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Abstract. We consider lattice-free simplices, simplices with vertices on the latticeZd in Rd andno
other integral points; we show, by elementary methods, that there exist such simplices in dimension
d with width (see Definition 2) going to infinity withd.
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1. Introduction

Integral polytopes (see [Br, K] for the basic definitions) are of interest in com-
binatorics, linear programming, algebraic geometry-toric varieties [D,O], number
theory [K-L.].

We study here lattice-free simplices, i.e., simplices intersecting the lattice only
at their vertices.

A natural question is to measure the ‘flatness’ of these polytopes, with respect
to integral dual vectors. This (arithmetical) notion plays a crucial role in:

• the classification (up to affine unimodular maps) of lattice-free simplices in
dimension 3 (see [O,MMM]) and
• the construction of a polynomial-time algorithm for integral linear program-

ming (flatness permits induction on the dimension [K-L]).

Unfortunately, there were no known examples (in any dimension) of lattice-free
polytopes with width greater than 2. We prove here the following theorem:

THEOREM. Given any positive numberα strictly inferior to 1/e, for d large
enough, there exists a lattice-free simplex of dimensiond and width superior to
αd.

The proof is nonconstructive and involves replacing the search for lattice-free
simplices inZd by the search for ‘lattice-free lattices’ containingZd (‘turning
the problem inside out’, see Section 1.3), specializing in the next step to lattices
of a simple kind, depending on a prime numberp. The existence of lattice-free
simplices of large width is then deduced by elementary computations, through a
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sufficient inequality involving the dimensiond, the widthk and the primep (see
(12)).

2. Notations

P d : The set of integral polytopes inRd ; if P is such a polytope,P is a convex
compact set, the set Vert(P ) of vertices ofP is a subset ofZd .

Sd : The set of integral simplices inRd . In particular,σd will denote the canonical
simplex with vertices at the origin andei = (0, . . . ,0,1,0, . . . ,0) – 1 at the
ith coordinate

Gd : The group of affine unimodular mapsGd = Zd o GL(d,Z) acts onRd (pre-
servingZd), Pd , andSd . A d-latticeM is a lattice withZd ⊂ M ⊂ (1/m)Zd
for somem ∈ N?.

2.1. LATTICE-FREE SIMPLICES AND THEIR WIDTH

Recall the following definition [K].

DEFINITION 1. An integral polytopeP in Rd is lattice-freeif P ∩Zd = Vert(P ).

DEFINITION 2. Given an integral nonzero vectoru in (Zd)?, theu-width of the
polytopeP of Pd is defined by

wu(P ) = max
x,y∈P
〈u, x − y〉. (1)

Thewidth ofP is

w(P ) = min
u∈(Zd )?
u 6=0

wu(P ). (2)

Remark. The width is the minimal length of all integral projectionsu(P ) for
nonzerou.

2.2. KNOWN RESULTS ON THE WIDTH OF LATTICE-FREE POLYTOPES IN

DIMENSION d

d = 2: Lattice-free simplices are all integral triangles of area1
2; they are equivalent

to σ2. This is elementary.

d = 3: Lattice-free polytopes have width one; in the case of simplices, this res-
ult has various proofs and applications (it is sometimes known as the ‘terminal
lemma’, see [F, MS, O, Wh]).

d = 4: All lattice-free simplices have at least one basic facet (face with codimen-
sion one) [W] – this fact is not true in higher dimensions.
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EXAMPLES. There exist some interesting examples:

• L. Schlafli’s polytope, studied by Coxeter [C];
• A recent example given by H. Scarf [private communication]: the simplex

in dimension 5 with vertices, the first five unit vectorsei and for last vertex
(23,29,31,43,57), has width 3.
• We have found with the help of a computer, some examples of widths 2, 3 and

4 in dimensions 4 and 5.

No other results seem to be known, apart from the following asymptotic result.

PROPOSITION 1.There exists a universal constantC such that for any lattice-free
polytope of dimensiond

w(P ) 6 Cd2. (3)

Proof.The ‘Flatness Theorem’ of [K-L] asserts that there existsC such that any
convex compact setK in Rd with K ∩ Zd = φ satisfies

w(K) 6 C d2, (4)

wherew is defined as in 2.2.
If P is any lattice-free polytope, take a pointa in the relative interior ofP and

apply the previous Flatness Theorem to the homotheticP̃ of P with respect toa
and fixed ratioα strictly less than one. Then formula (4) shows that the width ofP ,
which is proportional to the width of̃P , is also bounded by a function of type (6).

Remark. Recent results of [Ba] show that (3) is true with a right-hand side
proportional tod log d.

2.3. TURNING THE WIDTH INSIDE OUT

Let us define a new norm onRd : If ξ = (ξi) is a vector inRd , take ‖ξ‖ =
max
i
(0, ξi)−min

i
(0, ξi).

DEFINITION 3. Let

w(M) = min
ξ∈M?
ξ 6=0

‖ξ‖. (5)

It is easy to show that the existence of an integral lattice-free simplex of di-
mensiond, volumev/d! and width at leastk is equivalent with the existence of a
d-latticeM, containingZd , with

M ∩ σd = Vertσd, w(M) > k, det(M) = 1

v
. (6)
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3. In Search of Lattice-Free Simplices (Asymptotically)

3.1.

We restrict our study tod-lattices given by

y ∈ Zd, M(y) = Zd + Z 1

p
y, M(y) 6= Zd, (7)

wherep is a prime number; this lattice clearly depends only on the class ofy in
(Z/pZ)d.

LEMMA 1. The set of latticesM (for a fixedp) can be identified with the space of
lines in(Z/pZ)d.

In particular, the number of such lattices is

m(d, p) = pd − 1

p − 1
. (8)

Let f (d, p) be the number of latticesM such as (7) satisfying

M ∩ σ̌d 6= φ, (9)

whereσ̌d = σd\Vert(σd).
(The latticeM intersectsσd in other points than the vertices.)

LEMMA 2. The numberf (d, p) satisfies

f (d, p) 6 (p + 1) · · · (p + d)
d! − (d + 1).

Proof.Supposex is a point inM(y) belonging toσ̌d . Then it can be written as
x = z +my/p with m nondivisible byp.

Writing my/p as the sum of an integral vector and a remainder, we get

x = z + z′ + ỹ

p
, 06 ỹi < p, ỹi ∈ N, x ∈ σ̌d .

This implies

z+ z′ = 0, x = ỹ

p
, ỹ ∈ pσ̌d ∩ Zd.

The vectorsy,my, ỹ define the same line in(Z/pZ)d. This shows that the
number of latticesM(y) satisfying (9) is less than the number of points inpσ̌d∩Zd ,
given by the right-hand side of Lemma 2 [ E].

Now letg(d, p, k) be the number of latticesM(y), as in (7), withw(M(y)) 6 k.
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LEMMA 3. The numberg(d, p, k) satisfies

g(p, d, k) 6 2[(k + 1)d+1− kd+1]pd−2. (10)

Proof. The assumption on the lattice means the existence of a nonzero vectorξ

in Zd with

y = (y1, . . . yd), ξ = (ξ1, . . . ξd),
∑

ξiyi ∈ pZ

and we have‖ξ‖ 6 k ⇒ ‖ξ‖∞ 6 k.
The number of integral pointsξ of norm less or equal tok is n(k, d) = (k +

1)d+1− kd+1.

Proof. Letm = infi(0, ξi),M = supi(0, ξi).
The possible values ofm arem = −k, . . . − 1,0.
(a) For all values except 0, one of thexi has valuem, and the others can take

any value betweenm andm + k. For eachm, the number of possibilities is equal
to S1 = [k + 1]d − kd.

(b) Whenm = 0, all x′i s are nonnegative, and the contribution isS2 = [k+ 1]d .

Adding up the contributions, we get

n(k, d) = k[(k + 1)d − kd ] + (k + 1)d = (k + 1)d+1− kd+1].
Going back to the proof of Lemma 3, choose a vectorξ with norm smaller than

k (strictly less thanp): this implies that the linear form defined byξ ξ̂ : (Z/pZ)d →
Z/pZ is surjective, and its kernel haspd−1 elements; the number of corresponding
lattices is

r(p, d) = pd−1− 1

p − 1
6 2pd−2.

We can choose at mostn(k, d) vectorsξ . Hence

g(p, d, k) 6 2[(k + 1)d+1− kd+1]pd−2 6 2(k + 1)d+1pd−2. (11)

3.2.

From Lemmas 2 and 3 we conclude that for larged andk, the condition

2(d + 1)(k + 1)dpd−2+ (p + d)
d

d! < pd−1 (12)

ensures the existence of a latticeM(y) of width greater thank, dimensiond, and
M(y) ⊂ (1/p)Zd.
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The following is well known.

LEMMA 4. Given any sequence of numbers(ad) going to infinity, there exists an
equivalent sequence(pd) of prime numbers.

Proof. Given ε strictly positive, we know from the prime number theorem
that ford large enough there exists a prime numberpd in the interval[(1− ε)ad ,
(1+ ε)ad ]. This implies| pd − ad |< εad for d large enough.

Choose nowα arbitrary (we will soon fix it) and a sequence(pd) of primes with
pd ∼ αd! and let us findα and a sequence(kd) such that

2(d + 1)(kd + 1)dpd−2
d < 1

2p
d−1
d , (13)

(pd + d)d
d! < 1

2p
d−1
d . (14)

These two conditions imply (12).
The condition (14) is satisfied for large enoughd if α < 1

2. Indeedpd+d ∼ αd!;
sinceα < 1

2.
Condition (14) follows if we can show that(1+ d/pd)d−1→ 1(d →∞). But

log(1+ d/p)d−1 6 (d − 1)d/p ∼ d2/αd! → 0.

Condition (13) becomes

kd + 1<

[
1

4(d + 1)
pd

]1/d+1

.

This last expression is equivalent, because of Stirling’s formula, tod/e. Hence,
if we choose any sequence of integral numbers(kd) with kd < αd and

0< α <
1

e
(15)

then (13) and (14) are satisfied for larged.

THEOREM.For anyα strictly less than1/e, there exists for sufficiently larged a
sequence of lattice-free simplices of dimensiond and widthwd , wd > αd.

Definingw(d) = supσ w(σ ) supremum taken over all lattice-free simplices of
dimensiond, then the previous Theorem amounts to

lim
d→∞

w(d)

d
> 1

e
.

Final Remark.The study above raises the hope of improving the bounds on the
maximal width, by introducing more general lattices generated by a finite number
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of rational vectors, and replacing the primep by powers in (7) (Note the study of
general lattices of such type in [Sh].) Unfortunately (and rather mysteriously), our
computations in these new cases give thesamebounds.
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