On the Width of Lattice-Free Simplices

JEAN-MICHEL KANTOR

Centre de Mathématiques de Jussieu, Université Paris 7, Tour 46 5e étage Boite 247, 4, place
Jussieu, F-75252 Paris Cedex 05, France.e-mail: kantor@math.jussieu.fr
(Received: 17 September 1997; accepted in final form: 17 April 1998)

Abstract

We consider lattice-free simplices, simplices with vertices on the lattice \mathbb{Z}^{d} in \mathbb{R}^{d} and no other integral points; we show, by elementary methods, that there exist such simplices in dimension d with width (see Definition 2) going to infinity with d.

Key words: Lattice, lattice-free (empty) polytopes, polytopes, simplices, width.

1. Introduction

Integral polytopes (see [$\mathrm{Br}, \mathrm{K}]$ for the basic definitions) are of interest in combinatorics, linear programming, algebraic geometry-toric varieties [D,O], number theory [K-L.].

We study here lattice-free simplices, i.e., simplices intersecting the lattice only at their vertices.

A natural question is to measure the 'flatness' of these polytopes, with respect to integral dual vectors. This (arithmetical) notion plays a crucial role in:

- the classification (up to affine unimodular maps) of lattice-free simplices in dimension 3 (see [O,MMM]) and
- the construction of a polynomial-time algorithm for integral linear programming (flatness permits induction on the dimension [K-L]).

Unfortunately, there were no known examples (in any dimension) of lattice-free polytopes with width greater than 2 . We prove here the following theorem:

THEOREM. Given any positive number α strictly inferior to $1 / e$, for d large enough, there exists a lattice-free simplex of dimension d and width superior to αd.

The proof is nonconstructive and involves replacing the search for lattice-free simplices in \mathbb{Z}^{d} by the search for 'lattice-free lattices' containing \mathbb{Z}^{d} ('turning the problem inside out', see Section 1.3), specializing in the next step to lattices of a simple kind, depending on a prime number p. The existence of lattice-free simplices of large width is then deduced by elementary computations, through a
sufficient inequality involving the dimension d, the width k and the prime p (see (12)).

2. Notations

\mathcal{P}_{d} : The set of integral polytopes in \mathbb{R}^{d}; if P is such a polytope, P is a convex compact set, the set $\operatorname{Vert}(P)$ of vertices of P is a subset of \mathbb{Z}^{d}.
\wp_{d} : The set of integral simplices in \mathbb{R}^{d}. In particular, σ_{d} will denote the canonical simplex with vertices at the origin and $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)-1$ at the i th coordinate
G_{d} : The group of affine unimodular maps $G_{d}=\mathbb{Z}^{d} \rtimes \operatorname{GL}(d, \mathbb{Z})$ acts on \mathbb{R}^{d} (preserving $\left.\mathbb{Z}^{d}\right), \mathcal{P}_{d}$, and \wp_{d}. A d-lattice M is a lattice with $\mathbb{Z}^{d} \subset M \subset(1 / m) \mathbb{Z}^{d}$ for some $m \in \mathbb{N}^{\star}$.

2.1. LATTICE-FREE SIMPLICES AND THEIR WIDTH

Recall the following definition [K].
DEFINITION 1. An integral polytope P in \mathbb{R}^{d} is lattice-free if $P \cap \mathbb{Z}^{d}=\operatorname{Vert}(P)$.
DEFINITION 2. Given an integral nonzero vector u in $\left(\mathbb{Z}^{d}\right)^{\star}$, the u-width of the polytope P of \mathscr{P}_{d} is defined by

$$
\begin{equation*}
w_{u}(P)=\max _{x, y \in P}\langle u, x-y\rangle \tag{1}
\end{equation*}
$$

The width of P is

$$
\begin{equation*}
w(P)=\min _{\substack{u \in\left(\mathbb{Z}^{d}\right)^{\star} \\ u \neq}} w_{u}(P) \tag{2}
\end{equation*}
$$

Remark. The width is the minimal length of all integral projections $u(P)$ for nonzero u.

2.2. KNOWN RESULTS ON THE WIDTH OF LATTICE-FREE POLYTOPES IN DIMENSION d

$d=2$: Lattice-free simplices are all integral triangles of area $\frac{1}{2}$; they are equivalent to σ_{2}. This is elementary.
$d=3$: Lattice-free polytopes have width one; in the case of simplices, this result has various proofs and applications (it is sometimes known as the 'terminal lemma', see [F, MS, O, Wh]).
$d=4$: All lattice-free simplices have at least one basic facet (face with codimension one) [W] - this fact is not true in higher dimensions.

EXAMPLES. There exist some interesting examples:

- L. Schlafli's polytope, studied by Coxeter [C];
- A recent example given by H. Scarf [private communication]: the simplex in dimension 5 with vertices, the first five unit vectors e_{i} and for last vertex ($23,29,31,43,57$), has width 3 .
- We have found with the help of a computer, some examples of widths 2,3 and 4 in dimensions 4 and 5.

No other results seem to be known, apart from the following asymptotic result.
PROPOSITION 1. There exists a universal constant C such that for any lattice-free polytope of dimension d

$$
\begin{equation*}
w(P) \leqslant C d^{2} \tag{3}
\end{equation*}
$$

Proof. The 'Flatness Theorem' of [K-L] asserts that there exists C such that any convex compact set K in \mathbb{R}^{d} with $K \cap \mathbb{Z}^{d}=\phi$ satisfies

$$
\begin{equation*}
w(K) \leqslant C d^{2} \tag{4}
\end{equation*}
$$

where w is defined as in 2.2.
If P is any lattice-free polytope, take a point a in the relative interior of P and apply the previous Flatness Theorem to the homothetic \widetilde{P} of P with respect to a and fixed ratio α strictly less than one. Then formula (4) shows that the width of P, which is proportional to the width of \widetilde{P}, is also bounded by a function of type (6).

Remark. Recent results of $[\mathrm{Ba}]$ show that (3) is true with a right-hand side proportional to $d \log d$.

2.3. TURNING THE WIDTH INSIDE OUT

Let us define a new norm on \mathbb{R}^{d} : If $\xi=\left(\xi_{i}\right)$ is a vector in \mathbb{R}^{d}, take $\|\xi\|=$ $\max _{i}\left(0, \xi_{i}\right)-\min _{i}\left(0, \xi_{i}\right)$.

DEFINITION 3. Let

$$
\begin{equation*}
w(M)=\min _{\substack{\xi \in \mathbb{M}^{\star} \\ \xi \neq 0}}\|\xi\| \tag{5}
\end{equation*}
$$

It is easy to show that the existence of an integral lattice-free simplex of dimension d, volume v / d ! and width at least k is equivalent with the existence of a d-lattice M, containing \mathbb{Z}^{d}, with

$$
\begin{equation*}
M \cap \sigma_{d}=\operatorname{Vert} \sigma_{d}, \quad w(M) \geqslant k, \quad \operatorname{det}(M)=\frac{1}{v} \tag{6}
\end{equation*}
$$

3. In Search of Lattice-Free Simplices (Asymptotically)

3.1.

We restrict our study to d-lattices given by

$$
\begin{equation*}
y \in \mathbb{Z}^{d}, \quad M(y)=\mathbb{Z}^{d}+\mathbb{Z} \frac{1}{p} y, \quad M(y) \neq \mathbb{Z}^{d} \tag{7}
\end{equation*}
$$

where p is a prime number; this lattice clearly depends only on the class of y in $(\mathbb{Z} / p \mathbb{Z})^{d}$.

LEMMA 1. The set of lattices M (for a fixed p) can be identified with the space of lines in $(\mathbb{Z} / p \mathbb{Z})^{d}$.

In particular, the number of such lattices is

$$
\begin{equation*}
m(d, p)=\frac{p^{d}-1}{p-1} \tag{8}
\end{equation*}
$$

Let $f(d, p)$ be the number of lattices M such as (7) satisfying

$$
\begin{equation*}
M \cap \check{\sigma}_{d} \neq \phi \tag{9}
\end{equation*}
$$

where $\check{\sigma}_{d}=\sigma_{d} \backslash \operatorname{Vert}\left(\sigma_{d}\right)$.
(The lattice M intersects σ_{d} in other points than the vertices.)
LEMMA 2. The number $f(d, p)$ satisfies

$$
f(d, p) \leqslant \frac{(p+1) \cdots(p+d)}{d!}-(d+1)
$$

Proof. Suppose x is a point in $\mathbb{M}(y)$ belonging to $\check{\sigma}_{d}$. Then it can be written as $x=z+m y / p$ with m nondivisible by p.

Writing $m y / p$ as the sum of an integral vector and a remainder, we get

$$
x=z+z^{\prime}+\frac{\tilde{y}}{p}, \quad 0 \leqslant \tilde{y}_{i}<p, \quad \tilde{y}_{i} \in \mathbb{N}, \quad x \in \check{\sigma}_{d} .
$$

This implies

$$
z+z^{\prime}=0, \quad x=\frac{\tilde{y}}{p}, \quad \tilde{y} \in p \check{\sigma}_{d} \cap \mathbb{Z}^{d}
$$

The vectors $y, m y, \tilde{y}$ define the same line in $(\mathbb{Z} / p \mathbb{Z})^{d}$. This shows that the number of lattices $M(y)$ satisfying (9) is less than the number of points in $p \check{\sigma}_{d} \cap \mathbb{Z}^{d}$, given by the right-hand side of Lemma 2 [E$]$.

Now let $g(d, p, k)$ be the number of lattices $M(y)$, as in (7), with $w(M(y)) \leqslant k$.

LEMMA 3. The number $g(d, p, k)$ satisfies

$$
\begin{equation*}
g(p, d, k) \leqslant 2\left[(k+1)^{d+1}-k^{d+1}\right] p^{d-2} \tag{10}
\end{equation*}
$$

Proof. The assumption on the lattice means the existence of a nonzero vector ξ in \mathbb{Z}^{d} with

$$
y=\left(y_{1}, \ldots y_{d}\right), \quad \xi=\left(\xi_{1}, \ldots \xi_{d}\right), \quad \sum \xi_{i} y_{i} \in p \mathbb{Z}
$$

and we have $\|\xi\| \leqslant k \Rightarrow\|\xi\|_{\infty} \leqslant k$.
The number of integral points ξ of norm less or equal to k is $n(k, d)=(k+$ 1) ${ }^{d+1}-k^{d+1}$.

Proof. Let $m=\inf _{i}\left(0, \xi_{i}\right), M=\sup _{i}\left(0, \xi_{i}\right)$.
The possible values of m are $m=-k, \ldots-1,0$.
(a) For all values except 0 , one of the x_{i} has value m, and the others can take any value between m and $m+k$. For each m, the number of possibilities is equal to $S_{1}=[k+1]^{d}-k^{d}$.
(b) When $m=0$, all $x_{i}^{\prime} s$ are nonnegative, and the contribution is $S_{2}=[k+1]^{d}$.

Adding up the contributions, we get

$$
\left.n(k, d)=k\left[(k+1)^{d}-k^{d}\right]+(k+1)^{d}=(k+1)^{d+1}-k^{d+1}\right]
$$

Going back to the proof of Lemma 3, choose a vector ξ with norm smaller than k (strictly less than p): this implies that the linear form defined by $\xi \hat{\xi}:(\mathbb{Z} / p \mathbb{Z})^{d} \rightarrow$ $\mathbb{Z} / p \mathbb{Z}$ is surjective, and its kernel has p^{d-1} elements; the number of corresponding lattices is

$$
r(p, d)=\frac{p^{d-1}-1}{p-1} \leqslant 2 p^{d-2}
$$

We can choose at most $n(k, d)$ vectors ξ. Hence

$$
\begin{equation*}
g(p, d, k) \leqslant 2\left[(k+1)^{d+1}-k^{d+1}\right] p^{d-2} \leqslant 2(k+1)^{d+1} p^{d-2} \tag{11}
\end{equation*}
$$

3.2.

From Lemmas 2 and 3 we conclude that for large d and k, the condition

$$
\begin{equation*}
2(d+1)(k+1)^{d} p^{d-2}+\frac{(p+d)^{d}}{d!}<p^{d-1} \tag{12}
\end{equation*}
$$

ensures the existence of a lattice $M(y)$ of width greater than k, dimension d, and $M(y) \subset(1 / p) \mathbb{Z}^{d}$.

The following is well known.
LEMMA 4. Given any sequence of numbers $\left(a_{d}\right)$ going to infinity, there exists an equivalent sequence $\left(p_{d}\right)$ of prime numbers.

Proof. Given ε strictly positive, we know from the prime number theorem that for d large enough there exists a prime number p_{d} in the interval $\left[(1-\varepsilon) a_{d}\right.$, $\left.(1+\varepsilon) a_{d}\right]$. This implies $\left|p_{d}-a_{d}\right|<\varepsilon a_{d}$ for d large enough.

Choose now α arbitrary (we will soon fix it) and a sequence (p_{d}) of primes with $p_{d} \sim \alpha d!$ and let us find α and a sequence $\left(k_{d}\right)$ such that

$$
\begin{align*}
& 2(d+1)\left(k_{d}+1\right)^{d} p_{d}^{d-2}<\frac{1}{2} p_{d}^{d-1} \tag{13}\\
& \frac{\left(p_{d}+d\right)^{d}}{d!}<\frac{1}{2} p_{d}^{d-1} \tag{14}
\end{align*}
$$

These two conditions imply (12).
The condition (14) is satisfied for large enough d if $\alpha<\frac{1}{2}$. Indeed $p_{d}+d \sim \alpha d$!; since $\alpha<\frac{1}{2}$.

Condition (14) follows if we can show that $\left(1+d / p_{d}\right)^{d-1} \rightarrow 1(d \rightarrow \infty)$. But

$$
\log (1+d / p)^{d-1} \leqslant(d-1) d / p \sim d^{2} / \alpha d!\rightarrow 0
$$

Condition (13) becomes

$$
k_{d}+1<\left[\frac{1}{4(d+1)} p_{d}\right]^{1 / d+1}
$$

This last expression is equivalent, because of Stirling's formula, to d / e. Hence, if we choose any sequence of integral numbers $\left(k_{d}\right)$ with $k_{d}<\alpha d$ and

$$
\begin{equation*}
0<\alpha<\frac{1}{e} \tag{15}
\end{equation*}
$$

then (13) and (14) are satisfied for large d.
THEOREM. For any α strictly less than $1 / e$, there exists for sufficiently large d a sequence of lattice-free simplices of dimension d and width $w_{d}, w_{d}>\alpha d$.

Defining $w(d)=\sup _{\sigma} w(\sigma)$ supremum taken over all lattice-free simplices of dimension d, then the previous Theorem amounts to

$$
\lim _{d \rightarrow \infty} \frac{w(d)}{d} \geqslant \frac{1}{e}
$$

Final Remark. The study above raises the hope of improving the bounds on the maximal width, by introducing more general lattices generated by a finite number
of rational vectors, and replacing the prime p by powers in (7) (Note the study of general lattices of such type in [Sh].) Unfortunately (and rather mysteriously), our computations in these new cases give the same bounds.

Acknowledgements

The author thanks with pleasure H. Lenstra for crucial suggestions and V. Guillemin and I. Bernstein for comments.

References

[Ba] Banaszczyk, W., Litvak, A. E., Pajor, A. and Szarek, S. J.: The Flatness Theorem for Non-symmetric Convex Bodies via the Local Theory of Banach Spaces (to appear).
[Br] Brion, M.: Points entiers dans les polytopes convexes, expose No. 780, Séminaire Bourbaki, mars 1994.
[C] Coxeter, H.S.M.: The polytope 22 whose 27 vertices correspond to the lines on the generic cubic surface, Amer. J. Math. 62 (1940), 457-486.
[D] Dais, D.: Enumerative combinatorics of invariants of certain complex threefolds with trivial canonical bundle, Dissertation, Bonn, 1994.
[E] Euler, L.: Introduction in Analysis Infinitorum, Vol. 1, Ch. 16 (1748), 253-257.
[F] Frumkin, H.: Description of Elementary Three-dimensional Polyhedra, Conference on statistical and discrete analysis, Alma Ata, 1981 (Russian).
[K] Kantor, J.M.: Triangulations of integral polytopes and Ehrhart polynomials, Beiträge Algebra Geom. 39(1) (1998), 205-218.
[KL] Kannan, R. and Lovasz, L.: Covering minima and lattice-point free convex bodies, Ann. of Math. 128 (1988), 577-602.
[MMM] Mori, K., Morrison, D. and Morrison, I.: On four-dimensional terminal quotient singularities, Math. Comp. 51(184) (1988), 769-786.
[MS] Morrison, D. and Stevens, G.: Terminal quotient singularities in dimension three and four, Proc. Amer. Math. Soc. 90(1) (1984), 15-20.
[O] Oda, T.: Convex Bodies and Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), SpringerVerlag, 1988.
[S] Scarf, H. E.: Integral polyhedra in three space, Math. Oper. Res. 10 (1985), 403-438.
[Sh] Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971.
[W] Wessels.: Die Sätze von White, Diplomarbeït, Bochum, 1989.
[Wh] White, G. K.: Lattice tetrahedra, Canad. J. Math. 16 (1961), 389-396.

