THE MOMENTS OF THE MULTIVARIATE NORMAL

C.S. Withers

Abstract

Explicit expressions are given for the noncentral moments of the multivariate normal. Finding the general moment is shown to be equivalent to finding the general derivative of the density of the multivariate normal, that is to finding an expression for the multivariate Hermite polynomial.

1. Introduction and summary

Expressions are given for the general moment of a p-dimensional normally distributed random variable $X=\left(X_{1}, \ldots, X_{p}\right)$ with mean μ and covariance $\Sigma=\left(\sigma_{i j}\right)$.

Two forms of the moment are considered: $E X_{\alpha_{1}} \ldots X_{\alpha_{r}}$, where $\alpha_{1}, \ldots, \alpha_{r}$ lie in $\{1, \ldots, p\}$, and $E X_{1}^{\nu_{1}} \ldots X_{p}^{\nu_{p}}$, where $\left\{\nu_{i}\right\}$ lie in $\{0,1,2, \ldots\}$. The $\left\{\alpha_{i}\right\}$ need not all be distinct.

In Section 2 we prove our main result:
THEOREM 1.1. For $X \sim N_{p}(\mu, \Sigma)$, and $\alpha_{1}, \ldots, \alpha_{r}$ in $\{1,2, \ldots, p\}$,

Received 18 December 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$$ A2. $00+0.00$.
(1.1)

$$
E X_{\alpha_{1}} \ldots X_{\alpha_{r}}=\sum_{\eta+2 k=r} \sum^{m} \mu_{a_{1}} \ldots!_{a_{2}}^{\sigma_{b_{1}} b_{2}} \ldots \sigma_{b_{2 k-1} b_{2 k}},
$$

where \sum^{m} sums over all $m=r!/\left(\eta!2^{k} k!\right)$ permutations $\left(a_{1} \ldots a_{2} b_{1} b_{2} \ldots b_{2 k}\right)$ of $\left(\alpha_{1} \ldots \alpha_{r}\right)$ giving distinct terms allowing for the symmetry of Σ.

EXAMPLE 1.1. EX $\alpha_{1} X_{\alpha_{2}} X_{\alpha_{3}}=\mu_{\alpha_{1}} \mu_{\alpha_{2}} \mu_{\alpha_{3}}+\sum^{3} \mu_{a_{1}} \sigma_{b_{1} b_{2}}$, where $\sum^{3} \mu_{a_{1}} \sigma_{b_{1} b}=\mu_{\alpha_{1}} \alpha_{\alpha_{2} \alpha_{3}}+\mu_{\alpha_{2}} \sigma_{\alpha_{1} \alpha_{3}}+\mu_{\alpha_{3}} \sigma_{\alpha_{1} \alpha_{2}}$

Putting $\mu=0$ it follows that the even moments are given by
COROLLARY 1.1. For $X \sim N_{p}(0, \Sigma)$ and $\alpha_{1}, \ldots, \alpha_{2 k}$ in $\{1,2, \ldots, p\}$,

$$
\begin{equation*}
E X_{\alpha_{1}} \ldots X_{\alpha_{2 k}}=\sum^{m(k)} \sigma_{b_{1} b_{2}} \ldots \sigma_{b_{2 k-1} b_{2 k}} \tag{1.2}
\end{equation*}
$$

where $\sum^{m(k)}$ sums over all $m(k)=(2 k)!/\left(2^{k} k!\right)=1.3 .5 \ldots(2 k-1)$
permutations $\left(b_{1} \ldots b_{2 k}\right)$ of $\left(\alpha_{1} \ldots a_{2 k}\right)$ giving distinct terms.
EXAMPLE 1.2. If $\mu=0$,

$$
E X_{\alpha_{1}} \ldots X_{\alpha_{6}}=\sum \sigma_{b_{1} b_{2} b_{3} b_{4}{ }_{b_{5} b_{6}}=\sigma_{\alpha_{1} \alpha_{2}}{ }_{\alpha_{3} \alpha_{4}} \sigma_{\alpha_{5} \alpha_{6}}}
$$

plus fourteen like terms.
REMARK 1.1. This corollary was proved by Isserlis [1] by induction. In particular he noted that $E\left(X_{1} / \sigma_{1}\right)^{2 k}=m(k)$ where $\sigma_{i}=\sigma_{i i}^{\frac{1}{2}}$ and, for $\nu_{1}+\nu_{2}=2 k, \quad E\left(x_{1} / \sigma_{1}\right)^{\nu_{1}}\left(x_{2} / \sigma_{2}\right)^{\nu_{2}}=\sum_{k \geq 0}\binom{\nu_{2}}{i} m(i) m(k-i) r^{\nu_{2}-2 i}\left(1-r^{2}\right)^{i}$
where $r=\sigma_{12} \sigma_{1}^{-1} \sigma_{2}^{-1}$, and gave similar expressions for some of the crossmoments of $\left(x_{1}, x_{2}, x_{3}\right)$.

Also in Section 2 these moments are expressed in terms of the multi-
variate Hermite polynomial. We use the definition given in Withers [2]: for A a $p \times p$ matrix set
(1.3) $H e^{\alpha_{1} \cdots \alpha_{r}}(x, A)=\exp (Q / 2)\left(-D_{\alpha_{1}}\right) \ldots\left(-D_{\alpha_{r}}\right) \exp (-Q / 2), x$ in R^{p}, where $Q=x^{\prime} A x$ and $D_{i}=\partial / \partial x_{i}$.
(Thus if Σ is positive definite (denoted by $\Sigma>0$) then

$$
H e^{\alpha_{1} \ldots \alpha_{r}}\left(x, \Sigma^{-1}\right)=\phi_{\Sigma}(x)^{-1}\left(-D_{\alpha_{1}}\right) \ldots\left(-D_{\alpha_{r}}\right) \phi_{\Sigma}(x), \quad x \text { in } R^{p},
$$

where ϕ_{Σ} is the density of $\left.X-\mu.\right)$
We prove
THEOREM 1.2. For $X \sim N_{p}(\mu, \Sigma)$,
(1.4) $E X_{\alpha_{1}} \ldots X_{\alpha_{r}}=H e^{\alpha_{1} \cdots \alpha_{r}}\left(-\Sigma^{-1} \mu,-\Sigma\right)=(-)^{r_{H e}}{ }^{\alpha_{1} \cdots \alpha_{r}}\left(\Sigma^{-1},-\Sigma\right)$.
(If Σ is not positive definite this can be interpreted by choosing $\Sigma_{\delta}>0$ tending to Σ as $\delta \rightarrow 0$; in particular if $\mu=0$, we may replace $\Sigma^{-1} \mu$ by 0.)

This shows that the problem of finding the moments of the multivariate normal is equivalent to the problem of finding the derivatives of the rultivariate normal. The latter are the building blocks of Edgeworth expansions.

The Hermite polynomials have the 'dual' form

$$
\begin{equation*}
H e v_{1} \ldots v_{p}(x, A)=\exp (Q / 2)\left(-D_{1}\right)^{\nu_{1}} \ldots\left(-D_{p}\right)^{\nu_{p}} \exp (-Q / 2) \tag{1.5}
\end{equation*}
$$

for x, Q, D as in (1.3) and $\left\{v_{i}\right\}$ nonnegative integers.
Hence Theorem 1.2 can be restated as
COROLLARY 1.2. For $X \sim N_{p}(\mu, \Sigma)$,
(1.6) $E X_{1}^{\nu_{1}} \ldots X_{p}^{\nu_{p}}=H e \nu_{\nu_{1}} \ldots \nu_{p}\left(-\Sigma^{-1} \mu,-\Sigma\right)=(-)^{\nu} \cdot H e \nu_{1} \ldots \nu_{p}\left(\Sigma^{-1} \mu,-\Sigma\right)$,
where $v_{.}=v_{1}+\ldots+v_{p}$.

2. Proofs

LEMMA 2.1 (The derivatives of a function of a quadratic). For $f: R^{p} \rightarrow R^{d}$ a quadratic function, $g: R^{d} \rightarrow R^{e}, \pi=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ a set of r integers in $\{1,2, \ldots, p\}$ and x in R^{p} set $y=f(x)$ and $(f)_{\pi}=(f)_{\pi}(x)=\partial^{r} f(x) / \partial x_{\alpha_{1}} \ldots \partial x_{\alpha_{r}}$. Then $(g \circ f)(x)=g(f(x))$ has eth order derivatives

$$
\begin{array}{r}
(g \circ f)_{\pi}(x)=\sum_{\eta+2 k=x} \sum_{i}(g)_{i_{1}} \ldots i_{\imath+k}(y) \sum^{m}\left(f_{i_{1}}\right)_{a_{1}} \ldots\left(f_{i_{\imath}}\right)_{a_{\imath}}\left(f_{i_{\imath+1}}\right)_{b_{1} b_{2}} \\
\ldots\left(f_{i_{\imath+k}}\right)_{b_{2 k-1}} b_{2 k}
\end{array}
$$

where \sum_{i} sums over $\left\{1 \leq i_{1} \leq d, \ldots, 1 \leq i_{q+k} \leq d\right\}$ and \sum^{m} sums over all
$m=r!/\left(2!2^{k} k!\right)$ permutations $\left(\alpha_{1} \ldots a_{\imath} b_{1} \ldots b_{2 k}\right)$ of ($\left.\alpha_{1} \ldots \alpha_{r}\right)$
giving different terms allowing for $(f)_{i j}=(f)_{j i}$.
Proof. This corresponds to f a quadratic in the more general rule given in Withers [2].

Proof of Theorem 1.1. For t in R^{p},

$$
E \exp \left(t^{\prime} X\right)=\exp (f), \text { where } f=\mu^{\prime} t+t^{\prime} \Sigma t / 2
$$

Hence

$$
\begin{equation*}
E X_{\alpha_{1}} \cdots X_{\alpha_{r}} \exp \left(t^{\prime} X\right)=\partial^{r} \exp (f) / \partial t_{\alpha_{1}} \cdots \partial t_{\alpha_{r}} \tag{2.1}
\end{equation*}
$$

By Lemma 2.1 the right hand side is given by

$$
\exp (f) \sum_{\imath+2 k=r} \sum^{m} I_{\imath, 2 k}(a, b)
$$

where

$$
a=\left(a_{1}, \ldots a_{2}\right), \quad b=\left(b_{1} \ldots b_{2 k}\right),
$$

$$
I_{\imath, 2 k}(a, b)=f_{a_{1}} \cdots f_{a_{\imath}} f_{b_{1} b_{2}} \cdots f_{b_{2 k-1} b_{2 k}},
$$

$\hat{z}_{i}=\partial f / \partial t_{i}=\mu_{i}+(\Sigma t)_{i}, \quad f_{i j}=\partial^{2} f / \partial t_{i} \partial t_{j}=\sigma_{i j}$, and \sum^{m} is as for (1.1). Putting $t=0$ yields (1.1).

Proof of Theorem 1.2. $2 f=R^{\prime} \Sigma R-c$ where $R=t+\Sigma^{-1} \mu$, $c=\mu^{\prime} \Sigma^{-1} \mu$. Hence the right hand side of (2.1) is

$$
\begin{aligned}
e^{f\left(\partial / \partial R_{\alpha_{1}} \ldots \partial / \partial R_{\alpha_{r}}\right) \exp \left(\frac{1}{2} R^{\prime} \Sigma R\right)} & =(-)^{r_{e} f_{H e} \alpha_{1} \cdots \alpha_{r_{1}}}(R,-\Sigma) \\
& =e^{f_{H e^{\prime}}^{\alpha_{1} \cdots \alpha_{r^{\prime}}}(-R,-\Sigma)}
\end{aligned}
$$

How put $t=0$.

References

[1] L. Isserlis, "On a formula for the product moment coefficient of any order of a normal frequency distribution in any number of variables", Biometrika 12 (1918), 134-139.
[2] C.S. Withers, "A chain rule for differentiation giving simple expressions for the multivariate Hermite polynomials", BuZZ. Austral. Math. Soc. 30 (1983), 247-250.

```
Applied Mathematics Division,
Department of Scientific and Industrial Research,
PO Box 1335,
Wellington,
New Zealand.
```

