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Abstract

Let f be a polynomial of degree n ≥ 2 with f (0)= 0 and f ′(0)= 1. We prove that there is a critical point
ζ of f with | f (ζ )/ζ | ≤ 1/2 provided that the critical points of f lie in the sector {reiθ

: r > 0, |θ | ≤ π/6},
and | f (ζ )/ζ |< 2/3 if they lie in the union of the two rays {1+ re±iθ

: r ≥ 0}, where 0< θ ≤ π/2.
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1. Introduction and results

In 1981, Smale [13]made the following well-known conjecture. Let f be a polynomial
of degree n ≥ 2 normalized by f (0)= 0 and f ′(0)= 1. Unless otherwise mentioned,
we assume that our polynomials f satisfy these normalizations. Let us set

S( f )=min
{∣∣∣∣ f (ζ )

ζ

∣∣∣∣ : f ′(ζ )= 0
}

and
Kn = sup{S( f ) : deg f = n, f (0)= 0, f ′(0)= 1}.

The conjecture is that then Kn = 1− 1/n. Smale proved that S( f ) < 4 for all such f .
If f (z)= z + czn for some nonzero c, then S( f )= 1− 1/n. Thus

1−
1
n
≤ Kn ≤ 4.
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Many improvements have been obtained since, either for all f or for f in special
classes of functions. Nonetheless, the number 4 remains the best known upper bound
that is an absolute constant and is applicable to all f .

It was proved by Sikorav (see [14]) that if n ≤ 4, then Kn = 1− 1/n, and
furthermore that ∣∣∣∣ f (ζ )

ζ

∣∣∣∣< 1−
1
n

(1.1)

for some critical point ζ of f , that is, a zero of f ′, unless f (z)= z + czn . Numerical
experiments by Marinov and Sendov [9] suggest that the same conclusion holds when
n ≤ 10.

Beardon et al. [1] obtained Kn ≤ 41−1/n , which was slightly improved in [2, 7].
The best known upper bound is due to Crane (see [4, 5]). If the critical points of f all
have the same modulus, or if the values of f at the critical points have equal modulus,
then a theorem of Sheil-Small [11, pp. 361–362], whose proof uses the method of
Córdova and Rusheweyh [3], shows that S( f ) < 1. Dubinin [6] improved this to
S( f )≤ 1− 1/n when the critical points have equal modulus. Tischler [14] proved
S( f ) < 1 when the nonzero zeros of f have equal modulus.

In the case where f has only real zeros, Palais (see [12, p. 159]) proved that
S( f ) < 1 while Tischler [14] obtained S( f )≤ 1− 1/n. If f has only real zeros, it
follows from Rolle’s theorem that f ′ has only real zeros. Since the converse does not
hold, the case where f has only real critical points is more general than that where f
has only real zeros.

Under the assumption that f has only real critical points, Sheil-Small [11, p. 368]
obtained S( f ) < e − 2 while Rahman and Schmeisser [10, p. 217] proved the slightly
better result

S( f )≤
n − 2

n

((
n − 1
n − 2

)n−1

− 2
)
< e − 2,

where n ≥ 3.
Suppose that the critical points of f are contained in the union of k rays from

the origin to infinity. In [8] we conjectured that for such a function f , we have
S( f )≤ 1− 1/(k + 1), which would imply that Kn = 1− 1/n, and proved that this
is true for k = 1 and k = 2.

The original question of Smale did not initially have the above normalization. So
let us now assume merely that f is a polynomial of degree n ≥ 2. Pick any t in the
complex plane C such that f ′(t) 6= 0. Then we consider

S( f, t)=min
{∣∣∣∣ f (ζ )− f (t)

(ζ − t) f ′(t)

∣∣∣∣ : f ′(ζ )= 0
}
.

Since we may replace f by a f + b and the variable z by cz + d for any complex
numbers a, b, c, d with ac 6= 0, it is easily seen that S( f, t)= S(g, 0) for a
polynomial g of degree n with g(0)= 0 and g′(0)= 1. Namely, we may take

g(z)= ( f (βz + t)− f (t))/(β f ′(t)) ∀β ∈ C\{0}.
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However, the critical points of g are not at the same locations as those of f , so if those
of f are taken to lie in the union of k rays from the particular point 0 to infinity, then
those of g will lie in the union of k rays merely from some point α (usually not 0) to
infinity. Note that if α 6= 0, by an appropriate choice of β, we may assume that α = 1.

In this paper we only consider the case where k = 1 or k = 2. If α = 0 after passing
to g, our problem has already been solved in [8]. Therefore we limit ourselves to the
case where α 6= 0.

Suppose that k = 1, so that there is only one ray which is part of a certain straight
line, or that k = 2 and the two rays form a straight line. If this line passes through
the origin, then again we are reduced to the case covered in [8]. Therefore we will
assume that under these circumstances this line does not go through the origin. Then
we may replace α by that point on the line that is closest to the origin. By a further
rotation and dilation, we may then assume that α = 1 and that the line is vertical. We
will henceforth take these comments as understood.

In this paper we study the problem of estimating S(g, 0) when the critical points
of g lie in the union of one or two rays from a finite point to infinity, and in one case
the same problem when the critical points lie in a certain sector. Now, after explaining
the motivation for our study, we revert back to writing f instead of g and assume again
that f is normalized by f (0)= 0 and f ′(0)= 1.

If n = 5 and the critical points of f are at±1 and±i , then S( f )= 4/5. By moving
the critical point at z = 1 slightly to obtain a new normalized polynomial f1, we can
still arrange to have S( f ) arbitrarily close to 4/5. Then the line L1 containing the
points −1 and i and the line L2 containing −i and the new critical point close to 1 but
not on the line from −i to 1 will intersect at a point α. Thus the critical points of f1
lie in the union of two rays from α to infinity. This shows that the best constant when
k = 2 is at least 4/5. In this paper, when we take k = 2, we impose further restrictions
on the configuration of the two rays and obtain a better estimate in those cases.

We prove the following results.

THEOREM 1.1. Let f be a polynomial of degree n ≥ 2 with f (0)= 0 and f ′(0)= 1.
Suppose that the critical points of f lie in the sector {reiθ

: r > 0, |θ | ≤ π/6}. Then
S( f )≤ 1/2, and equality holds if, and only if, n = 2.

THEOREM 1.2. Let f be a polynomial of degree n ≥ 2 with f (0)= 0 and f ′(0)= 1.
Suppose that the critical points of f lie on the ray {1+ reiθ

: r ≥ 0}, where 0≤ θ ≤
π/2. Then S( f )≤ 1/2, and equality holds if, and only if, n = 2.

THEOREM 1.3. Let f be a polynomial of degree n ≥ 2 with f (0)= 0 and f ′(0)= 1.
Suppose that the critical points of f lie in the union of the rays {1+ re±iθ

: r ≥ 0},
where 0< θ ≤ π/2. Then S( f ) < 2/3.

Of course, if 0≤ θ ≤ π/6 in Theorem 1.3, then we are in a situation already covered
by Theorem 1.1 or 1.2, in which case one of those theorems yields the upper bound
1/2 instead of 2/3.

The proofs use methods similar to those introduced by us in [8].
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2. Proof of Theorem 1.1

Let the assumptions of Theorem 1.1 be satisfied. Let the critical points of f
be denoted by z j where 1≤ j ≤ n − 1, listing each critical point according to its
multiplicity. Let z1 be a critical point of f with minimal modulus. As in [8], we
may write

f (z)

z
=

∫ 1

0

n−1∏
j=1

(
1−

t z

z j

)
dt.

Hence ∣∣∣∣ f (z1)

z1

∣∣∣∣≤ ∫ 1

0
(1− t)

n−1∏
j=2

∣∣∣∣1− t z1

z j

∣∣∣∣ dt. (2.1)

When 2≤ j ≤ n − 1, ∣∣∣∣1− t z1

z j

∣∣∣∣≤ 1.

To see this, it suffices to prove that |1− t z1/z j |
2
≤ 1, which is equivalent to

t2
∣∣∣∣ z1

z j

∣∣∣∣2 ≤ 2t Re
z1

z j
= 2t

∣∣∣∣ z1

z j

∣∣∣∣cos(θ − ψ), (2.2)

where we have written z1 = |z1|eiθ and z j = |z j |eiψ . Here |θ | ≤ π/6 and |ψ | ≤ π/6.
Now 0< |z1| ≤ |z j | and |θ − ψ | ≤ π/3 so that cos(θ − ψ)≥ 1/2. This implies (2.2).

It follows that ∣∣∣∣ f (z1)

z1

∣∣∣∣≤ ∫ 1

0
(1− t) dt =

1
2
.

The equality | f (z1)/z1| = 1/2 can hold only if equality holds in (2.2) for all t ∈ (0, 1),
which is never the case, or if n − 1= 1. Thus equality holds at most when n = 2. On
the other hand, if n = 2, it is easily seen that | f (z1)/z1| = 1/2. This completes the
proof of Theorem 1.1.

3. Proof of Theorem 1.2

Let the assumptions of Theorem 1.2 be satisfied. Let the critical points of f
be denoted by z j where 1≤ j ≤ n − 1, listing each critical point according to its
multiplicity. Let z1 be a critical point of f with minimal modulus. Then, if we write
z j = 1+ r j eiθ , we have 0≤ r1 ≤ r j if 2≤ j ≤ n − 1. We again apply (2.1). Now we
need to estimate ∣∣∣∣1− t z1

z j

∣∣∣∣= ∣∣∣∣1− t
1+ r1eiθ

1+ r j eiθ

∣∣∣∣.
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We have, when 0< t ≤ 1,

t−1
(∣∣∣∣1− t

1+ r1eiθ

1+ r j eiθ

∣∣∣∣2 − 1
)
= t

∣∣∣∣1+ r1eiθ

1+ r j eiθ

∣∣∣∣2 − 2 Re
1+ r1eiθ

1+ r j eiθ

≤

∣∣∣∣1+ r1eiθ

1+ r j eiθ

∣∣∣∣2 − 2 Re
1+ r1eiθ

1+ r j eiθ .

The last quantity multiplied by |1+ r j eiθ
|
2 is equal to

|1+ r1eiθ
|
2
− 2 Re(1+ r1eiθ )(1+ r j e

−iθ )

= 1+ r2
1 + 2r1 cos θ − 2(1+ r1r j + (r1 + r j )cos θ)

=−1+ r1(r1 − 2r j )− 2r j cos θ < 0

since 0< r1 ≤ r j and cos θ ≥ 0. This proves that∣∣∣∣1− t z1

z j

∣∣∣∣≤ 1

when 0≤ t ≤ 1. In the same way as in the proof of Theorem 1.1, it now follows that
| f (z1)/z1| ≤ 1/2, with equality if, and only if, n = 2. This completes the proof of
Theorem 1.2.

4. Proof of Theorem 1.3

The idea of the proof of Theorem 1.3 is to reduce the situation to that considered
in [8]. There we obtained the following result (see [8, (4)]).

LEMMA 4.1. Suppose that A and u are real numbers with u ≥ 1. Define

h1(u, A)=
∫ 1

0
(1− t)

(
1+

t

u

)
eAt/u dt (4.1)

and

h2(u, A)=
∫ 1

0
(1− t)(1+ tu)e−At dt. (4.2)

Then
min{h1(u, A), h2(u, A)} ≤ 2/3.

Equality holds if, and only if, A = 0 and u = 1.

Let the assumptions of Theorem 1.3 be satisfied. Let the critical points of f be
denoted by z j = 1+ r j e±iθ , where 1≤ j ≤ n − 1 and r j ≥ 0, listing each critical
point according to its multiplicity. If all critical points lie on one of the two
rays, a better conclusion with less than 2/3 replaced by at most 1/2 follows from
Theorem 1.2. Therefore we may assume that each of the two rays contains a critical
point of f . Hence n ≥ 3.
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If z1 = 1 is a critical point of f , the proof is easier, for now

| f (1)| ≤
∫ 1

0
(1− t)

n−1∏
j=2

∣∣∣∣1− t

z j

∣∣∣∣ dt

and when 2≤ j ≤ n − 1 and 0< t ≤ 1,

|z j |
2

t

(∣∣∣∣1− t

z j

∣∣∣∣2 − 1
)
= t − 2 Re(z j )

≤ 1− 2(1+ r j cos θ)=−1− 2r j cos θ < 0

since cos θ > 0. Hence |1− t/z j |< 1, so that we obtain | f (1)| ≤ 1/2 in the same way
as in the proof of Theorem 1.1. Thus we assume from now on that f ′(1) 6= 0.

We label the critical points of f so that z j = 1+ r j eiθ when 1≤ j ≤ k − 1 and
z j = 1+ r j e−iθ when k ≤ j ≤ n − 1, where 2≤ k ≤ n − 1, and in addition so that
0< r1 ≤ r2 ≤ · · · ≤ rk−1 and 0< rk ≤ rk+1 ≤ · · · ≤ rn−1.

We seek to prove that

min
{∣∣∣∣ f (z1)

z1

∣∣∣∣, ∣∣∣∣ f (zk)

zk

∣∣∣∣}≤ 2
3
. (4.3)

After proving (4.3), we will discuss the possible cases of equality.
To complete the proof of Theorem 1.3, we need the following two lemmas.

LEMMA 4.2. Suppose that 0< r ≤ ρ, |θ | ≤ π/2, and 0≤ t ≤ 1. Then∣∣∣∣1− t
1+ reiθ

1+ ρeiθ

∣∣∣∣≤ 1− t
r

ρ
. (4.4)

LEMMA 4.3. Suppose that r > 0, ρ > 0, |θ | ≤ π/2, and 0≤ t ≤ 1. Then∣∣∣∣1− t
1+ reiθ

1+ ρe−iθ

∣∣∣∣≤ 1+ t
r

ρ
. (4.5)

PROOF OF LEMMA 4.2. If 0< t ≤ 1, then tr/ρ ≤ 1, so that

|1+ ρeiθ
|
2ρ2

t

(∣∣∣∣1− t
1+ reiθ

1+ ρeiθ

∣∣∣∣2 − (1− t
r

ρ

)2)
= t (|1+ reiθ

|
2ρ2
− |1+ ρeiθ

|
2r2)

− 2 Re((1+ reiθ )(1+ ρe−iθ )ρ2
− rρ|1+ ρeiθ

|
2)

= t (ρ − r)(ρ + r + 2rρ cos θ)− 2(ρ2
+ (ρ − r)ρ2 cos θ)

≤ (ρ2
− r2
+ 2rρ(ρ − r)cos θ)− 2ρ2(1+ (ρ − r)cos θ)

=−r2
− ρ2

− 2ρ(ρ − r)2 cos θ < 0.

This proves (4.4) and hence Lemma 4.2. 2
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PROOF OF LEMMA 4.3. If 0< t ≤ 1, then

|1+ ρe−iθ
|
2ρ2

t

(∣∣∣∣1− t
1+ reiθ

1+ ρe−iθ

∣∣∣∣2 − (1+ t
r

ρ

)2)
= t (|1+ reiθ

|
2ρ2
− |1+ ρe−iθ

|
2r2)

− 2 Re((1+ reiθ )(1+ ρeiθ )ρ2
+ rρ|1+ ρe−iθ

|
2)

= t (ρ − r)(ρ + r + 2rρ cos θ)

− 2(ρ2
+ rρ + rρ3(1+ cos 2θ)+ ((r + ρ)ρ2

+ 2rρ2)cos θ).

(4.6)

If r ≥ ρ then the quantity in (4.6) is negative.
If r < ρ then the quantity in (4.6) does not exceed

(ρ − r)(ρ + r + 2rρ cos θ)

− 2ρ(ρ + r + rρ2(1+ cos 2θ)+ ((r + ρ)ρ + 2rρ)cos θ)

=−(ρ + r)2 − 2rρ3(1+ cos 2θ)+ 2ρ((ρ − r)r − (3r + ρ)ρ)cos θ

=−(ρ + r)2 − 2rρ3(1+ cos 2θ)+ 2ρ(−r2
− ρ2

− 2rρ)cos θ < 0.

This completes the proof of Lemma 4.3. 2

We now return to the proof of Theorem 1.3. Since our problem does not change
if we replace the polynomial f by f (z), we may assume that r1 ≤ rk . Note that
1+ x ≤ ex for all real x . We have∣∣∣∣ f (z1)

z1

∣∣∣∣≤ ∫ 1

0
(1− t)

n−1∏
j=2

∣∣∣∣1− t z1

z j

∣∣∣∣ dt.

Applying Lemma 4.2 with r = r1 and ρ = r j when 2≤ j ≤ k − 1, and applying
Lemma 4.3 with r = r1 and ρ = r j when k ≤ j ≤ n − 1, we obtain∣∣∣∣ f (z1)

z1

∣∣∣∣ ≤ ∫ 1

0
(1− t)

k−1∏
j=2

(
1−

tr1

r j

) n−1∏
j=k

(
1+

tr1

r j

)
dt

≤

∫ 1

0
(1− t)

(
1+

tr1

rk

)
exp

(
−

k−1∑
j=2

tr1

r j
+

n−1∑
j=k+1

tr1

r j

)
dt.

Similarly, ∣∣∣∣ f (zk)

zk

∣∣∣∣≤ ∫ 1

0
(1− t)

n−1∏
j=1
j 6=k

∣∣∣∣1− t zk

z j

∣∣∣∣ dt.

Applying Lemma 4.2 with r = rk and ρ = r j when 1≤ j ≤ k − 1, and applying
Lemma 4.3 with r = rk and ρ = r j when k + 1≤ j ≤ n − 1, we obtain
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zk

∣∣∣∣ ≤ ∫ 1

0
(1− t)

k−1∏
j=1

(
1+

trk

r j

) n−1∏
j=k+1

(
1−

trk

r j

)
dt

≤

∫ 1

0
(1− t)

(
1+

trk

r1

)
exp

(k−1∑
j=2

trk

r j
−

n−1∑
j=k+1

trk

r j

)
dt.

Now define u = rk/r1 ≥ 1 and

A =
k−1∑
j=2

rk

r j
−

n−1∑
j=k+1

rk

r j
.

Any empty sum in the definition of A is taken to be zero. In particular, A = 0 if n = 3.
With h1(u, A) and h2(u, A) defined as in (4.1) and (4.2), we see that∣∣∣∣ f (z1)

z1

∣∣∣∣≤ h1(u, A),

∣∣∣∣ f (zk)

zk

∣∣∣∣≤ h2(u, A).

By Lemma 4.1, we obtain (4.3).
The above proof, together with the discussion of the cases of equality in Lemma 4.1,

shows that we have strict inequality in (4.3) except possibly when n = 3 and r1 = rk .
However, even then we have strict inequality in (4.4) and (4.5) when 0< t ≤ 1. We
conclude that we have strict inequality in (4.3) in all cases.

This completes the proof of Theorem 1.3.
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