
Appendix A

Conventions and notation

The conventions we use in Parts I and II are slightly different. In Part I presenting
mainly a conceptual introduction to the subject of supersymmetric solitons we
choose the so-called Minkowski notation. Here our notation is very close (but not
identical!) to that of Bagger and Wess [40]. The main distinction is the conventional
choice of the metric tensor gμν = diag(+ − −−) as opposed to the diag(− + ++)
version of Bagger and Wess. Both the spinorial and vectorial indices will be denoted
by Greek letters. To differentiate between them we will use the letters from the
beginning of the alphabet for the spinorial indices, e.g. α, β and so on, reserving
those from the end of the alphabet (e.g. μ, ν, etc.) for the vectorial indices.

Those readers who venture to delve into Part II will have to switch to the so-called
Euclidean notation which is more convenient for technical studies. The distinctions
between these two notations are summarized in Section A.7.

A.1 Two-dimensional gamma matrices

In two dimensions we choose the gamma matrices as follows

γ 0 = γ t = σ2, γ 1 = γ z = iσ1, γ 5 ≡ γ 0γ 1 = σ3. (A.1)

In three dimensions

γ t = σ2, γ x = −iσ3, γ z = iσ1. (A.2)

A.2 Covariant derivatives

The covariant derivative in the Minkowski space is defined as

Dμ = ∂μ − iAaμ T
a . (A.3)
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Then for the spatial derivatives we have

D1 = ∂

∂x
+ iAax T

a , (A.4)

and similar expressions for D2,3.

A.3 Superspace and superfields

The four-dimensional space xμ can be promoted to superspace by adding four
Grassmann coordinates θα and θ̄α̇ , (α, α̇ = 1, 2). The coordinate transformations

{xμ, θα , θ̄α̇} : δθα = εα , δθ̄α̇ = ε̄α̇ , δxαα̇ = −2i θαε̄α̇ − 2i θ̄α̇εα (A.5)

add SUSY to the translational and Lorentz transformations.
Here the Lorentz vectorial indices are transformed into spinorial according to

the standard rule

Aββ̇ = Aμ(σ
μ)ββ̇ , Aμ = 1

2
Aαβ̇(σ̄

μ)β̇α , (A.6)

where

(σμ)αβ̇ = {1, �τ }αβ̇ , (σ̄ μ)β̇α = (σμ)αβ̇ . (A.7)

We use the notation �τ for the Pauli matrices throughout the book. The lowering and
raising of the indices is performed by virtue of the εαβ symbol (εαβ = i(τ2)αβ).
For instance,

(σ̄ μ)β̇α = εβ̇ρ̇ εαγ (σ̄ μ)ρ̇γ = {1, −�τ }β̇α . (A.8)

Note that

ε12 = −ε12 = 1, (A.9)

and the same for the dotted indices.
Two invariant subspaces {xμL , θα} and {xμR , θ̄α̇} are spanned on 1/2 of the

Grassmann coordinates,

{xμL , θα} : δθα = εα , δ(xL)αα̇ = −4i θαε̄α̇;

{xμR , θ̄α̇} : δθ̄α̇ = ε̄α̇ , δ(xR)αα̇ = −4i θ̄α̇εα , (A.10)

where

(xL,R)αα̇ = xαα̇ ∓ 2i θαθ̄α̇ . (A.11)
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The minimal supermultiplet of fields includes one complex scalar field φ(x) (two
bosonic states) and one complex Weyl spinor ψα(x), α = 1, 2 (two fermionic
states). Both fields are united in one chiral superfield,

�(xL, θ) = φ(xL)+ √
2θαψα(xL)+ θ2F(xL), (A.12)

where F is an auxiliary component. The field F appears in the Lagrangian without
the kinetic term.

In the gauge theories one also uses a vector superfield,

V (x, θ , θ̄ ) = C + iθχ − iθ̄ χ̄ + i√
2
θ2M − i√

2
θ̄2M̄

− 2θαθ̄α̇v
α̇α +

{
2iθ2θ̄α̇

[
λ̄α̇ − i

4
∂αα̇χ

]
+ H.c.

}

+ θ2θ̄2
[
D − 1

4
∂2C

]
. (A.13)

The superfield V is real, V = V †, implying that the bosonic fields C, D and
vμ = σ

μ
αα̇v

α̇α/2 are real. Other fields are complex, and the bar denotes the complex
conjugation. The field strength superfield has the form

Wα = i
(
λα + iθα D − θβ Fαβ − iθ2Dαα̇λ̄

α̇
)
. (A.14)

The gauge field strength tensor is denoted by Faμν . Sometimes we use the
abbreviation F 2 for

F 2 ≡ Faμν F
μν a , (A.15)

while

FF ∗ ≡ Faμν F
∗μν a ≡ 1

2
εμνρσF aμνF

a
ρσ . (A.16)

The transformations (A.10) generate the SUSY transformations of the fields
which can be written as

δV = i
(
Qε + Q̄ε̄

)
V (A.17)

where V is a generic superfield (which could be chiral as well). The differential
operators Q and Q̄ can be written as

Qα = −i ∂
∂θα

+ ∂αα̇θ̄
α̇ , Q̄α̇ = i

∂

∂θ̄ α̇
− θα∂αα̇ ,

{
Qα , Q̄α̇

} = 2i∂αα̇ . (A.18)
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These differential operators give the explicit realization of the SUSY algebra,

{
Qα , Q̄α̇

} = 2Pαα̇ ,
{
Qα ,Qβ

} = 0,
{
Q̄α̇ , Q̄β̇

} = 0,
[
Qα ,Pββ̇

] = 0,

(A.19)

whereQα and Q̄α̇ are the supercharges whilePαα̇ = i∂αα̇ is the energy-momentum
operator. The superderivatives are defined as the differential operators D̄α , Dα̇
anticommuting with Qα and Q̄α̇ ,

Dα = ∂

∂θα
− i∂αα̇θ̄

α̇ , D̄α̇ = − ∂

∂θ̄ α̇
+ iθα∂αα̇ ,

{
Dα , D̄α̇

} = 2i∂αα̇ . (A.20)

A.4 The Grassmann integration conventions

∫
d2θ θ2 = 1,

∫
d2θd2 θ̄ θ2 θ̄2 = 1. (A.21)

A.5 (1, 0) and (1, 0) sigma matrices

To convert the two-index spinorial symmetric representation in the vectorial
representation we will need the following sigma matrices:

(�σ)αβ = {τ 3, i, −τ 1}αβ , (�σ)αβ = {−τ 3, i, τ 1}αβ ,

(�σ)α̇β̇ = {τ 3, −i, −τ 1}α̇β̇ , (�σ)α̇β̇ = {−τ 3, −i, τ 1}α̇β̇ . (A.22)

A.6 The Weyl and Dirac spinors

If we have two Weyl (right-handed) spinors ξα and ηβ , transforming in the repre-
sentations R and R̄ of the gauge group, respectively, then the Dirac spinor � can
be formed as

� =
(
ξα

η̄α̇

)
. (A.23)

The Dirac spinor � has four components, while ξα and ηβ have two components
each.

A.7 Euclidean notation

As was mentioned, in Part II we switch to a formally Euclidean notation e.g.

F 2
μν = 2F 2

0i + F 2
ij , (A.24)
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and

(∂μa)
2 = (∂0a)

2 + (∂ia)
2, (A.25)

etc. This is appropriate, since we mostly consider static (time-independent) field
configurations, and A0 = 0. Then the Euclidean action is nothing but the energy
functional.

Then, in the fermion sector we have to define the Euclidean matrices

(σμ)
αα̇ = (1, −i �τ)αα̇ , (A.26)

and

(σ̄μ)α̇α = (1, i �τ)α̇α . (A.27)

Lowering and raising of the spinor indices is performed by virtue of the
antisymmetric tensor defined as

ε12 = ε1̇2̇ = 1,

ε12 = ε1̇2̇ = −1. (A.28)

The same raising and lowering convention applies to the flavor SU(2)R indices
f , g, etc.

When the contraction of the spinor indices is assumed inside the parentheses we
use the following notation:

(λψ) ≡ λαψ
α , (λ̄ψ̄) ≡ λ̄α̇ψ̄α̇ . (A.29)

A.8 Group-theory coefficients

As was mentioned, the gauge group is assumed to be SU(N ). For a given repre-
sentation R of SU(N ), the definitions of the Casimir operators to be used below
are

Tr(T aT b)R = T (R)δab, (T aT a)R = C(R) I , (A.30)

where I is the unit matrix in this representation. It is quite obvious that

C(R) = T (R)
dim(G)

dim(R)
, (A.31)

where dim(G) is the dimension of the group (= the dimension of the adjoint rep-
resentation). Note that T (R) is also known as (one half of) the Dynkin index, or
the dual Coxeter number. For the adjoint representation, T (R) is denoted by T (G).
Moreover, T (SU(N)) = N .
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A.9 Renormalization-group conventions

We use the following definition of the β function (also known as the Gell–Mann–
Low function) and anomalous dimensions:

μ
∂α

∂μ
≡ β(α) = − β0

2π
α2 − β1

4π2
α3 + · · · (A.32)

while

γ = −d lnZ(μ)/d lnμ. (A.33)

In supersymmetric theories

β(α) = − α2

2π

[
3 T (G)−

∑
i

T (Ri)(1 − γi)

](
1 − T (G) α

2π

)−1

, (A.34)

where the sum runs over all matter supermultiplets. This is the so-called Novikov–
Shifman–Vainshtein–Zakharov (NSVZ) beta function [236]. The anomalous
dimension of the ith matter superfield is

γi = −2C(Ri)
α

2π
+ · · · (A.35)

Sometimes, when one-loop anomalous dimensions are discussed, the coefficient in
front of −α/(2π) in (A.33) is also referred to as an “anomalous dimension.”
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