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Abstract

The sufficient optimality conditions and duality results have recently been given
for the following generalised convex programming problem:

Minimise f(x), subject to g(x) < 0 , x £ Xo c R" ,

where the functions / and g satisfy

X'" °*\g(x)-g(a)-g'(a)r,(x,a)>0,

for some r\: Xo x Xo —> R" .
It is shown here that a relaxation defining the above generalised convexity leads

to a new class of multi-objective problems which preserves the sufficient optimality
and duality results in the scalar case, and avoids the major difficulty of verifying that
the inequality holds for the same function rj(., .). Further, this relaxation allows
one to treat certain nonlinear multi-objective fractional programming problems and
some other classes of nonlinear (composite) problems as special cases.

1. Introduction

Consider the constrained multi-objective optimisation problem

(VP) V-Minimise (/, ( * ) , . . . , fp(x)) subject to g(x) < 0,

where ft: Xo —> R and g: Xo —> Rm are differentiable functions and XQ is
an open set in R" . Note here that the symbol "V-Minimise" stands for vec-
tor minimisation. This is the problem of finding the set of weak minimum
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[13] for points (VP). When p = 1, the problem (VP) reduces to a scalar op-
timisation problem and it is denoted by (P). Convexity of the scalar problem
(P) is characterised by the inequalities

/ i W - / , ( « ) - / , ' ( « ) (x-a)>0

g(x)-g(a)-g'(a)(x-a)>0, Vx,aeX0.

Hanson [9] observed that the functional form (JC - a) here plays no role in
establishing the following two well-known properties in scalar convex pro-
gramming:

(S) Every feasible Kuhn-Tucker point is a global minimum.

(W) Weak duality holds between (P) and its associated dual problem.

Having this in mind, Hanson [9] considered problem (P) for which there
exists a function r\: Xo x XQ -> M." such that

/.<*>-/;<«>-/,<«>' ,<*.«)>o
g(x)-g(a)-g'(a)r,(x,a)>0

and showed that such problems (known now as invex problems [4, 5, 8]) also
possess properties (S) and (W). Since then, various generalisations of condi-
tions (I) to multi-objective problems and many properties of functions that
satisfy (I) have been established in the literature, e.g. [1, 5, 8, 10]. However,
the major difficulty is that the invex problems require the same function
rj(x, a) for the objective function and the constraints. This requirement
turns out to be a severe restriction in applications. Because of this restric-
tion, pseudolinear multi-objective problems [3] and certain nonlinear multi-
objective fractional programming problems require separate treatment as far
as optimality and duality properties are concerned.

In this paper we show how this situation can be improved and how the
properties (S) and (W) can be extended to hold for generalised invex multi-
objective problems and certain multi-objective fractional problems. To this
end, we modify the condition (I) in the next section as follows.

2. New classes of generalised convex vector functions

A vector function / : A^ —• Rp is said to be V-invex if there exist functions
H: Xox Xo -> R" and a . : I o x I o - » l + \ { 0 } such that for each x, a&XQ,
and for i = 1, 2, ... , p ,

ft{x) - ft(a) - a.(x, a)ft \a)n(x, a) > 0.
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When p = 1, the definition of V-invexity reduces to the notion of invexity
in the sense of Hanson [9] with r](x, a) = a , (x , a)t\{x, a). When p = 1
and r\{x, a) = x - a, the condition reduces to strong pseudo-convexity
condition (see [11, 2]). The problem (VP) is said to be V-invex if the vector
function (fy, ... , fp, g{, ... , gm) is V-invex. Equivalently, V-invexity of
(VP) means that there exist functions n: XQ x Xo —> R" and a ; , fij: XQ x
XQ —» R+ \ {0}, i=l,2,...,p,j=l,2,...,m such that

f f,{x) - fXa) - aAx, a)ft '(fl)if(jc, a) > 0
0 \gj(x)-gJ(a)-/lJ(x,a)g'j(a)r,(x,a)>0.

The invex [resp. convex] case corresponds of course to at(x, a) — 1, for
i = 1, 2, . . . ,/>, and y?y(x, a) = 1, for j = 1, 2, . . . , m [resp. ?/(x, a) =
x-a, and a.(x, a) = 1 = £ ; (x , a ) , for / = 1, 2, . . . , p, j = 1, 2, . . . , m].
When t]{x, a) = x - a and p = 1, the scalar problem (P) becomes the
strongly pseudo-convex programming problem [2]. Note also that linear frac-
tional multi-projective programs and pseudolinear multi-objective programs
[3] are V-invex problems. Moreover, invex multi-objective problems are nec-
essarily V-invex, but not conversely. For a simple example, consider

subject to 1 - x{ < 0, 1 - x2 < 0.

Then, it is easy to see that this problem satisfies the condition (VI) with
(*i{x,a) = a2/x2, ot2(x,a) = ajxx, £ , ( * , a) = 1, for = 1 , 2 , and
t]{x, a) = x - a; but clearly, the problem does not satisfy the invexity con-
dition with the same r\. It is also worth noting that the functions involved
in (VP) are invex, but (VP) is not necessarily invex.

It is known that invex problems can be constructed from convex problems
by certain nonlinear coordinate transformations, see [4, 5]. In the following
example, we see that V-invex functions (problems) can be formed from cer-
tain nonconvex functions (problems) [in particular, from convex-concave or
linear fractional functions (problems)] via coordinate transformations.

EXAMPLE 2.1. Consider the function / J : M " - » E P defined by

where fi\: R" —» R, i = 1, 2, . . . , p, are strongly pseudo-convex functions
with real positive functions at(x, a), <f>:Rn—>Rn is surjective with <f>'{a)
onto for each a e R" . Then, the function h is V-invex. To see this, let x,
a G R" , u = (j>{x), v = 4>{a). Then, by strong pseudo-convexity,

) = • / • ( « ) - / , ( « )

>ai(u,v)fi\v){u-v).
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Since <f>'(a) is onto, u — v = 4>'{a)t}{x, a) is solvable for some f/(x, a) e K" .
Hence,

fiMx)) - ftM) > <*,(u, v)fi'(v)c/>'(a)r,(x,a)
= ai(x,a)(fio(f>)'(a)t](x,a),

where at(x, a) = at{4>(x), </>(a)) > 0.

EXAMPLE 2.2. Consider the composite vector function h(x) = ^
. . . , f p ( F p ( x ) ) ) , w h e r e f o r e a c h i - 1 , 2 , ... , p , F { : Xo - » K i s c o n t i n u -
ously differentiate and pseudolinear with the positive proportional function
a ( ( . , . ) , and ft: R —• R is convex. Then, h is V-invex with r}{x, a) = x-a.
This follows from the following convex inequality and pseudolinear equality
conditions:

- Ft(a))

= fi'(Fi(a))ai(x,a)F'i(a)(x-a)

= ai(x,a)(fioFi)\a)(x-a).

For a simple numerical example of a composite vector function, consider

h{xx, x2)= (ex^ , *?~A , where X0 = {(Xl, x2) e R2|JC, >h ^2>l
V xi + X2 /

EXAMPLE 2.3. Consider the function

where each hi is pseudolinear on M." with proportional functions at(x, a),
i// is a differentiable mapping from R" onto R" such that y/'{a) issurjective
for each a e R " , and ft: R —»R convex for each i. Then p is V-invex. To
see this, let u = y/(x), v = y/(a). Then, by the pseudolinearity condition,
we get

hi{W{x))-hi{¥{a)) = hi{u)-hi{v)

= a((u, v)h\{v){u - v).

Since y/'{a) is onto, u—v = y/'(a)r}(x, a) is solvable for some TJ(X , a) e Rn .
Hence,

hiiw(x)) - ht{yf{a)) = at{u, v)h'i{v)^\a)ri(x, a)

= ai{x,a){hioy/)\a)Tj{x,a),

where a((x, a) = at{y/{x), y/(a)) > 0. Hence,
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We now show that the V-invexity is preserved under a smooth convex
transformation.

PROPOSITION 2.1. Let ^ : I - » I be differentiable and convex with positive
derivative everywhere; let h: XQ —> Rp be V-invex. Then, the function

hv{x) = {y{hx(x)),..., v{hp{x)), xeX0

is V-invex.

PROOF. Let x , a e XQ. Then, from the monotonicity of y and V-invexity
of h , we get

W{ht{x)) > VihiW + a^x^riiaMx, a))
> V(h,(a)) + v\hi(a))<*t(x > a)h\a)t]{x, a)

a((x, a){y/ o ht)'(a)ij(x, a).

Thus, hv{x) is V-invex.
The notions of pseudo-invexity and quasi-invexity for a scalar function

can now be extended to a vector function. A vector function / : XQ —• Ep

is said to be V-pseudo-invex if there exist functions ft: Xo x Xo —* Rp and
Pt: Xo x Xo -+ E+ \ {0} such that for each x , aeX0,

j^f-iaMx, a) > 0 => £>,(*, a)f,(x) > j^fifc, a)/^).
;=i /=i i=i

The vector function / is said to be V-quasi-invex if there exist functions
p: XoxXo->Rp and y.: XQxXQ^R+\ {0} such that for each x, aeX0,

!> , (* , a)ft{x) < 5>,.(x, a)ft{a) => Y,f'i(aMx> a) < °-
i=i i=i i=i

It is apparent from the condition (VI) that every V-invex function is V-
pseudo-invex and V-quasi-invex. Recall that a point a e l " is said to be a
(global) weak minimum of a vector function / : E" -» Ep if there exists no
xeR" f o r w h i c h f,(x) < f t ( a ) , i= I , 2 , . . . , p .

P R O P O S I T I O N 2 . 2 . Let f: R" -> R p be V-invex. Then a € R" is a (global)
weak minimum of f if and only if there exists 0 ^ T e R p , T > 0 ,

PROOF. (=*) Suppose that a is weak minimum for / . Then the following
linear system

x e K " , f.'(a)x<0, / = 1 ,2 , . . . , /> ,
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is inconsistent. Hence, the conclusion follows from the Gordan Alternative
Theorem [7].

(<*=) Assume that Ef=i T , / / ( a ) = 0, for some 0 / i e R ' , ti > 0 .
Suppose that a is not a weak minimum for / . Then there exists x0 e E."
such that fj(x0) < f^a), i = 1, 2,... , p. Since / is V-invex, there exist
a(.(x0, a) > 0, i = 1, 2, ... ,p, and rj(xQ, a) eRn such that

So, Ef=i(T,./a,.(j:0, a))(y.(xo-y;.(a)) < 0, and hence £*=1 V
0 . This is a contradiction.

REMARK 2.1. From Proposition 2.2 we see that for a V-invex vector func-
tion every critical point (i.e. /[(a) — 0, i = 1, 2, . . . , p) is a global weak
minimum.

3. Sufficiency and duality

In this section we extend the properties (S) and (W) for the multi-objective
V-invex problem.

THEOREM 3.1. Consider the multi-objective problem (VP). Suppose that
the Lagrange multiplier conditions that £^=1 T(/^(a) + 5Z"!] Ag'(a) = 0,
Ajgjia) = 0. T e Rp, T # 0, T > 0, A e Rm, A > 0, Ao/rf a/ a feasible
point a € XQ. If (T , / J , . . . , t p ^ ) is V-pseudo-invex with respect to n and
(Ajg,, . . . , kmgm) is V-quasi-invex with respect to n then a is a global weak
minimum point for (VP).

PROOF. Suppose that a is not a global minimum point. Then there ex-
ists feasible x0 e Xo such that fj{x0) < ft{a), i = 1, 2, . . . , p. So,
111=1 Pj(x0, «)T,y;(x0) < E?=, Pi(x0, a)xifi{a). Now by the V-pseudoinvexity
condition, we get Yfi=l T//j(a)^(x0, a) < 0. Since the Lagrangian condi-
tions hold at a,

From the V-quasi-invexity condition, we get

yj(xQ, a)Xjgj(x0)
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This is a contradiction, since

and
yj(x0, a) > 0, for j = 1, 2, ... , m.

Note that Theorem 3.1 holds if, in particular, the problem (VP) is V-invex.
In the scalar case Theorem 3.1 extends the corresponding result of Hanson
[9].

For the problem (VP), consider a corresponding dual problem

V-Maximise (/,(£),. . . , / ,(£))

(VD) subject to

X > 0 , T > 0 , xe = l, X j g j ( £ ) > 0 , j = 1,2, ... , m ,

where e = (I, ..., \). Note that the Lagrangian conditions in Theorem 3.1
hold for (VP) at a weak minimum point a under a constraint qualification
and they can equivalently be written as Y?i=\ T,/;(fl)+]Cj=i ^jg'j(a) = 0 > T ^
0, xe = 1, X > 0, Xjgj(a) = 0, j = 1, 2, ... , m, (see [13]). We now see
that appropriate duality results between (VP) and (VD) hold.

THEOREM 3.2 (Weak Duality). Consider the multi-objective problems (VP)
and (VD). Let x be feasible for (VP) and let (£, x, A) be feasible for
(VD). / / (T, , / , , . . . , xpfp) is V-pseudo-invex and (A,g,,... , Xmgm) is V-
quasi-invex with respect to the same n, then

(/,(*), • • • , fp(x)f - ( / , « ? ) , . - . , fpiQ)T i - int < .

PROOF. From the feasibility conditions,

*jgj(x) -Xjgj(Z) < 0 , f o r e a c h j = 1 , 2 , ... , m .

Since y.(x, £) is positive,

(=1

Hence, I ^ i ^ K M * , «) < 0, and so, £*=1 T,./;.(<?)M(X, £) > 0. The
conclusion now follows from the V-pseudo-invexity condition since xe = 1
and £ . ( x , O > 0 .

https://doi.org/10.1017/S0334270000007372 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007372


50 V. Jeyakumar and B. Mond [8]

THEOREM 3.3 (Strong Duality). Assume that a is a weak minimum of (VP)
and that a suitable constraint qualification is satisfied at a. Then there exist
( T , A ) such that (a,x,X) is feasible for (VD) and the objective functions of
(VP) and (VD) are equal at these points. If, also, for all feasible {t,,x, X),
( T , / , , . . . , xpfp) is V-pseudo-invex and (A,g,, ... , Xmgm) is V-quasi-invex,
then (a, r, A) is weak maximum for (VD).

PROOF. Since a is a weak minimum for (P) and a constraint qualification is
satisfied at a, from the Lagrangian conditions (see Theorem 3.1), there exists
(T , A) such that (a, T , A) is feasible for (VD). Clearly the values of (VP) and
(VD) are equal at a , since the objective functions for both problems are the
same. By the generalised V-invexity hypotheses, weak duality holds; hence
if (a, T, A) is not a weak optimum for (VD), there must exist {£,, r*, A*)
feasible for (VD), £, ^ a, such that

( / , « ) , . . . , / p ( « ) r - ( / , ( « ) , . . . , / p ( f l ) ) r € i n t < ,

contradicting weak duality.

4. Nonconvex multi-objective fractional programming

In this section we apply the results of the previous section to study frac-
tional nonconvex multi-objective problems.

Consider the fractional programming problem

V-Minimise (/?,{x)/ql(x), ..., pr{x)/qr(x))

subject to x e Xo, g(x) < 0.

where pt: Xo -* E , qr. Xo -* R and g: X0^Rm . We assume that pt(x) >
0, for each JC on the feasible set A = {x e X0\g(x) < 0} , q^x) > 0, for
each x e A. The problem (FI) is said to be a V-invex fractional problem if
the functions p, q and g satisfy

{ Pi(x)-Pi(a) > yt{x, a)/>,'(a)>/(;t, a)

Qi(x) ~ 9,-(fl) < ?t(x, a)q't(a)r](x, a)

gj(x) - gj(a) > Pj{x, a)g'j{a)ti{x, a),

with ft: Xo x XQ-> R" , yi, fir. XQxX0->R+\ {0} . The problem (FI) is
said to be a convex-concave fractional problem if pi is convex, qi is concave,
and g is convex.

T H E O R E M 4.1. Consider the V-invex fractional programming problem (FI) .
Let a e A. Assume that there exist (r, A) such that T > 0 , T ^ O , A > 0 ,
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£'=i hiPjQi)'^) + E7=IIjg'jia) = 0 and kjgj(a) = 0, j = 1, 2, ... , m.
Then, a is a global weak minimum for (FT).

PROOF. The conclusion will follow from Theorem 3.1 if we show that there
exists a,.: I o x ^ o - . l + \ {0} such that

x 6 A => {
I gj(x) - gj(a) > fij{x, a)g'j(a)T](x, a).

To see this, let x e A. Consider

/»,-(*)0,-(fl) -Pi(o)9i(x) = 9f.(fl)lp,.(x) - pt{a)\- p,(a)[g,(x) - ?,(«)]

> ^,(a)>',.(x, a)p!(fl)i;(x, fl)-p,(fl)y|.(jc, a)g('(a)f7(x, a)

= 7i(x, a)[9,.(a)pj(a) - /7,.(a)«,'(a)]f/(x, a ) ,

thus,

^(a) -/>,(a)tf,.(x) > y,(x, a)[^.(a)p,'(a) -p(.(a)^'(a)]^(x, a)

Now, dividing the inequality by qi{x)qi{a) > 0, we get

Defining a.: Xo x XQ -» R+ \ {0} by

we get for each x e A

It is worth noting that a convex-concave fractional problem is not an invex
problem, but it is a V-invex fractional programming problem with r\{x, a) —
(x - a), and so our sufficiency theorem holds for the problem. For a V-invex
multi-objective fractional programming problem (FI), the weak and strong
duality properties hold with the following dual problem

V-Maximise (p,«?)/*,«;), . . . , pr{Z)/q,(Z))

subject to J2 hWQd'W + E V>«) = 0, A, > 0,
1=1 7=1

T > 0 , xe = 1, Ijgjit) >0, j=l,...,m.
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We remark that V-invexity ideas can be used to establish duality theorems
with various other fractional programming dual problems (see [12]). Here,
we have stated sufficiency and duality results in the previous section.

5. Conclusions

We have shown that V-invex problems have the Lagrangian sufficiency,
weak duality, and global optimality properties, and that they cover many
classes of nonconvex problems which include certain nonconvex composite
problems and nonlinear fractional programming problems. It can also be
seen that the V-invexity condition allows one to treat problems with certain
invex functions such as strongly pseudo-convex functions and linear or affine
functions that cannot be handled by the usual invexity conditions (see exam-
ples in Section 2). It is also worth pointing out that the methods of proof
presented here extend to nonsmooth problems and various other kinds of
fractional programming problems with appropriate modifications. Duality
results for multi-objective fractional programming problems with properly
efficient points and efficient points will be discussed in a forthcoming paper.
This is dedicated to Bruce Craven on his 60th birthday.
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