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The present study focuses on two-dimensional direct numerical simulations of
shallow-water breaking waves, specifically those generated by a wave plate at constant
water depths. The primary objective is to quantitatively analyse the dynamics, kinematics
and energy dissipation associated with wave breaking. The numerical results exhibit good
agreement with experimental data in terms of free-surface profiles during wave breaking.
A parametric study was conducted to examine the influence of various wave properties and
initial conditions on breaking characteristics. According to research on the Bond number
(Bo, the ratio of gravitational to surface tension forces), an increased surface tension leads
to the formation of more prominent parasitic capillaries at the forwards face of the wave
profile and a thicker plunging jet, which causes a delayed breaking time and is tightly
correlated with the main cavity size. A close relationship between wave statistics and the
initial conditions of the wave plate is discovered, allowing for the classification of breaker
types based on the ratio of wave height to water depth, H/d. Moreover, an analysis based
on inertial scaling arguments reveals that the energy dissipation rate due to breaking can be
linked to the local geometry of the breaking crest Hb/d, and exhibits a threshold behaviour,
where the energy dissipation approaches zero at a critical value of Hb/d. An empirical
scaling of the breaking parameter is proposed as b = a(Hb/d − χ0)

n, where χ0 = 0.65
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represents the breaking threshold and n = 1.5 is a power law determined through the best
fit to the numerical results.

Key words: wave breaking, air/sea interactions, shallow water flows

1. Introduction

As a strongly nonlinear intermittent process occurring over a wide range of scales, wave
breaking plays an important role in air–sea interactions by limiting the height of surface
waves and enhancing the transfer of mass, momentum and heat between the atmosphere
and the ocean (Melville 1996; Perlin, Choi & Tian 2013). When a wave breaks, the free
surface may experience dramatic changes, entraining air into the ocean and ejecting spray
into the atmosphere, with the production of bubbles and aerosols (Kiger & Duncan 2012;
Veron 2015), and the generation of local turbulence near the free surface. Breaking also
controls the fate of oil spills and contaminants in the upper ocean, determines particle size
distribution and dynamic transport, and further affects the health of marine environments
(Delvigne & Sweeney 1988; Deike, Pizzo & Melville 2017; Li et al. 2017). The processes
associated with breaking waves have received much research attention, and the greatest
progress has been made in the geometry of breaking, breaking onset criteria, dissipation
due to breaking, and air entrainment (Perlin et al. 2013; Deike 2022).

In particular, the energy transfers involved in waves have been studied extensively over
the years, and the parameterization of the dissipation rate due to breaking has benefited
greatly from laboratory experiments and numerical measurements. The parameterization
originating from seminal experimental studies by Duncan (1981) has indicated that the
work done by the whitecap or energy dissipation rate per unit length of wave crest scales
to the fifth power of a characteristic speed, i.e. εl = bρc5/g. Here, b is a dimensionless
coefficient related to the wave-breaking strength, ρ is the density of water, c is a
characteristic speed associated with the breaking wave and g is the acceleration due to
gravity. The breaking parameter b was first assumed to be a non-dimensional constant but
subsequently shown by extensive experimental investigations to vary over several orders
of magnitude when varying the breaking wave slope S (Rapp & Melville 1990; Tian,
Perlin & Choi 2010). To establish possible relationships between the breaking parameter
b and the initial conditions of breaking waves, the conventional dissipation scaling of
turbulence theory has been applied to the wave-breaking process (Duncan 1981; Drazen,
Melville & Lenain 2008; Mostert & Deike 2020), following the form of the turbulent
dissipation rate based on dimensional analysis (Batchelor 1953). The local turbulent
energy dissipation rate during wave breaking can be estimated as ε = χ(w3/l), where
χ is a proportionality constant, w is the representative velocity scale and l is the turbulent
integral length scale characterizing the energy-containing turbulent eddies (Taylor 1935;
Vassilicos 2015). Therefore, the energy dissipation rate per unit length of the crest is
εl = ρAε by assuming a turbulent cloud of cross-section A. Drazen et al. (2008) related
the local turbulent energy dissipation rate to the local breaking properties by inertial
scaling, i.e. ε = √

gh3
/h, where h is the breaking height and

√
gh is the ballistic velocity

of the toe of the plunging breaker. The turbulence cloud is assumed to be a circle with
a cross-section of A = πh2/4. This indicates that the dissipation rate per unit length
of a breaking crest εl = ρAε ∝ ρg3/2h5/2 ∝ (hk)5/2ρc5/g, where k is the wavenumber,
and c = √

g/k by the dispersion relation in deep water. This leads to b ∝ S5/2, with
S = hk being the breaking wave slope. The threshold behaviour of the energy dissipation
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Shallow-water breaking waves in a tank with a level bottom

associated with wave breaking has been identified through laboratory measurements,
revealing that b must tend to zero for sufficiently small slopes (Rapp & Melville 1990;
Drazen et al. 2008; Tian et al. 2010; Grare et al. 2013). To characterize this behaviour,
Romero, Melville & Kleiss (2012) proposed a semiempirical scaling b = a(S − S0)

5/2

by introducing a characteristic slope threshold, with a constant a = 0.4 and a critical
slope S0 = 0.08 being determined based on the fit to the laboratory data. Subsequent
numerical simulations have consistently validated this scaling relationship (Iafrati 2009;
Deike, Melville & Popinet 2016; De Vita, Verzicco & Iafrati 2018). In addition to deep
water breaking waves, the energy dissipated by breaking solitary waves on a beach slope
has also been quantified by Mostert & Deike (2020). The representative velocity scale is
considered the impact velocity, which is calculated ballistically as w = √

2gHb, where Hb
is the wave amplitude at breaking. The turbulent integral length scale is estimated to be the
undisturbed depth at breaking db, and the cross-section of the turbulence cloud is assumed
to be A = πHb

2/4. Consequently, the dissipation rate per unit length of a breaking crest
is given by εl = ρAε ∝ ρg3/2Hb

7/2/db ∝ (Hb/d0)
7/2(db/d0)

−1ρc5/g, where d0 is the
undisturbed depth prior to the beach slope, and c = √

gd0 is derived from the dispersion
relation in shallow water. These efforts have led to a connection between the dynamics and
kinematics of breaking waves, and a parameterization of the dynamics has been developed
based on geometric properties.

While great progress has been made in previous studies of breaking-wave dynamics,
including the prediction of the geometry, breaking onset and energy dissipation, certain
limitations persist, necessitating further research to attain a comprehensive comprehension
of breaking waves. First, the majority of research efforts have focused on the study of
breaking waves in deep water. However, breaking waves in shallow and intermediate water
depths undergo more pronounced changes in the free surface compared with deepwater
breakers, which introduces additional complexities to the problem. Furthermore, there is a
scarcity of studies addressing shallow water breaking, particularly in cases where breaking
is solely attributed to nonlinearity in a tank with a level bottom. Although the direct
numerical simulation (DNS) approach, which resolves all breaking processes in waves,
has been successfully employed in deep-water studies (Iafrati 2011; Deike et al. 2016)
and shallow-water breakers (Mostert & Deike 2020), previous investigations have been
constrained by limited computational resources, thus restricting the range of wave scales to
smaller Reynolds and Bond numbers. Nonetheless, it is essential to consider experimental
waves encompassing a wide range of length scales, ranging from wave breaking at the
metre scale to micron-scale air bubble entrainment.

Thus, in this context, this study focuses on shallow-water breaking waves generated by a
wave plate moving across a level bottom, emphasizes the early phases of the wave-breaking
process defined by Deane & Stokes (2002), and reduces the physics involved to a
two-dimensional (2-D) issue. A wide range of scales have been resolved using an adaptive
mesh refinement scheme, retaining a realistic representation of the breaking processes,
including the transfer and dissipation of energy and the formation and the plunging jet
and air cavity in a two-phase turbulent environment. A comprehensive examination of the
differences in the energetics and the transition to turbulence was conducted by Mostert,
Popinet & Deike (2022). Through a direct comparative analysis of three-dimensional (3-D)
simulations with their 2-D counterparts, they showed that the 2-D and 3-D energy budgets
begin to diverge strongly after the rupture of the main cavity, with the discrepancy
becoming increasingly pronounced at larger Re. Notably, the 2-D and 3-D contributions
of energy dissipation rate are comparable at the moment of peak dissipation. Despite
the inherently 3-D nature of turbulence resulting from the breaking process, numerous
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numerical investigations, including works by Lubin et al. (2006), Iafrati (2009), Deike,
Popinet & Melville (2015), De Vita et al. (2018) and Boswell, Yan & Mostert (2023),
have explored the feasibility of employing 2-D breaker simulations as computational
analogues for scaling the breaking dissipation of full 3-D processes. The scaling law
for the deep-water breaking parameter, derived from 2-D DNS energy dissipation rates
by Deike et al. (2015) and De Vita et al. (2018), aligns consistently with experimental
observations and 3-D DNS results. These favourable comparisons with semiempirical
models of energy dissipation rates by deep-water breakers suggest the utility of 2-D
computations for estimating dissipation rates. Additionally, Boswell et al. (2023) assert
that 2-D simulations offer a reasonable approximation for the energetic dissipation of full
3-D simulations in shallow-water regimes. Consequently, despite the limitations imposed
by the 2-D numerical simulations, the results obtained exhibit reasonably good agreement
with experimental observations, thereby enabling the investigation of energy dissipation
during wave breaking. Moreover, this study focuses specifically on shallow water wave
breaking in a constant-depth region, distinguishing it from the majority of recent breaking
wave studies. By adapting methods from studies on deep-water breakers, we contribute
to the analysis of this less explored scenario. The paper is organized as follows. In § 2,
we introduce the configurations of laboratory breaking-wave experiments and propose a
dimensional analysis for waves generated by wave plates. In § 3, we present the numerical
scheme and model set-up and conduct mesh convergence analysis and model verification.
The wave characteristics with different breaking intensities during wave breaking are
analysed in § 4. In § 5, we investigate the scaling of wave dynamics and kinematics to
initial conditions by using inertial-scaling arguments and analysing numerical results. We
conclude in § 6 with some summaries of the present work.

2. Problem description

2.1. Laboratory breaking-wave experiments
This study investigates the dynamics of waves, the evolution of the plunging jet and the
energy budget during the process of wave breaking. The aim is to establish quantitative
relationships of the main cavity, breaking criteria and energy dissipation with respect to
the fluid properties and initial conditions by reproducing experimental waves through 2-D
DNS. A series of breaking-wave experiments were conducted in a 6 m long, 0.3 m wide
and 0.6 m high wave flume, with the aim of investigating the breaking processes and the
dispersion of oil spills by breaking waves (Li et al. 2017; Afshar-Mohajer et al. 2018; Wei
et al. 2018). The breaking waves are initialized by driving a piston-type wavemaker over a
constant water depth d. A single-wave breaking event is produced by a single push of the
wavemaker, and its trajectory x(t) and associated wave plate velocity U(t) are determined
by the following functions:

x(t) = s
2
(1 − cos σ t), 0 ≤ t ≤ 1

2f
, (2.1)

U(t) = sπf sin σ t, 0 ≤ t ≤ 1
2f

, (2.2)

where s is the wavemaker stroke length; σ = 2πf is the angular frequency; and t is the
time. A single push of the wavemaker for a half-period 1/(2f ) is applied to produce a
wave with a single crest. During the motion of the wave plate, the maximum wave plate
stroke is s, and the maximum wave plate velocity is Umax = sπf . Multiple types of waves
can be generated by varying the stroke s, frequency f and water depth d, ranging from
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y

x

6 m

0.6 m

d

Wavemaker x(t) = s/2 (1 – cos σt), 0 � t � 1/2f

Figure 1. Sketch of the laboratory breaking wave experiment and numerical domain.

Wave s (m) f (Hz) d (m) Umax (m s−1) c (m s−1) Umax/c

1 0.5334 0.75 0.25 1.257 1.566 0.803
2 0.4572 0.75 0.25 1.077 1.566 0.688
3 0.4572 0.625 0.25 0.898 1.566 0.573

Table 1. Parameter space for generating three different breaking waves. The column labels are as follows:
s, wave plate stroke; f , frequency; d, water depth; Umax, maximum piston speed; c, shallow water wave speed;
Umax/c, ratio of the maximum piston speed to the shallow water wave speed.

non-breaking regular waves to breakers with different intensities. In comparison with
the conventional motion of the piston-type wavemaker that produces sinusoidal waves
with an oscillatory motion of x(t) = s/2 sin σ t, the piston trajectory here can steepen the
wave profile and promote the wave to break. The origin of the experimental domain is
located at the undisturbed water surface on the left-hand boundary, where x represents
the streamwise direction, and y is the vertical direction, with right and upwards being
positive. The wavemaker is initially located at x = 0.535 m from the left-hand boundary
(see figure 1). High-speed imaging is implemented to visualize the plunging jet impact
and the subsequent breakup processes during wave breaking. The turbulence produced
by breaking is characterized using particle image velocimetry (PIV). The PIV images are
processed to calculate the time evolution of turbulence in the wave tank. Digital inline
holography, a 3-D imaging technique, is employed to measure the size of the produced
droplets and bubbles and to qualify the subsurface particle size distribution.

On the basis of laboratory experiments, 2-D simulations of a range of breaking waves
are conducted using the Basilisk solver. Three different breaking waves are simulated to
numerically reproduce the breaking characteristics. The wave plate stroke s, frequency f
and water depth d for generating the three breakers as well as the corresponding maximum
wave plate velocity Umax are summarized in table 1. One of the breakers, a typical plunging
breaker with s = 0.5334 m and f = 0.75 Hz, is chosen for model verification and detailed
analysis. Furthermore, a parametric study is performed to relate the wave characteristics
to the initial conditions by extensively varying the stroke s, frequency f and water
depth d.

2.2. Dimensional analysis of waves generated by a wave plate
In this section, a dimensional analysis of the waves generated by wave plates is performed.
Considering a 2-D wave, the wave generated by the wave plate is assumed to be dependent
on the fluid properties and the initial conditions. If the wave process is restricted to
air–water systems close to standard temperature and pressure, then the density and
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kinematic viscosity ratios of the two phases are those of air and water in the experiments,
which will not be regarded as altering the wave features. Then, the dependent variables for
identifying this specific wave can be expressed as follows:

f (g, ν, ρ, γ, s, f , d), (2.3)

where g [dimension L T−2] is the gravitational acceleration, ν [L2 T−1] is the water
kinematic viscosity, ρ [M L−3] is the water density and γ [M T−2] is the surface tension.
The piston stroke s [L] and frequency f [T] of the wave plate and the undisturbed depth of
water d [L] are referred to as the initial conditions. Buckingham’s theorem can be used to
construct the following dimensionless parameters by selecting ρ, g and d as the repeating
variables:

g1/2d3/2

ν
= Re,

ρgd2

γ
= Bo,

s
d
,

f√
g/d

= fd
c

. (2.4a–d)

The above dimensional analysis indicates that wave characteristics are determined by
the Reynolds number Re, Bond number Bo, s/d and fd/c, where c = √

gd is the wave
speed in shallow water. Of particular interest in this study is the maximum wave height
before breaking H [L], the breaking wave crest Hb [L] of the plunging breaker, the total
energy per unit length transferred by the motion of the wave plate El [ML T−2] and the
dissipation of the wave energy per unit length of the breaking crest, εl [ML T−3]. These
wave characteristics should be dimensionless to connect to the dimensionless parameters
representing the fluid properties and the initial conditions in (2.4). Using dimensional
analysis, the dimensionless parameters for these wave features are as follows:

H
d

,
Hb

d
,

El

ρgd3 ,
εl

ρg3/2d5/2 . (2.5a–d)

Quantifying the influence of these dimensionless parameters is of great significance
for elucidating the wave shape evolution, energy transfer and air entrainment
mechanisms.

3. Numerical investigation

3.1. Basilisk solver
The Navier–Stokes equations for incompressible gas–liquid two-phase flow with variable
density and surface tension are simulated using the Basilisk library. The Basilisk
package, developed as the successor to the Gerris framework (Popinet 2003, 2009), is
an open-source program for solving various systems of partial differential equations
on regular adaptive Cartesian meshes with second-order spatial and temporal accuracy.
A quadtree-based adaptive mesh refinement scheme is used in 2-D calculations to improve
computational efficiency by concentrating computational resources on important solution
domains. The generic time loop is implemented in the numerical scheme and the time
step is limited by the Courant–Friedrichs–Lewy condition. The incompressible, variable
density Navier–Stokes equations with surface tension can be written as

ρ(∂tu + (u · ∇)u) = −∇p + ∇ · (2μD) + f γ , (3.1)

∂tρ + ∇ · (ρu) = 0, (3.2)

∇ · u = 0, (3.3)
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where u = (u, v, w) is the fluid velocity, ρ ≡ ρ(x, t) is the fluid density, p is the pressure,
μ ≡ μ(x, t) is the dynamic viscosity, D is the deformation tensor defined as Dij ≡ (∂iuj +
∂jui)/2 and f γ is the surface tension force per unit volume (Deike et al. 2016).

The liquid–gas interface is tracked by the momentum-conserving volume-of-fluid (VOF)
advection scheme (Fuster & Popinet 2018), while the corresponding volume fraction field
is solved by a piecewise linear interface construction approach (Scardovelli & Zaleski
1999, 2000) with the interface normal being computed by the mixed-Youngs-centred
method (Aulisa et al. 2007). The VOF method was originally developed by Hirt & Nichols
(1981) and has been modified by Kothe, Mjolsness & Torrey (1991), and further coupled
with momentum conservation by Fuster & Popinet (2018), with the advantage of allowing
variable spatial resolution and sharp representation along the interface while restricting the
appearance of spurious numerical parasitic currents (Zhang, Popinet & Ling 2020). The
interface of two-phase flow is reconstructed by a function α(x, t), defined as the volume
fraction of a given fluid in each cell of the computational mesh, assuming values of 0 or 1
for each phase. The density and viscosity can thus be computed by arithmetic means as

ρ(α) = αρ1 + (1 − α)ρ2, (3.4)

μ(α) = αμ1 + (1 − α)μ2, (3.5)

where ρ1 and ρ2, μ1 and μ2 are the density and viscosity of the first and second fluids,
respectively.

An equivalent advection equation for the volume fraction can be obtained by replacing
the advection equation for the density:

∂tα + ∇ · (αu) = 0. (3.6)

A momentum-conserving scheme is applied in the advective momentum fluxes near
the interface to reduce numerical momentum transfer through the interface. Total fluxes
on each face are obtained by adding the diffusive flux due to the viscous term, which
are computed by the semi-implicit Crank–Nicholson scheme (Pairetti et al. 2018). The
Bell–Collela–Glaz second-order upwind scheme is used for the reconstruction of the liquid
and gas momentum per unit volume to be advected in the cell (Bell, Colella & Glaz 1989).

Surface tension is treated with the method of Brackbill, Kothe & Zemach (1992) and the
balanced-force technique (Francois et al. 2006), as further developed by Popinet (2009,
2018). A generalized version of the height-function curvature estimation is implemented
to address the inconsistency at low interface resolution, giving accurate and efficient
solutions for surface-tension-driven flows. The surface tension force per unit volume f γ

can be expressed as
f γ = γ κδsn, (3.7)

where γ is the surface tension coefficient; δs is the interface Dirac function, indicating that
the surface tension term is concentrated on the interface; and κ and n are the curvature and
normal to the interface, respectively.

The integrals over the entire water phase are performed numerically to identify the
energy budget in the water. The kinetic energy Ek and the gravitational potential energy
Ep of the propagating wave are provided as follows:

Ek = 1
2

∫
V

ρ|u · u| dV, (3.8)

Ep =
∫

V
ρgy dV − Ep0, (3.9)
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where V is the domain occupied by water in the system and Ep0 is the gravitational
potential energy of the still water at the beginning. The mechanical energy Em of the wave
is calculated as the sum of the kinetic and potential components:

Em = Ek + Ep. (3.10)

The non-conservative energy dissipation from the action of viscosity, Ed, can be calculated
directly from the deformation tensor:

Ed(t) =
∫ t

0

∫
v

μ
∂ui

∂xj

∂uj

∂xi
dV dt. (3.11)

Thus, the total conserved energy budget is given by Et = Ek + Ep + Ed.

3.2. Numerical set-up
The numerical methodology employed in this investigation involves the simulation of the
incompressible flow of two immiscible fluids. To accurately capture the physical features
of the wave profiles, the Navier–Stokes equations are solved numerically on sufficiently
fine grids so that viscous and capillary effects can be retained. Gravity is accounted for
using the ‘reduced gravity approach’ (Wroniszewski, Verschaeve & Pedersen 2014) by
re-expressing gravity in two-phase flows as an interfacial force. An initial depth of water d
is used in a square box with a side length of L0 = 24d = 6 m. The wave propagates in the x
direction from left to right. The density and kinematic viscosity ratios of the two phases are
those of air and water in the experiments, which are 1.29/1018.3 and 1.39 × 10−5/1.01 ×
10−6, respectively. The Reynolds number in the breaking wave event generated by the
wave plate can be defined by Re = g1/2d3/2/ν = cd/ν, where c = √

gd is the wave phase
speed in shallow water. Due to the limitation of computational resources, combined with
the decreasing effects of the Reynolds number on the evolution of wave breaking (Mostert
& Deike 2020), it is possible to use a Reynolds number that is smaller than the actual
value. Breaking waves are normalized using the reference length and velocity scales, which
in this case are the still water depth d and wave speed in shallow water c, respectively;
the reference time scale is defined as t0 = d/c = √

d/g. For the plunging breaking wave
with s/d = 2.13 and fd/c = 0.12 at a water depth of d = 0.25 m, a Reynolds number of
6 × 104 is employed, which corresponds to a viscosity six times smaller than that of the
water. Notably, the fundamental nature of the breaking processes is not expected to be
significantly altered by Reynolds number effects. The surface tension can be expressed
by the Bond number Bo = ρgd2/γ , where γ is the constant surface tension coefficient
between water and air. The physical value of the water surface tension coefficient with air,
γ = 0.0728 kg s−2, is used to analyse the effect of surface tension on the formation of the
main cavity, resulting in Bo = 8600.

The numerical resolution is given by Δ = L0/2lmax , where lmax is the maximum level
of refinement in the adaptive mesh refinement scheme. Three sets of the maximum
level of refinement used for mesh convergence analysis in this study are 13, 14 and 15,
corresponding to minimum mesh sizes Δ/d of 0.00293, 0.00146 and 0.00073, respectively.
The number of grids to represent the water depth in each set is 342, 683 and 1366,
respectively. As the surface tension scheme is time-explicit, the maximum time step
is the oscillation period of the smallest capillary wave. For the maximum level of
refinement lmax = 15, the corresponding maximum time step t/t0 should not be larger
than 4 × 10−4. A Courant–Friedrichs–Lewy number of 0.5 is utilized to ensure numerical
stability. The VOF tracers are used to capture the air–water interfaces and the moving
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boundary of the wave plate. This capability of local dynamic grid refinement significantly
reduces the computational cost of representing a breaking wave that propagates within
an extended physical domain at a high resolution. This makes it especially appropriate
for the present application where wave profile evolution and wave breaking are expected.
The piston is implemented by initializing a volume fraction field at each time step, which
corresponds to the position and speed of the moving piston. This approach has been
effectively employed in previous studies (Wu & Wang 2009; Lin-Lin, Hui & Chui-Jie
2016). Since the moving piston is updated at each time step, the grids intersected with the
piston are refined to the finest level all the time, thus ensuring the accurate representation
of the moving boundary in the adaptive meshes. The refinement criterion is based on
the wavelet-estimated discretization error in terms of the velocity and VOF fields. The
corresponding mesh will be refined as required when initializing the wave. The wave
plate boundary and the air–water interface are initially refined to the finest level, while the
remainder of the domain remains at a level of refinement of 10. The refinement algorithm
is invoked at every time step to refine the mesh whenever the estimated error of the wavelet
exceeds the prescribed threshold for both the velocity and volume fraction fields.

3.3. Mesh convergence
The choice of the effective numerical resolution is related to the numerical convergence.
A key physical feature of simulating two-phase breaking waves is the thickness δ of
the viscous boundary layer at the free surface. The estimation from Batchelor’s method
suggests the defining length scale δ ∼ d/

√
Re ≈ 0.004d = 1.0 mm (Deike et al. 2015,

2016). Based on this estimation, the viscous sublayer is resolved with more than five grid
cells at lmax = 15, allowing us to resolve the dissipation rate associated with the breaking
waves (Mostert et al. 2022). Furthermore, the grid convergence of the numerical results is
analysed by considering three sets of simulations with lmax = 13, 14 and 15, corresponding
to the effective resolution, which is equivalent to 40962, 81922 and 163842 on a regular
grid, respectively. The numerical convergence is discussed in terms of the evolution
of the free surface, velocity field, energy budget and size distribution of the bubbles
entrapped by wave breaking. Figure 2(a,b) illustrate the influence of mesh resolution
on the development of the free surface for wave 1. The wave breaks at t/t0 = 3.25,
characterized by a vertical slope at the front of the wave (figure 2a). As the maximum level
of refinement lmax increases from 13 to 15, the differences at the tip of the overturning
jet become progressively smaller. The overturning jet curls over itself and impacts the
surface of the wavefront at t/t0 = 4.25 (figure 2b). Although slight phase shifts can be
observed at different resolutions, the shape and size of the entrained air by the plunging jet
remain similar. Figure 2(c,d) shows the temporal evolution of the horizontal component
(figure 2c) and vertical component (figure 2d) of the velocity field in the broken-bore
propagation region at x/d = 10.8. A better agreement is observed between the cases with
resolutions of 214 and 215 compared with those between 213 and 214. Regarding the energy
budget, figure 2(e) indicates numerical convergence in the evolution of kinetic energy
Ek, gravitational potential energy Ep and conservative energy Em = Ek + Ep for all cases.
This convergence suggests that numerical accuracy is achieved in the energy transfer
between Ek and Ep. However, differences in Et = Ek + Ep + Ed at different resolutions
imply that the dissipated energy cannot be fully captured by the current grid cells directly.
Nevertheless, as the wave dissipation rate can be calculated based on the conservative
energy Em, numerical convergence is also attained in estimating energy dissipation when
calculated from the loss of Em.
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Figure 2. Convergence study at three different mesh resolutions for wave 1 with s/d = 2.13, fd/c = 0.12;
green, 213; blue, 214; red, 215. Grid convergence of the free surface during wave breaking at t/t0 = 3.25 (a) and
jet impact at t/t0 = 4.25 (b); the temporal evolution for horizontal component u (c) and vertical component
v (d) of the velocity field in the broken bore propagation region at x/d = 10.8; and the energy budget (e) for
kinetic energy Ek (dotted), gravitational potential energy Ep (dashed), mechanical energy Em (dash–dot), and
total conserved energy Et (solid).

The above convergence studies have confirmed that all results are well converged, with
no significant changes observed as the maximum level of refinement increases from 13 to
15. The resolution of 215 is used to realize a more precise parametric study to determine
the wave characteristics as a function of the fluid properties and initial conditions.
Consequently, all presented results in the following sections have attained convergence
with respect to grid resolution.
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Figure 3. Qualitative comparison of free surface profiles between laboratory images and numerical results
for wave 1 with s/d = 2.13 and fd/c = 0.12.

3.4. Breaking-wave verification
A high-speed camera with a frame rate of 500 frames per second is used in the experiments
to visualize the development of wave breaking and subsequent breakup processes. The
field of view, 4.12 × 4.12, is centred horizontally at x/d = 6.74, with left and right view
sides of 4.68 and 8.8, respectively. The vertical centre of the camera is adjusted to the
initial free surface. The numerical results of the temporal evolution of the free surface for
wave 1 are compared with experimental snapshots for model verification. Comparisons
of the free-surface profile between the simulation results and snapshots taken during the
experiments are shown in figure 3. The camera is located upstream of the wave direction
close to the side of the wave plate. This device is primarily responsible for recording the
development of the plunging jet, jet impact, and air entrapment and the generation of
the first splash-up. Comparisons of the free-surface evolution at t/t0 = 3.8, 4.4 and 5.0
show excellent agreement between the current simulation and the experimental results.
The configuration in the motion of the wave plate leads to the formation of a highly
asymmetric wave profile during the prebreaking period. As the wave slope increases and
the wave crest curls over, the formation of a plunging jet becomes evident at t/t0 = 3.8,
with a downwards projection towards the water surface. At t/t0 = 4.4, the plunging jet
impacts the rising wavefront, leading to the formation of the main cavity through the
entrapment of an air tube. At t/t0 = 5.0, a splash-up is generated, propelled by the primary
plunging jet, moving upwards. It is accompanied by the emission of droplets from fractured
ligaments. The slight discrepancy between the height of the splash-up and the development
of the aerated region is attributed to the 3-D instability in the spanwise direction, which
falls beyond the scope of this study. Overall, the evolution of the free surface during the
breaking process, including the curvature of the overturning wave crest, the size of the
main cavity and the height and location of the first splash-up, can be accurately predicted
by our numerical simulations.

Furthermore, figure 4 shows the simulated free-surface profiles over time for wave 1
recorded at three designated positions (x/d = 4.8, 7.2 and 9.6) corresponding to the
prebreaking, breaking and postbreaking regions, respectively, with a comparison with
the experimental high-speed imaging results. The free-surface profile at the first position
(x/d = 4.8) remains smoothly curved, which corresponds to the prebreaking stage where
the free surface is smooth, without the formation of the vertical interface and the
generation of bubbles and droplets. The numerical simulation accurately reproduces the
evolution of the free surface, including the development of the rise and fall of the
wave profile, with only a slight underestimation at the peak value of the wave profile
at t/t0 = 3.1. The second position is located at x/d = 7.2, within the wave-breaking
region, near the main cavity entrapped by the plunging jet. In the experiment, the free
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Figure 4. Qualitative comparison of surface elevations over time at x/d = 4.8 (a), 7.2 (b) and 9.6 (c) for
wave 1 with s/d = 2.13 and fd/c = 0.12.

surface exhibits an immediate increase after jet impact at approximately t/t0 = 4.4,
indicating the penetration of the plunging jet into the wavefront and the formation of
the main cavity. Figure 4(b) shows that our numerical simulation can closely capture the
phenomenon of how waves break. The only discrepancy can be caused by the lack of
small ejections when the plunging jet penetrates into the wavefront due to the absence
of the 3-D effect. The wave propagates to the third position and develops into turbulent
flow, forming a large amount of spray and bubbles. There are apparent fluctuations in
the free surface between t/t0 = 5.6 and 8.8, showing a strongly turbulent phenomenon in
this region. Figure 4(c) shows an overall underestimation of the free-surface elevations
from t/t0 = 5.6 to 8.8 by our numerical simulation. This result is most likely due to
differences in the recordings of the free-surface elevations from the experiments and
numerical simulations. In the experiment, the value of the free-surface elevations is the
maximum elevation of the wave profile, splashing bubbles and droplets, as the free-surface
elevations are recorded from the black region in the experimental snapshots. However, in
the numerical simulation, the free-surface elevations are primarily determined by wave
profiles rather than splashing droplets scattered above the water surface. In general, the
temporal evolution of free-surface profiles can be precisely reproduced by our simulation
when compared with laboratory experiments at each location.

In summary, although our 2-D simulation has limitations in capturing droplets and
ligaments in the spanwise direction, the model demonstrates its capability to accurately
depict wave hydrodynamics. This is evidenced by its ability to reproduce the wave
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height, wave speed and wave-breaking process, as demonstrated in the aforementioned
comparisons.

4. Breaking characteristics

4.1. Wave-breaking dynamics
Sequences of three different plunging breakers with contours of the normalized velocity
magnitude (u, v)/c are shown in figure 5. For wave 1, the wave begins to break as the wave
crest steepens and becomes multivalued at t/t0 = 3.19. A curled jet is formed projecting
ahead of the wave, and a high and flat interface accumulates at the rear side of the wave
crest. The overturning jet develops further and impacts the wavefront, forming a closed
cavity from the entrapped air at t/t0 = 4.25. The phenomena of the breaking event from
wave breaking and jet impact to splash-up formation among waves 1, 2 and 3 are quite
similar. However, some differences exist at the rear side of the wave crest and regarding
the size and shape of the closed cavity. Due to the highly unsteady and rapidly evolving
breaking crest, determining the location and speed of the crest is challenging. Instead,
the maximum horizontal particle velocity u is used to analyse the speed evolution from
incipient breaking to jet impact. Notably, the phase speed in shallow water c, calculated
using linear wave theory, exhibits significant discrepancies when compared with the
measured wave phase speed, which can be determined by the distance between two crests.
These discrepancies may arise from the highly nonlinear and asymmetric wave profile, as
well as the persistent motion of the wave plate during wave breaking. For simplicity, we
continue to use the shallow water phase speed c here. Prior to wave breaking, the maximum
horizontal particle velocity is located at the wave crest. The green star in figure 5 indicates
the position where the maximum horizontal particle velocity is located at that moment. As
the wavefront approaches vertical, the particle velocities become almost horizontal with
the order of the phase speed. The location of the maximum horizontal particle velocity
then shifts downwards to the vertical plane along the longitudinal direction. At this stage,
the maximum horizontal particle velocity begins to increase until the plunging jet impacts,
reaching its maximum value at the top of the entrapped air cavity within the curling
jet. For wave 1, the front face becomes nearly vertical at t/t0 = 3.19, with a horizontal
crest particle velocity of u/c = 1.57. Upon impact of the plunging jet at t/t0 = 4.25, the
horizontal crest particle velocity increases to u/c = 1.99, representing a 27 % increase. For
wave 2 and wave 3, the front face becomes nearly vertical at t/t0 = 2.88 and t/t0 = 4.51,
respectively, with velocity increases of 40 % and 14 % up to the impact of the plunging jet
at t/t0 = 4.19 and t/t0 = 5.63, respectively.

The wave-breaking process is illustrated using wave 1 as a representative example.
Figure 6 shows the normalized streamwise velocity u/c, vertical velocity v/c and vorticity
ω/ω0 at different stages of wave overturning (figure 6a,d,g, (t − tim)/t0 = −1), jet
impingement (figure 6b,e,h, (t − tim)/t0 = 0), and splash-up (figure 6c, f,i, (t − tim)/t0 =
1), where tim denotes the time when the plunging jet impacts the wavefront, and ω0 =√

g/d represents a reference vorticity. Figure 6(a–c) presents the distribution of the
streamwise velocity component, with the maximum values u/c = 1.62 (figure 6a) at the
neck below the wave crest, 2.21 (figure 6b) at the impact point where the toe of the jet
connects with the wavefront and 2.65 (figure 6c) near the tip of the splash-up. Combined
with the distribution of the vertical velocity, the water–particle velocities of the wave crest
are found to be approximately horizontal, as shown by PIV measurements of breaking
waves by Perlin, He & Bernal (1996). The vertical asymmetry can be clearly observed
from the distribution of the vertical velocity. Vortices are identified as concentrated at
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Figure 5. Evolution of the free surface for the three different plunging breakers, labelled with the normalized
velocity vectors (u, v)/c. Panels (a,c,e) correspond to the time when the wavefront nears vertical, while
(b,d, f ) indicate the time when the plunging jet impacts the wavefront. The green star indicates the position
where the maximum horizontal particle velocity is located at that moment.

the free surface as the wave overturns, becoming more intense during cavity closure
and subsequent splash-ups. Figure 7 illustrates the normalized streamwise velocity u/c,
vertical velocity v/c and vorticity ω/ω0 during the late stage of wave breaking at (t −
tim)/t0 = 2, 4 and 6. Notably, the highest streamwise velocity components are concentrated
on the ruptured ligaments and ejected droplets resulting from the splash-ups, reaching a
maximum value of u/c = 2.65, as depicted in figure 7(a–c). By examining the distribution
of the vertical velocity component in figure 7(d–f ), we can identify the location of the
original wave crest, as well as the number and positioning of the primary splash-up
processes, since the vertical velocity component v/c equals zero at the positions of the
original wave crest and impact point. As the wave experiences repetitive jet impacts and
splash-ups, the wavefront interfaces become turbulent, resulting in irregular turbulent
patches. Figure 7(g–i) demonstrates that the vortices do not interact with the bottom,
suggesting that the wave depth does not significantly influence the turbulent clouds
induced by wave breaking in our study.

4.2. Energy budget
This section investigates the temporal evolution of the energy input by the wave
plate, energy loss during wave breaking and the corresponding dissipation rate.
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Figure 6. Detailed normalized streamwise velocity u/c (a–c), vertical velocity v/c (d–f ) and vorticity
ω/ω0 (g–i) during wave overturning (a,d,g), (t − tim)/t0 = −1; jet impact (b,e,h), (t − tim)/t0 = 0; and
splash-up (c,f ,i), (t − tim)/t0 = 1.
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Figure 7. Detailed normalized streamwise velocity u/c, vertical velocity v/c and vorticity ω/ω0 in the late
stage after wave breaking at (t − tim)/t0 = 2, 4 and 6.

Before proceeding, we acknowledge the inherent 3-D nature of turbulence and the potential
controversies surrounding the use of 2-D simulations. Although 2-D simulations may
not fully capture the complexities of 3-D turbulence, they have been widely employed
in studying breaking waves due to their ability to reproduce key features and capture
the dominant mechanisms governing the breaking process. Specific aspects of breaking
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waves, such as wave overturning and energy evolution, have been found to yield valuable
insights through 2-D simulations. Previous studies, such as Iafrati (2009), have indicated
that the overturning of the jet and the initial jet impact are primarily 2-D processes.
Moreover, the assumption of two-dimensionality is reasonable, particularly in the early
stages after the onset of breaking, when large air bubbles are entrapped. The use of
2-D DNS has also proven effective in capturing the dissipative scales of the breaking
wave process, as demonstrated by Deike et al. (2015). The 3-D effects are expected to
become significant only in the subsequent stage, where instabilities in the cross-direction
strongly influence both the fragmentation process of the air cavity and the dynamics of
large vortical structures. Figure 8(a–c) illustrate the energy evolution in the wave tank
for each case. Initially, there is no energy in the system, but as the wave plate begins to
move and interact with the water body, the generation of waves leads to a simultaneous
increase in gravitational potential energy and kinetic energy. The total energy continues
to increase until the moment when the plunging jet impacts the wavefront. For waves 1, 2
and 3, this occurs at t/t0 = 4.25, 4.19 and 5.63, respectively. Prior to the jet impact, two
visible energy transfers between kinetic and potential energy can be observed, resulting
from wave steepening and the descent of the plunging jet. Figure 8(d–f ) present the
temporal evolution of the total mechanical energy starting from the initial jet impact
for three different waves. The associated dissipation rate is also depicted using dashed
lines. Examining wave 1 in figure 8(d), the energy dissipation rate remains relatively
small and constant from the impact of the plunging jet until just before the first splash-up
impact, occurring at approximately (t − tim)/t0 = 1. Subsequently, as the first splash-up
and its associated shedding droplets collide with the water surface, the energy dissipation
rate begins to increase. From (t − tim)/t0 = 1 onwards, the wavefront interface undergoes
significant perturbations due to multiple jet impacts, splashing events and the formation
of entrapped bubbles and ejected droplets. These breaking processes enhance energy
transfer and dissipation, leading to a rapid increase in the energy dissipation rate and
a continuous decay of the total mechanical energy. After (t − tim)/t0 = 3, as the wave
becomes more turbulent, the dissipation rate reaches its maximum, entering a plateau
that remains relatively constant until approximately (t − tim)/t0 = 8. Following the intense
dissipation caused by turbulence, the dissipation rate starts to decrease at a constant rate,
with a noticeable reduction observed at approximately (t − tim)/t0 = 13. A similar trend
is observed in waves 2 and 3, with a weaker energy transfer and turbulence region due
to wave breaking. Notably, all scales of the breaking wave, from energy dissipation to
the formation and breakup of bubbles and droplets in a two-phase turbulent environment,
must be resolved in order to accurately capture the physics of breaking waves. However,
this is not feasible in 2-D DNSs. The energy dissipation rates presented in figure 8(d–f ),
which are based on the decay of the mechanical energy, were used as a way of determining
the active breaking period. The natural end time of breaking is not immediately obvious,
but examining the evolution of dissipation rates provides a way to identify the point at
which the wave has stopped breaking. While our 2-D results on the energy budget and
dissipation provide a brief overview of energy evolution during breaking and its associated
causes from a 2-D perspective, some physical phenomena such as the rupture of the main
air cavity cannot be represented due to the absence of 3-D information. Consequently, it is
not advisable to extrapolate from these 2-D results to infer the complete physical processes
occurring during breaking.
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Figure 8. The temporal evolution of the normalized energy per unit length El/(ρgd3) for wave 1 (a), wave 2
(b) and wave 3 (c) from the initiation of wave plate motion until the moment of jet impact. The motion of the
wave plate transfers energy to the stationary water column, resulting in the propagation of waves at a constant
water depth. Jet impact occurs at t/t0 = 4.25, 4.19 and 5.63 for waves 1, 2 and 3, respectively. Panels (d–f )
present the normalized energy per unit length El/(ρgd3) and the normalized energy dissipation rate per unit
length εl/(ρg3/2d5/2) starting from the time of jet impact for the three different waves. The energy dissipation
is enhanced upon the plunging jet striking the wavefront. The dissipation rate first increases and then remains
relatively constant for a period. Subsequently, the energy dissipation rate starts to decline, marking the end of
the active breaking stage. Three grey lines indicate specific time points at (t − tim)/t0 = (1/(2f ))/t0, (1/f )/t0
and (3/(2f ))/t0.

5. Parametric study as a function of the fluid properties and initial conditions

5.1. Influence of the Bond number on the main cavity
In this section, the effect of dimensionless parameters responsible for the wave evolution
and breaking characteristics on the geometry of the main cavity at impact is investigated.

The effect of the Reynolds number on the wave evolution is expected to be small
before wave breaking, as the jet thickness is independent of the Reynolds number, and
no apparent dependence of the cavity size on the Reynolds number is discovered (Iafrati
2009; Mostert et al. 2022). The Reynolds independence of the wave characteristics and
main cavity features is checked by comparing the numerical results for distinct Reynolds
numbers of 6 × 104 and 6 × 105 with experimental data. These findings confirm the
results obtained previously by Iafrati (2009). The influence of the Reynolds number on
the wave features is neglected in this study since it has been shown to be negligible at high
Reynolds numbers in breaking waves. Since our 2-D simulation provides a reasonable
estimate of the wave profile and the formation of a plunging jet, which is considered
the laminar structure before jet impingement occurs, the effects of the Bond number on
the evolution of the wave profile and breaking characteristics of plunging breakers are
determined by examining extensive cases with a wide range of Bond numbers. The Bond
number increases from 6000 to 80 000 in increments of 2000, while all other parameters
remain constant. Note that Bo = 8600 refers to the surface tension between air and water
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in the experiments. Previous studies have revealed that a larger value of Bo results in
greater separation between the wavelength and Hinze scale, necessitating the use of costly
numerical resources if all scales are to be resolved (Wang, Yang & Stern 2016). Our
high-resolution meshes that benefit from adaptive mesh refinement criteria can resolve
breakers with greater separation between length scales, allowing us to vary Bo over a wide
range. For instance, for Bo = 80 000, the capillary length lc =

√
d2/Bo = 0.884 mm, and

the capillary length relative to the smallest grid size lc/Δ ∼ 5 at lmax = 15. A similar
capillary length to the smallest grid size ratio was utilized in the 3-D wave breaking DNS
of Re = 100 000 and Bo = 1000 by Mostert et al. (2022). Additionally, a grid number of
6.4 was employed to represent the initial sheet for investigating the motion and stability of
the edge of a liquid sheet in 2-D. A rim forms at the edge of the free end of the sheet, and
a neck appears just behind the rim, resembling the phenomena observed in the stretching
of the plunging jet (Fuster et al. 2009). These applications suggest that the current grid
resolution is adequate for capturing the formation and geometry of the plunging jet. In
addition, a convergence study was conducted to assess the ability of our 2-D simulation
to capture the formation and geometry of the plunging jet, considering three different
lmax values of 14, 15 and 16 for Bo = 80 000. As shown in figure 9, we observe that the
agreement between lmax = 15 and 16 is better than that between lmax = 14 and 15, and the
results for lmax = 15 and 16 are nearly coincident. This suggests that lmax = 15 is sufficient
for achieving grid convergence, even at relatively high Bond numbers. Figure 10 illustrates
the evolution of the wave profile under various Bond numbers at t/t0 = 2.5, 3.1, 3.8 and
4.1. Qualitatively, the wave profile evolution does not exhibit a significant influence of
Bo. The impact of Bo primarily manifests in the development of the plunging jet, which
features a rounded edge due to capillary retraction (Fuster et al. 2009). At t/t0 = 2.5, the
generated wave crest experiences the effects of surface tension, resulting in a bulge on the
front face of the steepening wave crest. The inset of figure 10(a) reveals a smaller bulge
with the increasing Bond number, accompanied by a slightly larger wave height prior to
breaking. This behaviour indicates that surface tension induces capillary ripples on the
forwards face of the wave, leading to a bulge on the water surface. Experimental studies
by Perlin et al. (1996) captured the appearance of parasitic capillary waves on the upper
section of the vertical wavefront, specifically along the highest elevations of the lower front
face of the plunging wave. Moreover, Diorio, Liu & Duncan (2009) observed that the bulge
and capillary waves on the crest-front faces of the spillers at breaking onset are self-similar,
independent of the breaking-wave-generation mechanism. This geometric similarity is
limited to the crest-front profiles of the spillers and is attributed to the crest flow being
dominated by surface tension and gravity. For larger Bond numbers where the influence
of surface tension is negligible, a smaller bulge is formed. The slopes of the free surface
upstream of the toe and the curvature of the bulge appear to increase with surface tension.
The profile shapes and trends depicted in figure 10(a) exhibit qualitative similarities to
numerical simulations of deep-water plunging and spilling breakers reported by Perlin
et al. (1996) and Diorio et al. (2009). However, the detailed quantitative characteristics
of the capillary ripples are beyond the scope of this study and are not discussed here.
At t/t0 = 3.1 (figure 10b), as the horizontal asymmetry of the wave profile develops
further, the edge of the bulge erupts from a point just forwards of the crest and becomes
tangent to the wave direction, presenting different widths of the bulge due to different
surface tensions. The bulge due to surface tension projects forwards and develops into a
plunging jet at t/t0 = 3.8 (figure 10c), and a thicker jet can be observed at a smaller Bond
number, indicating that jet thickness is dependent on the Bond number due to capillary
effects caused by surface tension. Figure 10(d) shows that at t/t0 = 4.1, the plunging jets
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at Bo = 6000 and 8000 impact the rising wavefront, ingesting a tube of air, while the
plunging jets at Bo = 12 000 and 16 000 still need more time to form the cavity. As the
Bond number increases, the instant at which the plunging jet impinges on the front of
the wave is delayed, and the plunging jet becomes thinner and projects farther forwards
ahead of the wave, entrapping more air into the wave. The cross-sectional shape of the
air cavity is affected by surface tension. Increasing the effect of surface tension causes
the plunging jet to thicken and reduces the volume of air entrapped at the jet impact.
The geometric properties of the main cavity caused by plunging breakers are identified
by New (1983), showing that the surface profiles underneath the overturning crest may
be represented by an ellipse of axes ratio

√
3, with its major axis rotated at an angle of

approximately 60◦ to the horizontal. A similar shape can be confirmed in our cases as
shown in figure 11. The vertical height of the main cavity hc, calculated as hc = h − ht,
is closely related to the size of the main cavity entrapped by the plunging jet, where h
is the breaking height and ht is the height from the breaking crest to the cavity top. The
cross-sectional area of the initially ingested cavity in the breaking process can be estimated
by applying the ellipse area formula A = π(hc/ sin 60◦)2/4

√
3, where hc is the vertical

height of the main cavity. By normalizing the main cavity using the cross-sectional area
A0, we obtain A/A0 ∝ (hc/h)2. A new scaling regarding the cavity correction factor for the
entrained cavity is proposed as A/A0 = ((h − πlc)/h)2 by Mostert et al. (2022), with very
good agreement at high Bond numbers and weaker agreement at lower Bond numbers.
This indicates that hc = h − πlc, where lc is the capillary length. Similar scaling can be
proposed, but a coefficient of 0.6 should be used to mediate the difference between the
width of the jet and the breaking height when it exhibits a greater separation between the
wave scale and capillary length due to the larger Bond number in the present work, which
gives A/A0 = (0.6(h − πlc)/h)2. Figure 12(a) illustrates the geometry of the main cavity
when the plunging jet connects with the front of the wave at t/t0 = 4.32. It is observed
that the size of the main cavity appears to be independent of the surface tension when
increasing the Bond number, indicating a convergence of the main cavity size as the
Bond number increases. Figure 12(b) shows very good agreement between this scaling
and the present DNS results. As previously stated, the wave jet becomes thinner and
projects farther forwards ahead of the wave as the surface tension decreases. It exhibits
a breaking height h0 in the absence of surface tension, which represents the maximum
value of all breaking heights when surface tension is considered. The decreased breaking
height caused by the shortened project distance normalized by d is proportional to the cube
of the capillary length normalized by d, which gives (h0 − h)/d ∝ (lc/d)3, as shown in
figure 12(c), while ht remains constant under a distinct Bond number. Figure 12(d) shows
the comparison of the numerical results of h/d to the estimated values of h/d calculated
using h0/d − C(lc/d)3 by the proposed power-law scaling, with C being a proportionality
constant.

5.2. Breaking criteria
This section develops the relationship between wave parameters, i.e. maximum wave
height before breaking H [L], breaking-wave crest Hb [L] of the plunging breaker, and the
initial conditions used to generate waves in this study by numerical data fitting, following
the above dimensional analysis as stated in (2.4) and (2.5):

H
d

= fH

(
Re, Bo,

s
d
,

fd
c

)
, (5.1)
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Figure 9. Evolution of the free surface, spanning from jet formation to jet impact, is examined with a time
interval of t/t0 = 0.16. A large Bond number of 80 000, which represents a significant scale separation,
is used for grid convergence analysis. The comparison between lmax = 15 and 16 exhibits better agreement
compared with that between lmax = 14 and 15, indicating that lmax = 15 adequately achieves grid convergence,
even for relatively high Bond numbers.
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Figure 10. The spatial evolution of the free surface and the development of overturning jet for wave 1 at
various Bond numbers when t/t0 = 2.5 (a), 3.1 (b), 3.8 (c), 4.1 (d).
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2, which can be normalized by A0 ∝ h2, giving that A/A0 ∝ (hc/h)2.
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Figure 12. Estimation of the main cavity size and breaking height. (a) The geometry of the main cavity
when the plunging jet connects with the front of the wave at t/t0 = 4.32 under various Bond numbers.
(b) Relationship between cavity area and Bond numbers. (c) Linear relationship between the decreased breaking
height caused by shortened project distance and the capillary length, (h0 − h)/d ∝ (lc/d)3. (d) A scaling to
estimate the breaking height at different Bond numbers.
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Hb

d
= fHb

(
Re, Bo,

s
d
,

fd
c

)
. (5.2)

As discussed in § 5.1, Re and Bo do not significantly influence the wave characteristics, so
the wave is considered independent of Re and Bo when discussing the scaling of H and Hb
to the initial conditions. Thus,

H
d

= fH

(
s
d
,

fd
c

)
∝

(
s
d

)αH
(

fd
c

)βH

, (5.3)

Hb

d
= fHb

(
s
d
,

fd
c

)
∝

(
s
d

)αHb
(

fd
c

)βHb
. (5.4)

This dimensional analysis demonstrates the dependence of the wave characteristics on the
dominant dimensionless variables derived from the initial conditions. Their quantitative
relations are investigated by conducting various cases for different combinations of s, f
and d to determine the corresponding coefficients in the dimensionless expressions.

First, the wave characteristics are estimated from the simplified theory for plane
wavemakers. In shallow water, a simple theory for the generation of waves by wavemakers
was proposed by Galvin (1964), who reasoned that the water displaced by the wavemaker
should be equal to the crest volume of the propagating waveform. As breaking waves
are generated by a piston wavemaker with a stroke of s over a constant water depth
d, the volume of water displaced over a whole stroke is sd. If the resulting waves are
vertically symmetric with one single crest before breaking, then the crest volume of the
propagating waveforms in a wavelength is

∫ L/2
0 (H/2)(1 − cos kx) dx = HL/4, where L is

the wavelength and k = 2π/L is the wavenumber; equating the two volumes gives

sd = HL
4

. (5.5)

According to the dispersion relation of shallow-water waves, the wavelength is L = T
√

gd.
Then the resulting connection between the wave height and the initial conditions of the
wave plate can be expressed as

H
d

= 4s
T
√

gd
. (5.6)

Notably, the wave parameters H, L and T in this expression are theoretical values and
do not represent the real values in actual waves, which already break before forming a
symmetrical waveform, but it provides us with a possible relationship that can be used to
determine the fit to the numerical data.

Then, the scaling of the maximum wave height before breaking H of the experimental
waves generated by the wave plate is fitted through the numerical results under various
initial conditions. It can be seen from (5.3) that H/d ∝ sαH f βH dβH/2−αH g−βH/2, so H ∝
sαH f βH dβH/2−αH+1g−βH/2. At the same frequency f , numerical results show that H/d ∝
sd−1/2 and H ∝ sd1/2, so we have αH = 1 and βH = 1; thus, it gives

H
d

∝ sf√
gd

∝ Umax

c
, (5.7)

where Umax = sπf is the maximum wave plate velocity and c = √
gd is the linear velocity.

This is quite similar to the theoretical result proposed in (5.6). Furthermore, the scaling of
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the breaking-wave crest Hb with the initial conditions is also fitted through the numerical
results. Based on the same method of analysing the numerical data, the exponents in the
power-law scaling can be determined as αHb = 2/3 and βHb = 1/3; thus

Hb

d
∝

(
s
d

)2/3 (
fd
c

)1/3

. (5.8)

Figure 13(a,b) shows the relationship between the normalized maximum wave height
before breaking H/d and breaking-wave crest Hb/d to the initial conditions. A linear
correlation between the maximum wave height before breaking H and the maximum wave
plate speed Umax is revealed, showing that the wave height increases as the maximum wave
plate speed increases. As indicated in figure 13, the generated wave remains non-breaking
for H/d ≤ 0.65. The breaking is of the spilling type for 0.65 ≥ H/d ≤ 0.80, whereas it
is of the plunging type for H/d ≥ 0.80. The above results agree with the measurement
performed by Li (2017), who showed that the critical value for spilling and plunging waves
is H/d = 0.80. For plunging breakers, a linear correlation between breaking-wave crest
Hb and initial conditions is also proposed, which is in good agreement with the numerical
results.

We also present the relationship between the maximum fluid particle velocity at the
moment of jet impact and the initial conditions. Figure 13(c) demonstrates a generally
linear dependence between umax/c and Umax/c, where lower values of Umax/c tend to
correspond to higher values of umax/c, while larger values of Umax/c result in lower values
of umax/c. Deviations from this linear dependence may be attributed to nonlinearity and
asymmetry introduced by our wave-making method. Waves associated with larger Umax/c
break earlier, limiting the acceleration of water particles, whereas waves corresponding
to smaller Umax/c receive energy from the rear side of the wave crest. In addition, the
shoaling effect induced by higher nonlinearity leads to an increase in wave height and a
decrease in fluid particle velocity.

5.3. Energy dissipation due to breaking
The energy dissipation rate due to breaking can be defined as εl = Em/t, which is
the average decrease in the conservative energy Em over the active breaking period t.
Notably, different studies have adopted varying definitions for the active breaking period.
For instance, in the laboratory measurements conducted by Drazen and Kirby (2008) on
deep-water breaking due to dispersive focusing, the duration of the breaking event is
determined by differencing the start and stop times of breaking from the spectrogram of
the hydrophone signal. On the other hand, when considering breaking solitary waves on
plane slopes in shallow water, Mostert & Deike (2020) defined the active breaking period
as commencing when the wave face becomes vertical and ending when the kinetic energy
Ek equals the potential energy Ep. This definition ensures that the contribution of bottom
boundary layer friction during run-up is excluded from the calculation of the dissipation
during breaking. In the current case, where the wave breaks due solely to nonlinearity in a
tank with a level bottom, the dominant mechanism of dissipation comes from viscous
dissipation by turbulence in the upper layers. If we assume that most of the viscous
dissipation occurs while the wave is actively breaking, then the active breaking phase ends
when the energy dissipation rate slows. As shown in figure 8(d–f ), the energy dissipation
rate initially exhibits a rapid increase with time, reaching its maximum at approximately
(t − tim)/t0 = (1/(2f ))/t0. Subsequently, the dissipation rate remains relatively constant
for a duration of 1/(2f ), after which it begins to decay. A noticeable decay in the energy
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Figure 13. Scaling for the maximum wave height before breaking (a) and breaking wave crest (b) with respect
to the initial conditions. Normalized wave height from (5.3) with the parameters αH = 1 and βH = 1. This
indicates that the wave height normalized by the water depth is proportional to the maximum wave plate
velocity normalized by the wave phase speed. (b) The normalized breaking wave crest from (5.4) with the
parameters αHb = 2/3 and βHb = 1/3. (c) Relationship between the maximum fluid particle velocity before jet
impact and the maximum wave plate speed.

dissipation rate can be observed at approximately (t − tim)/t0 = (3/(2f ))/t0, which may
indicate the end of the active breaking stage. Therefore, in this study, the active breaking
period is defined as the period starting when the jet impacts and lasting t = 3/(2f ), once
the quasiequilibrium stage has ended and the energy dissipation rate begins to decay.

The physical parameters for the energy budget are the total energy per unit length
transferred by the motion of the wave plate El [ML T−2] and the energy dissipation per
unit length of the wave crest εl [ML T−3] for plunging breakers. Then, the dimensional
analysis for the energy budget gives

El

ρgd3 = fEl

(
Re, Bo,

s
d
,

fd
c

)
, (5.9)

εl

ρg3/2d5/2 = fεl

(
Re, Bo,

s
d
,

fd
c

)
. (5.10)
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gd
3
)

Figure 14. Scaling for the total energy transferred by the motion of wave plate El. Normalized total energy
from (5.13) with the parameters αEl = 2 and βEl = 1.

Likewise, the energy budget is assumed to be independent of the Reynolds number and
Bond number. Thus,

El

ρgd3 = fEl

(
s
d
,

fd
c

)
∝

(
s
d

)αEl
(

fd
c

)βEl
, (5.11)

εl

ρg3/2d5/2 = fεl

(
s
d
,

fd
c

)
∝

(
s
d

)αεl
(

fd
c

)βεl
. (5.12)

We first determine the relationship between the total energy per unit length and the
initial conditions. According to linear wave theory, the total energy per wave unit width
is given by El = ρgH2L/8. Thus, the dimensionless wave energy can be expressed as
El/(ρgd3) = H2L/(8d3). Assuming that the generated wave has the same frequency as the
wave plate, we can calculate the nominal wavelength L using the dispersion relationship
in shallow water, i.e. L = T

√
gd ∝ √

gd/f . Furthermore, we have derived the scaling
between wave height and the initial conditions as H/d ∝ sf /

√
gd. Consequently, we find

that El/(ρgd3) = H2L/(8d3) ∝ (s/d)2( fd/c). Therefore, the scaling of the energy budget
with respect to the initial conditions is determined by αEl = 2 and βEl = 1 and can be
described as

El

ρgd3 ∝
(

s
d

)2 (
fd
c

)
. (5.13)

Figure 14 shows the relationships between the total energy transferred by the motion of
the wave plate El and the initial conditions. It is evident that the measured total energy
from the numerical data is generally in agreement with the estimated results from the
initial conditions. However, in the lower range of total energy, which corresponds to
lower nonlinearity, the estimated total energy derived from the initial conditions tends
to underestimate the measured total energy.

Next, we aim to establish a scaling relationship between the energy dissipation rate
during wave breaking and the wave parameters. This scaling is based on an inertial model
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for estimating the energy dissipation rate, similar to the approach employed by Drazen
et al. (2008) for deep-water breakers and Mostert & Deike (2020) for shallow-water
breakers. We seek to validate the applicability of this framework in predicting energy
dissipation during breaking in shallow water over a flat-bed geometry. To establish a
connection between the isotropic turbulence assumption and the empirical relationship,
accurate estimations are required for the turbulent integral length scale l, the characteristic
velocity scale w and the turbulent cloud cross-section A. In the study by Drazen et al.
(2008) on plunging breaking waves in deep water, an inertial model is employed to
estimate the dissipation rate, using the local wave height h and velocity at impact as
the length and velocity scales, respectively. The trajectory of the toe, as measured in the
experiment, indicates that the toe of the breaker is in freefall under gravity, descending a
height h. Consequently, the vertical velocity of the toe at impact can be approximated
as w = √

2gh. By assuming a cylindrical cloud of turbulence of cross-sectional area
A = πh2/4 and applying the linear dispersion relationship in deep water, they argued
that the breaking parameter b should be proportional to S5/2, where S = hk is the local
slope at breaking. Following the same inertial model, Mostert & Deike (2020) quantified
the energy dissipation caused by breaking solitary waves in shallow water on a gentle
slope. They determined the impact velocity of the plunging jet as w = √

2gHb, where
Hb is the wave height at breaking. The turbulent integral length scale l is estimated by
the undisturbed depth at breaking db, as db sets the upper limit on the size of eddies
that form from the breaking process. This was corroborated by examining the vorticity
in the liquid phase during the breaking event, which demonstrated that the mixing zone
reaches the slope bed and is constrained by the depth. Utilizing the inertial model, they
established a relationship between the dissipation resulting from wave breaking during
the active breaking period and the local wave height, depth and beach slope, denoted as
b ∝ (Hb/d0)

7/2(db/d0)
−1, where d0 is the water depth before the wave enters the slope.

The same estimation method utilized by Mostert & Deike (2020) can be applied to our
breaking waves in shallow water. However, there are notable distinctions between our
breaking waves and the wave breaking on a slope examined in their work. Unlike waves
breaking on a slope, our waves propagate in a tank with a flat bottom and break due to
strong nonlinearity. Although in many cases the breaking height Hb exceeds the water
depth d, since the plunging jet descends from a wave crest and impacts the wavefront, the
mixing zone is situated near the initial water depth and is still bounded by the breaking
height Hb. This can also be supported by the vorticity field during the postbreaking
period, as depicted in figure 7. By considering a cylindrical cloud of turbulence with a
cross-sectional area of A = πHb

2/4, a vertical height of Hb and an impact velocity of the
toe w = √

2gHb, the dissipation per unit length along the wave crest is

εl = ρAε = ρ
πHb

2

4

√
2gHb

3

Hb
∝ ρg3/2Hb

5/2, (5.14)

b = εl

ρc5/g
= εl

ρg3/2d5/2 ∝
(

Hb

d

)5/2

. (5.15)

This scaling demonstrates that the dominant dimensionless variable describing the energy
dissipation by breaking in shallow water is the ratio of Hb and d. Multiple experimental
measurements have demonstrated that energy dissipation associated with wave breaking
exhibits a threshold dependence on S, with the dissipation rapidly approaching zero at
low values of S. Drawing on laboratory data from various sources, Romero et al. (2012)
proposed a semiempirical result by introducing a slope-based breaking threshold S0, which
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can be expressed as b = a(S − S0)
n, where a is a constant and S0 is a threshold slope for

breaking. Based on a visual fit through the data, a power of 5/2 consistent with the inertial
scaling of Drazen et al. (2008), as well as a slope threshold of S0 = 0.08 and a scaling
factor of a = 0.4 were obtained. In the shallow-water cases, our numerical results also
reveal a threshold behaviour in the energy dissipation associated with wave breaking.
As shown in figure 15(a), the green dotted line represents a fit to the inertial scaling
b = a(Hb/d)5/2 with a coefficient value of a = 0.06. However, when the inertial scaling is
extended to smaller values of Hb/d, it overestimates the dissipation rate compared with the
numerical data. This discrepancy clearly indicates that the energy dissipation approaches
zero at low values of Hb/d, exhibiting threshold behaviour. To account for this observation,
we adopt a semiempirical scaling relationship of the form b = a(Hb/d − χ0)

n, where
χ0 denotes the critical value for Hb/d. By fitting the numerical data, we can obtain the
best-fitting parameters for this scaling relationship as

εl

ρg3/2d5/2 = a
(

Hb

d
− χ0

)n

= 0.21
(

Hb

d
− 0.65

)1.5

. (5.16)

This reveals a threshold value of χ0 = 0.65 and a power law scaling of n = 1.5.
Figure 15(a) illustrates the fitted curve that smoothly connects all the numerical data.
Notably, the obtained threshold χ0 closely aligns with the breaking criterion H/d = 0.65,
which distinguishes between breaking and non-breaking waves. Note that this link between
the energy dissipation rate and the local breaking parameters is applicable to plunging
breakers. Although spilling waves exist within the Hb/d range of 0.65–0.76, the dissipation
associated with spilling breakers is not depicted in this context. The validation of the
relationship between dissipation caused by spilling breakers and local breaking parameters
would require additional data, but it exceeds the scope of this discussion. This critical value
for Hb/d can be justified by the absence of energy dissipation in non-breaking waves. It
is worth highlighting that in deep water scenarios, the scatter of the data at high values
of S and the relatively small threshold slope S0 allow for retaining the power law of
5/2 in the inertial scaling proposed by Drazen et al. (2008) when the slope threshold
is introduced. However, in shallow-water cases, the critical value χ0 = 0.65 significantly
modifies the power law from the inertial scaling of 5/2 to 1.5. As stated in § 5.2,
based on the relationship of the normalized breaking-wave crest to the initial conditions
Hb/d = 1.19(s/d)2/3( fd/c)1/3, the energy dissipation rate can also be connected to the
initial conditions. Figure 15(b) shows a good dependence between the energy dissipation
rate and the initial conditions.

Based on the aforementioned analysis, the magnitude of the breaking parameter b in
shallow-water breaking waves is influenced by the ratio of the local breaking crest height
to the water depth, highlighting the significant role of water depth in energy dissipation
in shallow water. The breaking parameter b exhibits a threshold dependence on Hb/d,
rapidly tending to zero for low values of Hb/d. As Hb/d increases, the breaking parameter
asymptotically converges to the inertial scaling of 5/2. These findings, which combine
a local inertial turbulent argument and empirical results through least squares fit to the
numerical data, establish a relationship between the dissipation rate and wave parameters,
providing predictive insights into the dissipation rate of breaking waves in shallow water.

A comparative analysis was conducted using data from the literature in both deep
water (sourced from Deike (2022)) and shallow water (sourced from Boswell et al.
(2023)) conditions. As originally proposed by Beji (1995) and subsequently applied in
the numerical investigation conducted by Boswell et al. (2023), a nonlinearity parameter
F = ga/c2 was used to connect the two distinct regimes, where a is a representative
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Figure 15. Scaling for the energy dissipation per unit length of breaking wave εl (a) with respect to the initial
conditions. (a) Scaling for energy dissipation per unit length of breaking wave εl with respect to local breaking
parameters Hb/d, as shown in (5.16). (b) Normalized energy dissipation rate based on the relationship between
the breaking wave crest Hb/d and the initial conditions.

amplitude and c is a phase speed. In deep water, where c = √
g/k, the nonlinearity

parameter F ∼ ak = S corresponds to the wave slope, while it converges to a/d in
shallow water, with c = √

gd. In our cases, F approaches Hb/d as a ∼ Hb. Figure 16
shows the breaking parameter b for deep-water breakers from a variety of experimental
and numerical sources (Kendall Melville 1994; Banner & Peirson 2007; Drazen et al.
2008; Grare et al. 2013; Deike et al. 2015, 2016; Derakhti & Kirby 2016; De Vita
et al. 2018; Mostert et al. 2022), along with the shallow-water dataset from Boswell
et al. (2023) and the present study. The breaking dissipation in this study falls between
the previously established deep-water regimes and the shallow-water breaking waves
documented by Boswell et al. (2023), and shows favourable consistency within the
range of overlap between our data and Boswell’s data. Furthermore, our data extend the
left-hand boundary of this range by extending the nonlinearity parameter, specifically,
Hb/d from 0.85 to 0.75. This particular range displays a discernible diminishing trend in
the breaking parameter b as the nonlinearity parameter F decreases. A similar trend can
also be observed in Boswell’s data. However, there is a clear discontinuity between the
deep-water and shallow-water regimes, rendering a single power-law scaling inadequate
for capturing both datasets. As introduced by Romero et al. (2012), a heuristic examination
of the breaking threshold was undertaken to fit the extensive experimental and numerical
observations in deep-water scenarios, yielding a semiempirical formulation b = 0.4(S −
0.08)5/2, where S ∼ F under deep-water conditions. Notably, Boswell et al. (2023) made
a commendable effort to address the discontinuity across various depth regimes using
the same concept of breaking threshold dependence, and a slope threshold F∗ = 0.7
was determined in Boswell’s shallow-water solitary wave cases. In our cases, the critical
breaking threshold F∗ was determined to be 0.65 through the best fit to our numerical data.
The expression b = 0.212(F − 0.65)1.5 collapses the DNS data presented in the present
study favourably. However, the proposed semiempirical scaling fails to encompass the
DNS data of shallow-water solitary breaking waves from Boswell et al. (2023). Therefore,
further endeavours should be made to develop a comprehensive breaking parametrization.
Nevertheless, the available datasets summarized in figure 16 offer valuable insights
into this unsolved problem. The data suggest the possibility of a varying breaking
threshold, particularly in the context of transitioning between deep and shallow water
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DW, DNS 2-D, De Vita et al. (2018)
DW, DNS 2-D, Deike et al. (2015)
DW, DNS, Mostert et al. (2022)
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b = 0.4(F – 0.08)5/2

b = 0.4(F – 0.7)5/2

b = 0.212(F – 0.65)3/2

F
Figure 16. Energy dissipation from laboratory experiments and numerical simulations: DW, deep water;
SW, shallow water. The solid line is the semiempirical formulation in deep water regimes, b = 0.4(F −
0.08)5/2 (Romero et al. 2012), with breaking threshold F∗ = 0.08, while the dotted line is the semiempirical
formulation in deep water regimes proposed by Boswell et al. (2023) with F∗ = 0.65. The dashed line is a
visual fit through the present data, giving b = 0.212(F − 0.65)1.5. THL, Tainan Hydraulics Laboratory wave
tank; SIO, Scripps Institution of Oceanography wave tank; DNS, direct numerical simulations; LES, large eddy
simulations.

conditions. A determination relation governing the breaking threshold could be proposed
to accommodate the different depth regimes. This remains to be explored in future work.

6. Concluding remarks

The present study was designed to determine the effect of the fluid properties and initial
conditions on the dynamics, kinematics and energy dissipation in the breaking process by
performing high-fidelity simulations of breaking waves generated by a piston-type wave
plate using 2-D DNS. The investigation of the stroke and frequency of the wave plate
has shown detailed information, including breaking characteristics, energy transfer and
dissipation during wave breaking. A quantitative relationship between the main cavity
size and the breaking height is presented based on the investigation of the influence
of the Bond number on the evolution of the overturning jet. This reveals the effect of
surface tension on the crest overturning process, which thickens the width of the plunging
jet and shortens the distance that projects forwards ahead of the wave. The resulting
wave height is estimated based on the simplified theory for plane wavemakers, and a
reliable agreement is obtained between this theoretical result and our numerical data. The
link between wave height and initial conditions indicates that waves can be classified as
non-breaking waves, spilling breakers and plunging breakers based on the ratio of wave
height to water depth H/d. The conventional dissipation scaling of turbulence theory
is applied to the wave-breaking process, deriving a link between the energy dissipation
rate and the ratio of the breaking-wave crest to the water depth Hb/d. By accounting
for a threshold behaviour, an empirical scaling of the breaking parameter is proposed as
b = a(Hb/d − χ0)

n, where χ0 = 0.65 represents the breaking threshold and n = 1.5 is a
power law determined through the best fit to the numerical results. The proposed scaling
laws quantitatively link the kinematics and dynamics of breaking waves to the local wave
parameters and initial conditions, which may be of use for future theoretical analysis.
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