Direct Observation of Li$_2$O$_2$ Nucleation and Growth with In-Situ Liquid ec-(S)TEM

B. Layla Mehdi1, Eduard N. Nasybulin2, Wu Xu2, Edwin Thomsen2, Mark H. Engelhard3, Robert C. Massé2,4, Meng Gu3, Wendy Bennett2, Zimin Nie2, Chongmin Wang3, Ji-Guang Zhang2, Nigel D. Browning1

1. Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, USA
2. Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, USA
3. Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, USA
4. Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, USA

The rapidly growing field of high energy density rechargeable batteries for large-scale renewable energy applications has generated wide range of in-situ/operando experimental techniques that can provide significant insights into the battery operation [1, 2]. The recent development of the in-situ liquid electrochemical stages for (scanning) transmission electron microscopes (in-situ liquid ec-(S)TEM) enables fabrication of a “nano-battery” to study the details of electrochemical processes providing real-time information on the dynamic structural changes and processes that occur locally at the electrode/electrolyte interface during charge/discharge cycles. Here, we demonstrate application of an in-situ ec-(S)TEM cell to study the formation and decomposition mechanisms of lithium peroxide (Li$_2$O$_2$) in the rechargeable Li-O$_2$ battery system as an alternative to Li-ion batteries.

Li-O$_2$ batteries are currently considered for application in the next-generation electrochemical energy storage technologies and electric vehicles [3-5] due to their high theoretical energy densities, which are comparable to gasoline [6]. The principal operation of Li-O$_2$ battery is based on the mechanisms of reversible formation/oxidation of lithium peroxide (Li$_2$O$_2$) at the porous carbon-based cathode, the efficiency of which determines overall battery performance. However, Li-O$_2$ batteries exhibit a wide range of significant challenges that limit their practical application - such as low rate capability, limited charge-discharge cycles resulting from decomposition of both the electrolyte and the electrode material during oxygen reduction and evolution. This leads to accumulation of insulating side products, which causes a high overpotential and fast capacity fading during cycling.

Here, we use an in-situ ec-(S)TEM cell to investigate fundamental differences in the growth mechanism of Li$_2$O$_2$ nanoparticles and decomposition of the side products, which are strongly dependent on the current rate and significantly contribute to the cycling performance of Li-O$_2$ batteries. The quantitative analysis of the charge/discharge products in the standard coin-cell Li-O$_2$ battery show dynamic transition from predominant formation of Li$_2$O$_2$ nanoparticles to predominant formation of side products during the first few cycles as illustrated by in Figure 1 and Figure 2. We observe similar behavior while using the in-situ ec-(S)TEM cell approach with the Pt-single walled carbon nanotubes (SWCTs) microelectrode as a cathode and Pt-Li metal-anode submersed in aprotic electrolyte (1 M LiTf in tetraglyme). This Li-O$_2$ “nano-battery” design provides significant understanding to the origin of Li$_2$O$_2$ nanoparticles formation/oxidation, which leads to fundamental understanding of the long-term cycling stability of high capacity Li-O$_2$ batteries.

References:
Figure 1. SEM images of discharge cycles of Li-O$_2$ batteries. (a) Pristine carbone nanotubes modified with ruthenium nanoparticles (CNTs/Ru electrode); and discharge cycles of CNTs/Ru electrodes after the (b) 1$^{\text{st}}$, (c) 2$^{\text{nd}}$, (d) 3$^{\text{rd}}$, (e) 5$^{\text{th}}$, (f) 10$^{\text{th}}$, (g) 20$^{\text{th}}$ and (h) 50$^{\text{th}}$ cycles in the LiTf-Tetraglyme electrolyte. The significant transition of the Li$_2$O$_2$ particles occurs after the 1$^{\text{st}}$ discharge cycle leading to formation of the thick layer (c-h).

Figure 2. SEM images of discharge cycles of Li-O$_2$ batteries. (a) Pristine CNTs/Ru electrode and charging process of CNTs/Ru electrodes after the (b) 1$^{\text{st}}$, (c) 2$^{\text{nd}}$, (d) 3$^{\text{rd}}$, (e) 5$^{\text{th}}$, (f) 10$^{\text{th}}$, (g) 20$^{\text{th}}$ and (h) 50$^{\text{th}}$ cycles in the LiTf-Tetraglyme electrolyte. The inset shows structural changes at the CNTs/Ru surface after consecutive charging cycles.