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In the definition of the spectrum of a linear operator, it is customary to assume that the
underlying space is complete. However there are occasions for which it is neither desirable
nor necessary to assume completeness in order to obtain a spectral theory for an operator;
for example, completeness is not needed in the Riesz theory of a compact operator (see e.g.
[1: XI. 3]). Several non-equivalent definitions for the spectrum of an operator on normed
spaces have appeared in the literature. We shall discuss the relationship among these
definitions and some of the difficulties that arise in applying these definitions to obtain a
spectral theory.

In the following, X will denote a complex normed linear space and X will denote the
completion of X. Let L{X) be the space of continuous linear operators with domain X and
range contained in X, and let / be the identity operator on X. For any Te L{X), let T be the
unique continuous extension of T to X. Finally let C denote the complex plane and C the
one point compactification of C; all topological considerations (like closure etc.) will be taken
with respect to C.

We begin with three different definitions of the spectrum of a bounded linear operator
o n l .

DEFINITION 1. Let TeL{X). The resolvent set py{T) of T is the set of AeC such that

(i) {XI- T)X is dense in X, and

(ii) {XI—T)'1 exists and is continuous.

The spectrum ax{T) is defined by ay{T) = C\px(r).

DEFINITION 2. Let Te L(X). The resolvent set p2(T) of T is the set of Ae C such that
(i) {XI-T)X=X, and

(ii) {XI- T)"1 exists and is continuous.

The spectrum a2{T) is defined by oz{T) = C\p2{T).

DEFINITION 3. Let TeL{X). The^resolvent set p3{T) of T is the set of AeC for which
there exists a neighborhood Vx of A in C and a function /i -> R^ defined on VxnC with values
in L{X) satisfying, for each fie VxnC, the conditions

(ii) the set {R^.fie VxnC} is bounded in L{X).

o3{T) is then defined by

o3(T) = C\p3{T).
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Definitions 1 and 2 are applied to operators on complex normed spaces by Taylor [3]
and Dieudonne [1] respectively. Definition 3 was originally considered by Waelbroeck (see
[4]) for complete locally convex spaces. It is used in not necessarily complete spaces by
Neubauer [2]. Some of our results may be found in these four references. We remark that
if the underlying space is complete, then all three of these definitions coincide (see e.g. [3]);
in this case we shall denote the spectrum simply by o(T) and the resolvent set by p(T).

PROPOSITION 1. Let TeL(X). Then

(a) a,(T) c a2(T) <z a3(T);
(b) closure a2(r) = <?3(T).

Proof. Part (a) is clear from the definitions. The fact that o3(T) is closed is also direct
from the definition, and hence cl [o2(T)] <=• <J3(T). To see the reverse inclusion, let A(# oo)
be an element of the interior of p2(T). Then there exists a neighbourhood Vx of X such that
(jil— T)~l is defined and continuous on X for all fie Vx. Using the resolvent equation (see
[3, p. 257]), we obtain, for p.e Vx,

Using the triangle inequality and solving for || Qi/— 71)"11|, we get

We i -rx-ni^ \\{U-T)-l\\

for | A - M | < || (XI- T)'11 -1. Thus, for

we have that || (jiI-T)'11| is bounded; and hence Xep3(T).
Now, if o2(T) is bounded in C, then (XI-T)~1-^0 as A->oo since (H-T)'1 =

(kl-ty1 \x and (Xl-fy1 -+0 as 2-> oo. It thus follows that ccep3(T). Conversely, if
<rz(T) is unbounded in C, then it results directly from the definition that oo e<x3(r). Thus
cl [cr2(T)] = ff3(T) with the closure taken in C.

PROPOSITION 2. Let TeL(X). Then a^T) = a(f), and hence o^T) is compact.

Proof. Let X e p(T). We claim that (XI- T)X is dense in X. For let x e X and let y e X
be such that (Xl-T)y = x. Choose (xn) c X such that xn-+y; then (XI- T)xn -»x. Since
any restriction of (Xl— t)'1 is continuous, we conclude that Xept(T).

Conversely, let Xepi(T). By elementary arguments similar to the above, it can be shown
that Xl—f is 1-1 and onto X. Hence, by the Banach open mapping theorem, (XI-t)~l

is continuous, and so Xep(T).
From the above, it follows that a^T) and <T3(T) are closed sets. However o2(T) need

not be closed; in fact, as the next example shows, o2(T) may be virtually any subset of the
plane. The example also shows that a^T), o2(T) and a3(T) may all be distinct.

Example 1. Let D c C be such that £>n[0, 1] = 0. Let X be the subspace of C[0, 1]
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consisting of all functions of the form

where p is a polynomial, XteD and kt is a non-negative integer for i = 1, . . . , n (Here n may
depend on / ) . Then X is a normed space under the supremum norm and X = C [0, 1 ].
Define T:X->Xby Tf{t) = tf(t) for te[0, 1].

For XeD we have (XI-TyW =f(t)(X-t)~1 eX; for X$D, (XI-T)X? X. Hence
P2(T)=D. We therefore have a,(r) = o(t) = [0, 1]; o2{T) = C\D; and <73(T) = d(C\D).

If, in the above example, we take D to be a set which is not open, then ax{T), <T2(T) and
CT3(r) are all distinct. If D is chosen to be open, but D ? C\[0, 1], then o2(T) = o3(T), but
both are larger than o^T). However, if ay(T) = o2(T), it then follows that a^T) = o3(T)
since a^T) is closed. West [5] calls an operator for which o^T) = o2(T), an operator with
single spectrum; in his paper he develops a spectral theory for these operators. In the next
proposition we give some conditions to ensure that ox(T) = <T2(T) = o3{T).

PROPOSITION 3. Let Te L(X).

(a) a^T) = o2(T) = o3(T) if and only if(Xl- t y ^ cz X for allXep(t).
(b) Iff (X) c X, then ay{T) = G2(T) = <r3(r).
(c) //closure [T(X)] is complete, then a^T) = a2(T) = o3(T).

Proof, (a) The statement a^T) z> o2(T) is equivalent to the statement: if Xep^T) =
p(t), then (XI-T)X=X. This in turn is equivalent to the statement: if Aep(f), then
(Xl-fy^czX.

(b) Let 0 ̂  Xep^T) = p{f) and let xe X. Then there exists yeX such that (Xl- t)y = x,
and therefore y = (l/A)x+(lM)7>eX. Hence (XI- T)X = A' and Xep2(T).

Part (c) follows directly from (b).

COROLLARY. If TeL(X) is compact, then ax{T) = o2(T) = <r3(T). (See also [1].)
It may be remarked that the converse to Proposition 3(b) is not true. (See [5, Example 3].)
We now give two examples and make some comments concerning spectral sets and

functions of the operator. One of the principal results of spectral theory on Banach spaces is
the decomposition of the operator T if the spectrum is disconnected; this states that, if a(T) =
AiUA2 with Alc\A2 = 0, where Ax and42 are both open and closed in a(J), then X = XX®X2

with r(Ar
i) c Xt and a(T\ Xj) = Ah for i— 1,2. The following two examples show that, if the

underlying space is not complete, then the above decomposition fails for each of the spectra
considered.

Example 2. Let X be the set of polynomials on R restricted to the domain [0, l]u[2, 3],
and equip X with the supremum norm. Then X = C[0,1]©C[2, 3]. Let T: X-+X be
defined by Tp{t) = tp(t). Then a^T) = o(T) = [0, l]u[2, 3]. Corresponding to the spectral
sets, we have the decomposition X = Xl@X2 for T, where

and X2 = {(p,g):geC[2,3}}.
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However there cannot exist a decomposition of the form X = Xt®X2 for which T{X^ c Xh

(7,(7*1 Xx) = [0, 1] and at(T\X2) = [2, 3]. For, let Xt c X with a^X^) = [0, 1] and
TXt <= Xu Then, for each Ae [2, 3], (A/- T)r , is dense in Xu so that, if p{t)eXu then /?(;)
can be uniformly approximated by functions of the form (k—t)pn(t) with/7n0)eAr

1 and, since
such functions vanish at t — A, it follows that/?(A) = 0. This implies that /?(/) = 0 for /e [2, 3]
and hence that p(t) = 0. Thus Â  = 0 and this is a contradiction.

Example 3. Let D = C\([0, 1 ]u {2}), and let X and T be as in Example 1. Then o2{T) =
ai(T) — [0, l]u{2}. However, for every non-trivial invariant subspace Y<=X for T,
<72(J| y)n[0, 1] # 0. Hence there is no spectral set decomposition of X relative to either

or

Examples 2 and 3 also show that, if/ is a function which is analytic in a neighbourhood of
or((r) (/ = 1, 2, 3), then/(J) need not be defined. (Take/ to be the function which is 1 on
one part of the spectrum and 0 on the other part.) However, for any polynomial p, p(T) is
always defined, and one can prove the spectral mapping theorem: p{<Ji{T)) = a^piT)) for
each of / = 1, 2, 3. For a^T), this follows from the fact that o^T) = o(t); for o2(T) and
cr3(T), the proof is the same as in the complete case (see e.g. [3]).

In conclusion, the authors would like to state that they believe that Definition 3 will
probably be the most useful one for consideration of spectral theory on incomplete spaces.
Definition 2 suffers from the topological defect that the spectrum need not be closed; while
Definition 1 has the drawback that it does not distinguish between an operator T and its
extension f (or among any of the other operators S for which § = f ) .
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