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LOCAL DENSITIES OF QUADRATIC FORMS
AND FOURIER COEFFICIENTS OF
EISENSTEIN SERIES

YOSHIYUKI KITAOKA

Local densities of quadratic forms are important invariants in the
theory of quadratic forms and they appear in Fourier coefficients of
Eisenstein series. But it is not easy to evaluate them. To study their
properties, it is desirable to look for relations among them, and it is known
that there are many relations [3], but they are not concise. We consider
a different kind of relations here and improve a result of Zharkovskaja
[8, 9] in the case of Eisenstein series as an application.

Let p be a prime number and Z, the ring of p-adic integers. We
define local densities as follows: Put

H, - L [o 1,

= ](1k = identity matrix of degree k).
211, 0

For a half-integral regular matrix T of degree n (< 2k) we define (T, H,,)
by

lim (p*)**h2-224{C e M, (Z,[p'Z,)p "(H,[C] — T): half-integral} .

t—oo

By definition T is half-integral if and only if 27T is a symmetric and
integral matrix whose diagonal entries are in 2Z,.
Our aim is to prove

THEOREM 1. Lel T be a half-integral regular mairix of degree n(< 2k).
Then the formal power series

;} ap(prTy HZIc)xr
is a rational function in x with denominator

H (1 __p(n—])(n+j+l—2k)/2x)

0<j=n
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whose numerator has degree at most n. If, in addition p~'T is not half-
integral, then the degree of the numerator does not exceed n — 1.

TueoreM 2. Let o (T) be the Fourier coefficient of Eisenstein series
>e.n)lCZ + D\* of degree n, weight k (k=0mod 2, k> n + 1). Then the
formal power series

2 alpr Dz

is a rational function for any positive definite half-integral T with denomi-
nator

(1 —_ pfk~j(j+1)/2x) s

Isjsn

and the degree of the numerator is at most n, and at most n — 1 if, in addi-
tion p~'T is not half-integral.

Remark. It is known [8, 9] that the (not necessarily reduced) denomi-
nator of the formal power series in Theorem 2 is given by

_ _ 1§§gr(k—ij)
l-x > (@-p x).

1i1<r<irsn
Lemma 1. For a half-integral matrix T of degree n we put

b(s, T) = 31 o(R)*e(o(TR)),

where R runs over symmetric matrices in M,(Q,/Z,) and v(R) is a power of
p equal to the product of denominators of elementary divisors of R, and ¢
is the trace and e(z) means exp (2zi(z mod 1)) for z€ Q,. If T is regular and
k is a natural number with k = n/2, then we have b(k, T) = a (T, H,,).

Proof. Let T be a half-integral regular matrix of degree n. It is known
[4,7] that b(s, T) is absolutely convergent for s > n + 1 and a polynomial
in p-°, and b(k, T) = a,(— T, H,,) for a sufficiently large integer k. The
property that a,(— T, H,,) is a polynomial comes from Lemmas 8,9 in [4].
Since Lemma 9 is valid for any integer k > n/2, the polynomial in p~*
given by Lemmas 8, 9 which is equal to a,(— T, H,,) for a sufficiently large
integer k gives also a,(— T, H,,) for any integer k= n/2. Thus we have
bk, T) = bk, — T) = a(T, H,,) for an integer £ =>n/2. N, in Lemma 9
and Theorem 2 in [4] should be a maximal subspace which is totally
singular and splits V.
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LemMA 2. For a half-integral matrix T of degree n and s > n + 1, we

have
] . Ain+1—i—s)
[ (@ —p=)bs, T) = X j(2 T)p = .
0<isn~1 &
where A ={2=@, -, 204+ <2, L €Z) and

For (t,;) = T[U 1,

ja, 1T = ﬂ,{UG ua\u Pt pH|2t, for i <]} '

Here we put 1 = GL,(Z,) and (2) = 1L N 2(2)~'Ux(2) (X(2) = diag (p*, - - -, p')).
Proof. This is nothing but (2.8) in [2].
We put, for 0<k<h<n

Akz{zz(zh...,zn)e/l =0 if iék,}’

A2>0 if i>k
Ao ={edjr, =1 if R<i<h 2,=22 if i>h}.
Then it is easy to see

A= U 4, (disjoint), 4, = | 4, , (disjoint) .
0=k=n k<h<

Shsn

For A= (4, ---,4,) € A we define 2 — 1 by (y,, - - -, ) With g, = max(0, 2,—1).
Then the mapping 21— 2 — 1 is clearly bijective from 4, , on 4,.
LemMmA 3. Let A€ A,,. Then U2 — 1) DUQA) and [U2 — 1): U] =
D" O [iiiziza (07" = D) [Tigiza-x (7= 1)™" hold. Here [], means 1.
Proof. Let U= (u;;)ell. Uel(d) if and only if p¥~*u,, for i <j.
Hence we have only to prove p; — pu, < 2, — 4, for i <j, g = (s, -+ tta)
=1 —1 to show (2 — 1) D U(A). For i <j, we have

= A= =D+ =1 fizk+1,

Zj——zi—(/’e]'—/‘ti): =X —Q=D+ 24 ifi<k<j,
=0.

Thus we have U(1 — 1) D U(1). By virtue of Lemma 6 in [1] we know

— 3 An—2i+1)
[u: u(l)] =p lstzn ‘Pn(p—l)(SDkl(p“l)' : '@k;(p—l))_l )
Where 907<p—-1) = nlgigr (p—-z - 1) and A= (2;9 ] 2{» Tty 22, ] 2;) With 2{
R —— [ —

k, k,
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< A4 < --- <. Hence we have, for 1¢ 4,,
U@ — 1): N@] = [U: W@YU: 1@ — 1)]

— ¥ (n—2i+1)
=p = (P e 07) o (P
=pem [l (p =1 JI ('—=D7".

k+1sish 1Sish—-k

LemMma 4. j(4, pT) = [UQ — 1): UW]j(2 — 1, T) holds for a half-integral

matrix T and e A.

Proof. Put 4= 2—1. Then we have
[U(): WD, T)

— [(: U@ {Ue ugwm

= H{Ue U@\U|For (¢,) = TIU", p*|t,, pr|2t,, for i <j}.

For (¢,;)) = T[U 1, }
p*it,;, p*2t,; for i <j

Since yg; =0 or 2, — 1 according to 2, = 0 or 2, = 1, the conditions p*it,,
p*|2t;, are equal to p*|pt,, p*2pt,, for i <j. Thus we complete the proof.

Combining Lemmas 3,4 we have
Lemma 5. If 2¢ 4, ,, then we have
](29 pT) - C(k, h’)](2 - 1’ T))
where c(k, h) = p* P Hk-«lgigh(p—i -1 ngign-k(p_i — DL
For a half-integral matrix T of degree n we denote by f(x;k, h) =
f(x;k,h; TV(0 <k < h < n) a formal power series

] Ai(n+1—i—s) .
" 2, pT)x .

Z( Z plgzg
720 A€ 4k 0
Coefficients of x” are absolutely convergent if s > n 4 1 by Lemma 2. We
put
f@) =flx; T) = >, flx;k h)
- 0=ign-1 @ —p" 2;—‘_:, b(s,pT)x" .

Since b(s, p’T) is rational in p~* [4], we have only to prove the assertion
for f(x) similar to Theorem 1 instead of > ,.,a,(p'T, H,)x" by virtue of

Lemma 1.

Lemma 6. For 0 < k< h<n we have
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5 An+1—i—s),

flik by = 33 pierer i, T)
+ c(k, R)p™ -0 rimkmr 57 s b, x .
hsfsn

Proof. By definition,

flx; Ry R) = 35 20 pEaei=i9j(2, prT)x”

720 2€ 4,0

— Z p}:)i(n+1—i—s)j(2, T)

i€dgsn
-+ Z Z pZZi(n+1-i—s)j(l’ p7+1T)xr+1
720 A€ 45,0
=] Z pzlz‘(‘ni'l—i—s)j(z’ T)
A€ Ag;n
+ c(ky h) Z Z pzli(n"l"i‘s)j(l —_ 1’ p?‘j”)xr+l .

720 265y

Since the mapping 21— 1 — 1 is bijective from 4, , to 4, and > A(n + 1
—i—8) =hun(n+1—-i—8)+ X pun+1—-i—9 (p=2-1), we
complete the proof.

Lemma 7. For 0 < a < n, we have

[T @ — pr-dm+ixi=zory) f(x) = (polynomial in x of degree a — 1) + x(a)x®
0£j=a
+x 3 Ala, B)f(x; kR,

+1=kshEn

where A(a, k) is independent of h and r(a) satisfies

Ha+ D)= 3 Ala, ) 3 pRero0jo,T)

a+lskshsn
(m-a-1)(n+2+a-25)/2
—D ) ) ’C(a) ’

£(0) = f(0).
Proof. We use the induction on a.

(1 _— pn(n+1—2s)/‘zx)f(x)
= f(x) — p" 17 xf(x)

=f0) +x 3 {c(k, R)p-riE20r 50 f(xs by f) — R (2 ky h)}
0Sk<h<n hR<T=n

=f(0) + x Z f(x, k, h){ Z C(f, k)p(n—f)(n+1-f—2.s')/2 __p'ﬂ.(n+1—2s)/2}
0<k<hsn 0<f<k

=fO0) +x 5 kW 3 cf, Hpe =0y,
1<k<hsn 1=7=sk

For A0, k) = 3, < c(f, R)pn-mt=-7-2 " the first step has been proved.
For0<a<n—1,
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(1 — p(n—j)(n+j+l—23)/2x)f(x)

0sysa+1

= (1 — pr-e-hir+zte-zyy {(polynomial in x of degree a — 1)
+ w@)x® + x> A(a, R)f(x; k, h)}

a+1sksh<n

= (polynomial in x of degree a)
+ xa,+1{ Z A(a, k)f(x; k, h) — K(a)p(n—a—l)(n+2+a—2s)/2}

a+l1=k=hs=n

- xa+2p(n—a—1)(n+2+a—23)/2 Z A(a, k)f(x; k’ h) .

a+lskshsn

By Lemma 6, we have

>, Ala, B)f(x; k, h)

a+1Sk=hsn

— 3 A@R) 3 pRertoojo, 1)

a+1Zk=h A€ Apyn

+ A, B)e(k, )"+ 508 5 f(x; b, f)x.

a+l1skshsn h=fs=n

A

=
A

Thus we have

1 — pr-hinstri=iniy) f(x) = (polynomial in x of degree a)

0<j7=<a+1
+ xtz+1{ Z A(a, k) Z pZ/Ii(n+l—i—s)j(2, T) _ Ic(a)p(n—a—l)(n+2+a—Zs)/Z}
a+1Skshsn A€ dgsn
+ xa+2 Z {A(a, k)c(k’ h)p(n—k)(n+l—k-—23)/2_ Z f(x; h’ f)
a+1<k<h<n hEFEn

— p(n-a-—l)(n+2+a—25)/2A(a, k)f(x’ k, h)} .
The last term is equal to

x®*r > flxs k{30 Ala, fe(f, R)prm i mmon
a+1Sf<k

a+1Sk=h=n

____p(n—a—l)(n+2+a—25)/2A(a, k)}
=xt S fl kBT A felf, Rpe e
a+l=f<k

a+25k<hEn

_ p(n_a_l)(n+2+a—28)/2A(a, k)} .
Putting

A(a + 1, k) —_ Z A(a’ f)c(f’ k)p(n—f)(n+l—f~23)/2 _ p(n—a—l)(n+2+a—2s)/2A(a’ k) s
a+1Sf<k

s

we complete the proof.

From Lemma 7 follows that []ic;<,(1 — p"=®+i+1=2x%)f(x) is a poly-
nomial of degree n whose leading coefficient is #(n). It remains for us to
prove Theorem 1 that k(n) = 0 if p~'T is not half-integral.

LemMA 8. Put g(f) = ptn-/m+/+1-272
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D= T =D _[ =D

Then we have
AO.R) = 3 g(ND(,R),

Ala + 1, k) = Z( A(a, Ne(HD(f, k) — g(a + 1)A(a, k)
e for0<a<n-—1,

)= 5 JRB D (T (—£0DAGH + T (-0},

Sksh=n 0=t JEn

where

J(k, h) = 3 pEerittj, T).

A€ Aksn

Proof. The first two are nothing but their definition. To prove the
last we show the following inductively:

a) = Z(H (=80, 3 AG Bk h)
T (-8 5 J<k 2

Here we put 3, = 0. Then it is clearly true fora =0. Let 0<ae<n—1;
then by Lemma 7

He+D = 3 Al Rk - g+ Dra)
- A(a, R)J(k, h)
—ga+ D T (T_(—g0) 3 AG DIk

+ I (—g)_T Ik )

= 2Tl RO 5 GBI
I (~g) % IR

Applying it to a = n, we prove Lemma 8.

If p~'T is not half-integral, then J(0, #) = 0 follows from j(2, T) = 0 for
Aed,, since 2, =1 for 1€ 4,,. Hence, to complete the proof of Theorem
1, we have only to prove

LEMMA 9. k(n) = D o<n<nJ(0, B) [Ti<i<n (— 8()))), more minutely

2l (—gNAG R + 1 (—g(i) =0  for1<k=n.

0<isk-11¢ =n 1sj=s

This follows directly from the following
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Lemma 10. Let D(a, b), g(a) be independent variables for 1 < a < b and
put D(a,a) =1 for a > 1. Define A(a, b) for 0 < a < b inductively by

AQ,m) = 3 &PD(fim),
. A Pe(hD(f,m) — g(a + DA, m)

for0<a<m-—1.

=
Q
+
K
2
I

Then we have, for 0 <k <m —1

Fkym) = > ( I (=g(UNAGE+ D) +

09k 1+257sm

Proof. We use the induction on m. Since F(0,1) = A(0,1) —g(1) =0,
the first step is true. Suppose m>2and F(k,n) =0for 0<k<n-—-1<
m— 2. If k<m — 2, then we have

11 (—8G) =0.

=

Fk,m)= —gm)F(k,m — 1) =0.
It remains for us to prove F(m — 1,m) = 0 for m > 2. We put
F(m) =F(m — 1, m)
= 2 (5 (—g(NAGm + A(m —1,m) + ] (—8&0)-

0<i=m-2 i+2Zj<m 1<5<m

We prove F(m) = 0 by showing that all coefficients of the polynomial F(m)
in g(m) vanish.

SuBLEMMA 1. A(a, b) does not contain g(m) for b < m, and A(a, m) is
a monic polynomial in g(m) of degree a 4 1, and F(m) is of degree at most
m.

Proof. The first assertion is easily proved by the induction on a. The
second is also proved by the induction on a: A(0, m) = > ;<. 8(f)D(f, m)
= Y crsm-18(F)D(f, m) + g(m) is a monic polynomial of degree one. For
0<a<m-— 2, we have

Ala +1,m) = a+I§Zf:§m A(a, Hg(f)D(f, m) — g(a + 1)A(a, m)
= 3 A@DEhDIf,m) + Ale, mg(m)

— g(a + DA(a, m).

By the inductive assumption and the first assertion, A(e + 1, m) is a monic
polynomial in g(m) of degree a + 2. Now the last assertion is clear.

SuBLEMMA 2. For 2 < g < m, the coefficient of g(m)? of the polynomial
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F(m) in g(m) vanishes.

Proof. Write A(a, m) = 3 ycica.1 P(i; @, m)g(m)', where h(i; a, m) does
not contain g(m). Then we have

h(a 4+ 1;a,m) = 1 and
h(@i; a +1,m) = h(@ — 1; a, m) — gla + Dh(i;a, m) fori>1,

by the definition of A(e, m) and the above sublemma. We complete the proof

of this sublemma by the induction on ¢ = m, m — 1, ---, 2. By Sublemma

1, the coefficient of g(m)™ is 0. Suppose that the coefficient of g(m)”

vanishes for r=q¢ + 1, ---,m(@2 < q < m — 1). The coeflicient of g(m)? is
- 2 I (—gig—1;i,m)+ h(g;m — 1, m)

0<iZm—-2 i+2<jsm~1
q—~1=i+1

=— I (—&ih— 2 I (—g(iMg —1;i,m)

gsjsm-1 g~1=1sm-2 1+25j5sm-~1

+ h(g;m —1,m).
For ¢ — 1<t < m — 2, we have

h(g;t+1,m) — 2 LI (= gUMMgq — 154, m) — Zgl (— &0

H@ - 136m) — gt 4 Dh(@; & m) — B — 13 6m)
— 0y (Tl (—gWMa—Liim— [ (=&l

g-1Si<t—1 §+25j<t+1 g<jst+1

= —gt+ D@t m— 3 (T (—giWhig—Liim)
- I (—&}

qsjs
Applying this to the coefficient of g(m)? fromt =m — 2tot =q — 1, it is
equal to

(—gm—1) - (— 8@ =0.
SuBLEMMA 3. The coefficient of g(m) of the polynomial F(m) vanishes.

Proof. The coefficient of g(m) is equal to
- 2 C I (= 8)rO;i,m) 4+ h(l;m — 1, m) — S (—8())).

0stEm—-2 {+25jSm-1

We show inductively

Miom = 3 ([ (-g@Dh0iim + JT (- g0).

0siga~-1 i+257<a

For a = 0, both sides are equal to 1. Suppose that the above formula is true
for a. Then
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h(l;a + 1, m)
= h(0; a, m) — gla + Dh(1; a, m)
=h0;ae,m) + 35 (] (= g(NhO; i, m) + I (=80()

0sisa-1 i+2£j<a+1 <j<a+1

= 2L (—ehiim + T (= £0).

0<isa i+25jZa+1
Thus the above formula is proved, and the case of a = m — 1 is what we
want.

Thus it has been proved that F(m) is a constant with respect to g(m)
and hence we have only to prove

F(m) =h(0;m —1,m) =0.

SUBLEMMA 4. For 0 < a < m — 1, we have

hO; a,m) = ( I] (—g@NAO;0,m) + > ( [l (—&gdNGQ),

1£i=a 0j<a~-1 j+25iga
where G(J) = 3,12 r5m-1 A0, E(F)D(f, m).
Proof. When a = 0, both sides are equal to A(0;0, m). By definition,
we have, for 0 <a<m — 2

hO;a+1,m)= > Ale, (D, m) — gla + Dh(0; a, m)

a+1<f=m~1

= G(a) — g(a + DA(0; a, m)

= G(a) + ( » (— g(@)H0; 0, m)
+ Ogj;_l( *221;“1 (— 8(NG()

=(_IT (=g@0;0,m) + > ( (= 8ONG() .

1sisa+1 0sjsa j+2=i=a

SUBLEMMA 5. A(0;m — 1, m) = 0.

Proof. h(0;0, m) = Zx;fgm-lg(f)D(fa m) and G(j) = Dirizrem-1 AQ, f)
-g()D(f, m) follow from their definition. By Sublemma 4 we have

h(O;m — 1, m)
=(_I_(—@) % _&ND{,m)

1£ism~-1 =

+5 O L (—g0) | ¥ AGNENDS,m)
I Cent T (Il (= 8OMAG, N}

0SJSf~-1 j+25i=m—

= Z LEODEm) 11 (—g@X T (= g(@)

s1s

+ 5 (1 (- 20DAGN)

1=
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= % &ODm T (—g@DF() =0,

1= 1 Zi<m

since F(f) =0 for 1 <f < m — 1 by the inductive assumption.
Thus we have completed the proof of Theorem 1.

Proof of Theorem 2. Let T be a half-integral positive definite matrix
of degree n. Then a(T) is given in [6] by

k-1/2

(___ 1)n}c/22’n(k—(n-1)/2) T

" Tk~(n+1)/2‘ T',HZ .
osisn-1 ['(k — 1/2) |7 l;[ o, )

For a unit ceZy, we have «, (T, H,) = bk, T) = b(k, ¢T) = a,(cT, Hy;).
Hence we have

T a(pT)x = const 3 a(p'T, Hy)(p™ "+,

which is a rational function in x whose denominator is

n (1 _ p(n—j)(n+1—2k+j)/2+'nk—(n+1)n/2x)
0sj=n

= I (= prsery),

0<jsn
Another assertion follows from the corresponding one in Theorem 1.

Remark. The formal power series similar to one in Theorem 1 for
any quadratic form instead of H,, seems to be rational.

REFERENCES

[1] A. N. Andrianov, Spherical functions for GL, over local fields, and summation
of Hecke series, Math. USSR Sbornik, 12 (1970), 429-452.

[2] G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der
Modulfunktion 2. Grades, Math. Ann., 137 (1959), 454-476.

[3] Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J., 92
(1983), 145-152.

[ 4] ——, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95
(1984), 73-84.
[ 5] ——, Fourier coefficients of Eisenstein series of degree 3, Proc. Japan Acad., 60

(1984), 259-261.

[ 6] H. Maafl, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys.
Medd. Danske Vid. Selsk., 34 (1964), no. 7.

[7] C. L. Siegel, On the theory of indefinite quadratic forms, Ann. Math. 45 (1944),
577-622.

[8] N. A. Zharkovskaja, The Siegel operator and Hecke operators, Functional anal.
Appl.,, 8 (1974), 113-120.

[9] ——, On the connection of the eigenvalues of Hecke operators and the Fourier

https://doi.org/10.1017/50027763000000647 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000647

160 YOSHIYUKI KITAOKA

coefficients of eigenfunctions for Siegel’s modular forms of genus n, Math. USSR
Shornik, 25 (1975), 549-557.

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan

https://doi.org/10.1017/50027763000000647 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000647



