊕
j∈N U j) ⊆ U . As a

consequence of (i), each U j contains a set of the form C r
K j

(M, µ j)−1(V j) for some
Banach space E j , continuous linear map µ j : E → E j , and 0-neighbourhood V j in
C r

K j
(M, E j). Then F :=

∏
j∈N E j is a Fréchet space, and λ := (µ j) j∈N : E→ F is con-

tinuous linear. Let π j : F → E j be the projection onto the j-th component, and let

9Cr
K (M, λp) : Cr

K (M, E)→ Cr
K (M, Ẽp), γ 7→ λp ◦ γ is also continuous [19, Lemma 3.3].
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W j := C r
K j

(M, π j)−1(V j). Because Ψ : C r
c(M, F)→

⊕
j∈N C r

K j
(M, F), γ 7→ (h jγ) j∈N

is continuous linear (Lemma 2.3), the set P := Ψ−1(
⊕

j∈N W j) is a 0-neighbourhood

in C r
c(M, F), and hence Q := C r

c(M, λ)−1(P) is a 0-neighbourhood in C r
c(M, E) (us-

ing [19, Lemma 4.11]). If γ ∈ Q, then h j(λ ◦ γ) ∈ W j for each j ∈ N, and hence
π j ◦ (h j(λ ◦ γ)) ∈ V j . Since π j ◦ (h j(λ ◦ γ)) = h j(µ j ◦ γ) = µ j ◦ (h jγ), we deduce
that h jγ ∈ U j and thus γ ∈ U . Thus Q ⊆ U , and the assertion follows.

(iii) Let B ⊆ C r
c(M, E) be bounded. As M is locally compact and paracom-

pact, it admits a partition P into σ-compact open sets [15, Theorem 5.1.27]. Let
Φ : C r

c(M, E) →
⊕

S∈P C r
c(S, E) be as in Lemma 2.4. Then Φ(B) is bounded, and

hence Φ(B) ∈
⊕

S∈P0
C r

c(S, E) for a finite set P0 ⊆ P. After replacing the S ∈ P0

by their union, we may assume that B ⊆ C r
c(S, E) (as a consequence of Lemma 2.4,

C r
c(S, E) can be regarded as a topological vector subspace of C r

c(M, E)). Hence, we
may assume that M is σ-compact. Let K1,K2, . . . be compact sets such that M =⋃∞

n=1 Kn and each Kn ⊆ K0
n+1. Then C r

c(M, E) is the locally convex direct limit of
C r

K1
(M, E) ⊆ C r

K2
(M, E) ⊆ · · · , where

C r
Kn

(M, E) =
{
γ ∈ C r

Kn+1
(M, E) : (∀x ∈ M \ Kn) γ(x) = 0

}
is a closed vector subspace of C r

Kn+1
(M, E), and C r

Kn+1
(M, E) induces the given topology

of C r
Kn

(M, E), for n ∈ N. Hence B is a bounded set in C r
Kn

(M, E) for an n ∈ N
[38, II.6.5].

Proof of Lemma 3.1 If (γ ∗b η)(x) 6= 0, then by (3.1) there is y ∈ supp(η) such that
xy−1 ∈ supp(γ). Hence x ∈ supp(γ)y ⊆ supp(γ) supp(η). Now assume that K
is compact. Because the integrand in (3.2) is continuous as a map taking (x, y) ∈
G × supp(γ) to F, the continuity of γ ∗b η follows from Lemma A.2. If M ⊆ G is
compact and q a continuous seminorm on F, there are continuous seminorms p1

on E1 and p2 on E2 such that q(b(v,w)) ≤ p1(v)p2(w) for all v ∈ E1, w ∈ E2. For all
x ∈ M, we infer that

q
(

(γ ∗b η)(x)
)
≤
∫

K
p1

(
γ(y)

)
p2

(
η(y−1x)

)
dλG(y)

≤ λG(K)‖γ‖p1,∞‖η|K−1M‖p2,∞.

Thus

(C.2) ‖(γ ∗b η)|M‖q,∞ ≤ λG(K)‖γ‖p1,∞‖η|K−1M‖p2,∞,

and hence β is continuous.
If L is compact, we have (γ∗bη)(x) =

∫
L b(γ(xz−1),∆G(z−1)η(z)) dλG(z) by (3.3),

from which continuity of γ∗bη follows. Finally, β is continuous as ‖(γ∗bη)|M‖q,∞ ≤
λG(L)‖γ|ML−1‖p1,∞‖η‖p2,∞‖∆G|L−1‖∞.

Proof of Proposition 3.2 We may assume r, s ∈ N0 and proceed by induction, start-
ing with r = 0. If s = 0 as well, see Lemma 3.1.

Now let s > 0. If x0 ∈ G, let V ⊆ G be an open neighbourhood of x0 with compact
closure V . If K is compact, set M := K. If K is not compact, then M := V L−1 is
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compact. In either case, (γ ∗b η)(x) =
∫

M b(γ(y), η(y−1x)) dλG(y) for all x ∈ V .
Hence (γ ∗b η)|V is C s, by Lemma A.3, and thus γ ∗b η is C s. The lemma also entails
that

Lv1 .(γ ∗b η)(x) =

∫
M

b
(
γ(y), dη(T(Ly−1 )

(
Lv1 (x)

))
dλG(y)

=

∫
G

b
(
γ(y), dη

(
T(Ly−1

)
T(Lx)(v1)

)
dλG(y)

=

∫
G

b
(
γ(y), (Lv1 .η)(y−1x)

)
dλG(y) =

(
γ ∗b (Lv1 .η)

)
(x),

using that T(Ly−1 )T(Lx)(v1) = T(Ly−1 ◦ Lx)(v1) = T(Ly−1x)(v1) = Lv1 (y−1x). Since

Lv1η ∈ C s−1
L (G, E2), we obtain, by induction on s,

(C.3) Lvi · · ·Lv1 .(γ ∗b η) = Lvi · · ·Lv2 .(γ ∗b Lv1 .η) = γ ∗b (Lvi · · ·Lv1 .η).

Now assume that r > 0. If s = 0, then (3.3) enables Lemma A.3 to be applied,10

and thus γ ∗b η ∈ C r(G, F). Moreover, repeating the arguments leading to (C.3) with
right translations, we deduce from (3.3) that

Rw j · · ·Rw1 .(γ ∗b η) = (Rw j · · ·Rw1 .γ) ∗b η.

If γ is C r and η is C s, then Lvi · · ·Lv1 .(γ ∗b η) = γ ∗b (Lvi · · ·Lv1 .η) is C r by the case
s = 0, and (3.4) holds. Thus γ ∗b η is C r+s, by Lemma 2.5. In view of Lemmas 2.6
and 3.1, the right-hand side of (3.4) is continuous as a map C r

K (G, E1)×C s
L(G, E2)→

C0
KL(G, F), for all v1, . . . , vi and w1, . . . ,w j . Hence β is continuous as a map to

C r+s
KL (G, F), by Lemma 2.6.

Proof of Lemma 3.4 Substituting z = xy and using the left invariance of Haar mea-
sure, we obtain

(γ ∗b η)∗(x) = ∆G(x−1)(γ ∗b η)(x−1) = ∆G(x−1)

∫
G

b
(
γ(y), η(y−1x−1)

)
dλG(y)

= ∆G(x−1)

∫
G

b
(
γ(x−1z), η(z−1)

)
dλG(z)

=

∫
G

b∨
(
η∗(z), γ∗(z−1x)

)
dλG(z) = (η∗ ∗b∨ γ

∗)(x).

Proof of Lemma 3.5 (i) With z = g−1 y and left invariance of λG, we get

(
τ L

g (γ ∗b η)
)

(x) = (γ ∗b η)(gx) =

∫
G

b
(
γ(y), η(y−1gx)

)
dλG(y)

=

∫
G

b(γ(gz), η(z−1x)) dλG(z) =
(

(τ L
g γ) ∗b η

)
(x).

10For x ∈ V as above, we can replace the domain of integration by a compact set again.
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(ii) For x ∈ G, get

τR
g (γ ∗b η)(x) = (γ ∗b η)(xg) =

∫
G

b
(
γ(y), η(y−1xg)

)
dλG(y)

=

∫
G

b
(
γ(y), τR

g (η)(y−1x)
)

dλG(y) =
(
γ ∗b τ

R
g (η)

)
(x).

Proof of Lemma 3.6 Let FR and FL be as in Definition 2.7. If i ∈ {0, . . . , k}, j ∈
{0, . . . , `}, X1, . . . ,Xi ∈ FR and Y1, . . . ,Y j ∈ FL, then

‖X1 . . .XiY1 . . .Y j .(γ ∗b η)‖q,∞ = ‖(X1 . . .Xi .γ) ∗b (Y1 . . .Y j .η)‖q,∞

≤ ‖X1 . . .Xi .γ‖p1,∞‖Y1 . . .Y j .η‖p2,∞λG(K)

≤ ‖γ‖R
k,p1
‖η‖L

`,p2
λG(K)

by (3.4) and (C.2). All assertions now follow by passage to maxima over suitable i, j
and the corresponding vector fields.

Proof of Proposition 3.7 Let us write βb for β.

Step 1: Assume that G is σ-compact. Then the topology on Ct
c(G, F) is initial with re-

spect to maps of the form Ct
c(G, λi) for certain continuous linear maps λi : F → Fi to

Fréchet spaces (Lemma 2.16(ii)). Hence, by Lemma B.2(iii), βb will be hypocontin-
uous if we can show that Ct

c(G, λi) ◦ βb = βλi◦b is hypocontinuous for all i ∈ I.
Thus, we may assume that F is a Fréchet space. Then b = c ◦ (ψ1 × ψ2) with
certain continuous linear maps ψ1 : E1 → F1 and ψ2 : E2 → F2 to Fréchet spaces
and a continuous bilinear map c : F1 × F2 → F (see Lemma B.2(v)). Thus βb =
βc ◦ (C r

c(G, ψ1) × C s
c(G, ψ2)), and we need only show that βc is hypocontinuous

(Lemma B.2(ii)). Hence E1 and E2 are Fréchet spaces, without loss of generality.
Then C r

c(G, E1) and C s
c(G, E2) are locally convex direct limits of Fréchet spaces and

hence barrelled [38, II.7.1 and II.7.2], whence β will be hypocontinuous if we can
show that it is separately continuous (by [38, III.5.2]). For fixed η ∈ C s

c(G, E2), let
L := supp(η). The map β( · , η) : C r

c(G, E2) → Ct
c(G, F) being linear, it will be con-

tinuous on C r
c(G, E1) = lim−→C r

K (G, E1) if we can show that its restriction to C r
K (G, E1)

is continuous for each compact set K ⊆ G. But this is the case, since the convolution
map C r

K (G, E1)×C s
L(G, E2) → Ct

KL(G, F) ⊆ Ct
c(G, F) is continuous, by Lemmas 3.1

and 3.2. By an analogous argument, β(γ, · ) : C s
c(G, E2) → Ct

c(G, F) is continuous
for each γ ∈ C r

c(G, E1).

Step 2: Let H ⊆ G be a σ-compact open subgroup, let G/H := {gH : g ∈ G} be the
set of left cosets and H\G := {Hg : g ∈ G} the set of right cosets. Since G/H is a
partition of G into open sets, we can identify C r

c(G, E1) with
⊕

M∈G/H C r
c(M, E1), by

Lemma 2.4. In particular, we can regard C r
c(M, E1) as a topological vector subspace

of C r
c(G, E1) (extending functions by 0). Likewise, C s

c(G, E2) can be identified with⊕
N∈H\G C s

c(N, E2). By Lemma B.2(iv), β will be hypocontinuous if we can show that
its restriction to βM,N : C r

c(M, E1)×C s
c(N, E2)→ Ct

c(G, F) is hypocontinuous for all
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M ∈ G/H and N ∈ H\G. Write M = mH and N = Hn with suitable m, n ∈ G.
Using Lemma 3.5, we can write

(C.4) βM,N = τ L
m−1 ◦ τR

n−1 ◦ βH,H ◦ (τ L
m × τR

n ),

where τ L
m : C r

c(M, E1) → C r
c(H, E1), τR

n : C s
c(N, E2) → C s

c(H, E2), τR
n−1 : Ct

c(H, F) →
Ct

c(N, F) and τ L
m−1 : Ct

c(N, F) → Ct
c(mN, F) ⊆ Ct

c(G, F) are the respective transla-
tion maps, which are continuous as restrictions of translation maps on spaces of test
functions on G (as in Lemma 2.10). Since βH,H : C r

c(H, E1) ×C s
c(H, E2) → Ct

c(G, F)
is hypocontinuous by Step 1, using Lemma B.2(i) and (ii) we deduce from (C.4) that
also each of the maps βM,N is hypocontinuous. This completes the proof.

Proof of Lemma 4.1 As Φ is linear, it will be continuous if its restriction ΦK to
MK (X) is continuous for each compact set K ⊆ X. By the hypotheses, Φ(MK (X))
is contained in the finite direct sum

⊕
j∈ JK

M(A j), whence ΦK will be continuous
if we can show that its components with values in M(A j) are continuous, for all
j ∈ JK . But these are continuous, as they have operator norm ≤ 1 (noting that
‖µ|B(A j )‖ = |µ|(A j) ≤ |µ|(X) = ‖µ‖).

Proof of Lemma 4.2 If K ⊆ X is compact, there is n ∈ N such that K ⊆ Kn. Then
Φ(MK (X)) ⊆

⊕
j≤n MK j (X), whence the restriction ΦK of Φ to MK (X) will be con-

tinuous if we can show that all of its components with values in MK j (X) are continu-
ous, for j ∈ {1, . . . , n}. But these take µ ∈ MK (X) to 1K j\K j−1

�µ, and hence are con-
tinuous, as they have operator norm≤ 1 (since ‖1K j\K j−1

�µ‖ = |1K j\K j−1
�µ|(X) =

(1K j\K j−1
� |µ|)(X) = |µ|(K j \ K j−1) ≤ |µ|(X) = ‖µ‖.) Thus each ΦK is con-

tinuous, and hence so is Φ. Now consider the map S :
⊕

n∈N MKn (X) → Mc(X),
(µn)n∈N 7→

∑∞
n=1 µn, which is continuous as it is continuous on each summand and

linear. Then S ◦ Φ = idMc(X). Thus Φ has a continuous left inverse, and hence Φ is a
topological embedding.

Proof of Lemma 4.3 The linear map Φ will be continuous if its restriction ΦK to
CK (X) is continuous for each compact set K ⊆ X. The latter holds, since∥∥ΦK (γ)

∥∥ = ‖γ � µ‖ =
(
|γ| � µ

)
(X) = ‖γ‖L1 ≤ µ(K)‖γ‖∞.

Likewise, the restriction ΨK of Ψ to L1
K (X) is continuous because ‖ΨK (γ)‖ ≤ ‖γ‖L1 .
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posed to the second author by Karl-Hermann Neeb (Erlangen) in July 2010 (and
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[18] H. Glöckner, Lie groups without completeness restrictions, Banach Center Publ. 55(2002), 43–59.
[19] , Lie group structures on quotient groups and universal complexifications for

infinite-dimensional Lie groups. J. Funct. Anal. 194(2002), 347–409.
http://dx.doi.org/10.1006/jfan.2002.3942

[20] , Lie groups over non-discrete topological fields. arxiv:math/0408008.
[21] , Applications of hypocontinuous bilinear maps in infinite-dimensional differential calculus. In:

Generalized Lie theory in mathematics, physics and beyond, Springer, Berlin, 2009, pp. 171–186.
[22] , Continuity of bilinear maps on direct sums of topological vector spaces. J. Funct. Anal.

262(2012), no. 5, 2013–2030. http://dx.doi.org/10.1016/j.jfa.2011.12.018
[23] , Upper bounds for continuous seminorms and special properties of bilinear maps. Topology

Appl. 159(2012), no. 13, 2990–3001. http://dx.doi.org/10.1016/j.topol.2012.05.010
[24] , Continuity of LF-algebra representations associated to representations of Lie groups. Kyoto J.

Math., to appear. arxiv:1203.3418v3.
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