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Abstract

We extend the results of Schu [‘Iterative construction of fixed points of asymptotically nonexpansive
mappings’, J. Math. Anal. Appl. 158 (1991), 407–413] to monotone asymptotically nonexpansive
mappings by means of the Fibonacci–Mann iteration process

xn+1 = tnT f (n)(xn) + (1 − tn)xn, n ∈ N,

where T is a monotone asymptotically nonexpansive self-mapping defined on a closed bounded and
nonempty convex subset of a uniformly convex Banach space and { f (n)} is the Fibonacci integer sequence.
We obtain a weak convergence result in Lp([0, 1]), with 1 < p < +∞, using a property similar to the weak
Opial condition satisfied by monotone sequences.
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1. Introduction

The notion of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [5] in 1972. In particular, they proved that such mappings defined on a nonempty
closed convex and bounded subset of a uniformly convex Banach space always have
a fixed point. Their proof was not constructive. Schu [10] used a modified Mann
iteration to generate an approximate fixed point sequence for such mappings and his
approach has proved very useful for computational purposes.

In this work, we investigate Schu’s modified Mann iteration sequence associated
to a monotone asymptotically nonexpansive mapping. The modified Mann iteration
sequence introduced by Schu is defined by

xn+1 = tnT n(xn) + (1 − tn)xn, (1.1)

for tn ∈ [0, 1] and n ∈ N, where T is an asymptotically nonexpansive mapping. His
reason for introducing the iterate of T in the original Mann iteration sequence is
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based on the good behaviour of the Lipschitz constants associated to the iterates of
T . For monotone mappings, the iteration sequence (1.1) does not generate a sequence
which is monotone, which is crucial when proving the existence of a fixed point. We
therefore modify the iteration (1.1) by using the Fibonacci sequence { f (n)} defined by

f (0) = f (1) = 1 and f (n + 1) = f (n) + f (n − 1) for n ≥ 1.

The new iteration scheme, which we call Fibonacci–Mann iteration, is defined by

xn+1 = tnT f (n)(xn) + (1 − tn)xn,

for tn ∈ [0, 1] and n ∈ N. This new iteration scheme allows us to prove the main results
of Schu [10] for monotone asymptotically nonexpansive mappings. This result is
surprising since the class of mappings may fail to be continuous.

Monotone Lipschitzian mappings attracted interest after the Banach contraction
principle was extended to partially ordered metric spaces by Ran and Reurings [9].
There are many applications of the fixed point theory of monotone mappings in Carl
and Heikkilä [4]. For more on metric fixed point theory, the reader may consult Khamsi
and Kirk [7], and, for the geometry of Banach spaces, we recommend Beauzamy [3].

2. Monotone asymptotically nonexpansive mappings

The concept of monotone Lipschitzian mappings involves two structures: a partial
order and a metric distance. Most of the spaces involved in applications have these
two natural structures, with interesting natural intertwining properties.

Definition 2.1. Let (X, ‖ · ‖, �) be a partially ordered Banach space. Let K be a
nonempty subset of X. A map T : K → K is said to be monotone if for any x, y ∈ K
such that x � y, we have T (x) � T (y). Moreover, T is said to be:

(a) monotone Lipschitzian, if T is monotone and there exists L ≥ 0 such that

‖T (x) − T (y)‖ ≤ L ‖x − y‖ for any x, y in K with x � y;

(b) monotone asymptotically nonexpansive if T is monotone and there exists a
sequence of numbers {kn} ⊂ [1,+∞) such that limn→∞ kn = 1 and

‖T n(x) − T n(y)‖ ≤ kn ‖x − y‖ for any x, y in K with x � y and n ≥ 1.

A fixed point of T is any element x ∈ K such that T (x) = x.

Monotone Lipschitzian mappings do not have nice topological behaviour like the
regular Lipschitzian mappings because the Lipschitzian condition is only satisfied by
comparable elements and may fail to hold in the entire space. These mappings may
even fail to be continuous. The extension of the Banach contraction principle for such
mappings does not necessarily lead to the existence of a unique fixed point. For more
on this, see Jachymski [6].

In order to extend Schu’s ideas to the monotone case, we need the following
fixed point result which is the monotone version of Goebel and Kirk’s fixed point
theorem [5] for monotone asymptotically nonexpansive mappings.
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Theorem 2.2 [2]. Let (X, ‖ · ‖,�) be a uniformly convex partially ordered Banach space
for which order intervals are convex and closed. Let K be a nonempty convex closed
bounded subset of X not reduced to one point. Let T : K → K be a continuous
monotone asymptotically nonexpansive mapping. If there exists x0 ∈ K such that
x0 � T (x0) (respectively, T (x0) � x0), then T has a fixed point z such that x0 � z
(respectively, z � x0).

An order interval is any of the subsets {x : α � x}, {x : x � β} and {x : α � x � β},
for any α, β ∈ X.

Remark 2.3. In the proof of Theorem 2.2, the fixed point z was obtained as the
minimum point of the type function ϕ : K∞ → [0,+∞) defined by

ϕ(x) = lim sup
n→∞

‖T n(x0) − x‖,

where K∞ = {x ∈ K : T n(x0) � x for any n ∈ N}, assuming x0 � T (x0).

3. Fibonacci–Mann iteration

In this section, we investigate the properties of the Fibonacci–Mann iteration
sequence associated to a monotone asymptotically nonexpansive mapping.

Definition 3.1. Let K be a nonempty convex subset of a Banach space (X, ‖ · ‖). Let
T : K → K be a mapping. Fix x0 ∈ K and {tn} ⊂ [0, 1]. The Fibonacci–Mann iteration
is the sequence {xn} defined by

xn+1 = tnT f (n)(xn) + (1 − tn)xn, (3.1)

for any n ∈ N, where { f (n)} is the Fibonacci sequence. We will write {tn} @ [0, 1] if
there exist two real numbers a, b such that 0 < a ≤ tn ≤ b < 1 for all n.

Throughout, (X, ‖ · ‖,�) is a partially ordered Banach space for which order intervals
are closed and convex.

Lemma 3.2. Let K be a convex and bounded nonempty subset of X. Assume that
the map T : K → K is monotone. Let x0 ∈ K be such that x0 � T (x0) (respectively,
T (x0) � x0) and {tn} ⊂ [0, 1] and consider the sequence {xn} generated by (3.1). Let z
be a fixed point of T such that x0 � z (respectively, z � x0). Then

(i) T n(x0) � T n+1(x0) (respectively, T n+1(x0) � T n(x0)),
(ii) x0 � xn � z (respectively, z � xn � x0),
(iii) T f (n)(x0) � T f (n)(xn) � z (respectively, z � T f (n)(xn) � T f (n)(x0)),
(iv) xn � xn+1 � T f (n)(xn) (respectively, T f (n)(xn) � xn+1 � xn),

for any n ∈ N.
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Proof. Using the convexity of the order intervals and the monotonicity of T , we
can easily deduce (i), (ii) and (iii). We prove (iv) by induction. Without loss of
generality, assume that x0 � T (x0). First note that x0 � x1 � T f (0)(x0) = T (x0). The
monotonicity of T implies T (x0) � T (x1), which yields x0 � x1 � T f (1)(x1). Using the
convexity of the order intervals, we get x1 � x2 � T f (1)(x1). Fix n ≥ 2. Assume that
xk � xk+1 � T f (k)(xk), for any k ∈ [0, n − 1]. We claim that

xn � xn+1 � T f (n)(xn).

By the convexity of the order intervals, this will hold if we prove that xn � T f (n)(xn).
Our assumption implies

xn � T f (n−1)(xn−1) � T f (n−1)+ f (n−2)(xn−2) = T f (n)(xn−2),

where we used the monotonicity of T , xn−1 � T f (n−2)(xn−2) and the definition of the
Fibonacci sequence. Since xn−2 � xn−1 � xn, the monotonicity of T implies that
xn � T f (n)(xn). The induction argument completes the proof of (iv). �

Property (iv) ensures the monotonicity of the sequence {xn}. This is hugely
important as the following results show.

Proposition 3.3. Let {xn} be a bounded monotone increasing or decreasing sequence
in X, and assume that X is reflexive.

(1) {xn} is weakly convergent.
(2) If limn→∞ d(xn, K) = 0, where K is a compact nonempty subset of X, then {xn}

converges strongly.

Proof. Without loss of generality, assume that {xn} is monotone increasing. Since
X is reflexive and {xn} is bounded, there exists a subsequence {xψ(n)} of {xn} which
converges weakly to some point x ∈ X. We claim that any other subsequence {xφ(n)} of
{xn} also converges weakly to x. Assume that {xφ(n)} converges weakly to z. Since {xn}

is monotone increasing, then we must have xn � z, for any n ≥ 1, since order intervals
are closed and convex. In particular, xψ(n) � z, for any n ≥ 1, which implies x � z.
Clearly this will force x = z. The proof of (1) is complete.

We now prove (2). Our assumption implies the existence of {yn} in K such that
limn→∞ ‖xn − yn‖ = 0. Since {xn} converges weakly to x, then {yn} also converges
weakly to x. Note that a weakly convergent sequence which belongs to a compact
subset must be strongly convergent. Assume, on the contrary, that {yn} does not
converge strongly to x. Then there exist ε > 0 and a subsequence {yφ(n)} such that
infn≥1 ‖yφ(n) − x‖ ≥ ε. Since K is compact, there exists a subsequence {yφ(n)} of {yφ(n)}

which converges strongly. Since {yn} converges weakly to x, {yφ(n)} converges strongly
to x. This contradiction implies that {yn} converges strongly to x and consequently {xn}

converges strongly to x. �

This proposition shows the good behaviour monotone sequences have. In fact, it
is surprising to see that despite the fact that the Lebesgue function spaces Lp([0, 1]),
with 1 < p < +∞, fail the weak Opial condition [8], they enjoy a similar conclusion
for monotone sequences. This fact will be discussed later in this section.
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Lemma 3.4. Let K be a convex and bounded nonempty subset of X. Assume that the
map T : K → K is monotone asymptotically nonexpansive with the Lipschitz constants
{kn} and that

∑∞
n=1(kn − 1) < ∞. Let x0 ∈ K be such that x0 � T (x0) (respectively,

T (x0) � x0) and {tn} ⊂ [0, 1] and consider the sequence {xn} generated by (3.1). Let
z be a fixed point of T such that x0 � z (respectively, z � x0). Then limn→∞ ‖xn − z‖
exists.

Proof. Without loss of generality, assume that x0 � T (x0). From the definition of {xn},

‖xn+1 − z‖ ≤ tn‖T f (n)(xn) − z‖ + (1 − tn)‖xn − z‖
= tn‖T f (n)(xn) − T f (n)(z)‖ + (1 − tn)‖xn − z‖,

for any n ≥ 1. Since T is monotone asymptotically nonexpansive,

‖xn+1 − z‖ ≤ k f (n) ‖xn − z‖ = (k f (n) − 1) ‖xn − z‖ + ‖xn − z‖,

for any n ≥ 1. In particular,

‖xn+1 − z‖ − ‖xn − z‖ ≤ (k f (n) − 1)δ(K),

for any n ∈ N, where δ(K) = sup{‖c1 − c2‖ : c1, c2 ∈ K} is the diameter of K. Hence

‖xn+m − z‖ − ‖xn − z‖ ≤ δ(K)
m−1∑
i=0

(k f (n+i) − 1),

for any n,m ≥ 1. Letting m→∞ gives

lim sup
m→∞

‖xm − z‖ ≤ ‖xn − z‖ + δ(K)
∞∑

i=n

(k f (i) − 1),

for any n ≥ 1. Next we let n→∞ and get

lim sup
m→∞

‖xm − z‖ ≤ lim inf
n→∞

‖xn − z‖ + δ(K) lim inf
n→∞

∞∑
i=n

(k f (i) − 1) = lim inf
n→∞

‖xn − z‖.

Therefore, lim supm→∞ ‖xm − z‖ = lim infn→∞ ‖xn − z‖, which implies the desired
conclusion. �

In the proof of the following lemma, we use the concept of ultrapower of a Banach
space. For the basic definitions and properties of ultrafilters, see [1]. Let U be a
nontrivial ultrafilter overN. It is known that limn,U αn exists for any bounded sequence
of real numbers {αn}. Let X be a Banach space. The vector space

`∞(X) =
{
{xn} ⊂ X : ‖{xn}‖∞ = sup

n
‖xn‖ <∞

}
,

endowed with the norm ‖ · ‖∞, is a Banach space. The set

X0 =

{
{xn} ∈ `∞(X) : lim

n,U
‖xn‖ = 0

}
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is a closed subspace of `∞(X). The quotient space (XU) = `∞(X)/X0 is known as the
ultrapower of the Banach space X. In particular, for any x̃ ∈ (X)U ,

‖x̃‖U = lim
n,U
‖xn‖,

where {xn} is any representative of x̃. For more on the properties of the ultrapower of
a Banach space, see [1, 3].

Lemma 3.5. Let K be a nonempty weakly compact convex subset of a uniformly convex
X. Let T : K → K be a continuous monotone asymptotically nonexpansive mapping
with the Lipschitz constants {kn}. Assume that

∑∞
n=1(kn − 1) < ∞. Let x0 ∈ K be such

that x0 � T (x0) (respectively, T (x0) � x0) and {tn} @ [0, 1] and consider the sequence
{xn} generated by (3.1). Then

lim
n→∞
‖xn − T f (n)(xn)‖ = 0.

Proof. Without loss of generality, assume that x0 � T (x0). By Theorem 2.2, there is
a fixed point, z, of T such that x0 � z. By Lemma 3.4, r = limn→∞ ‖xn − z‖ exists. If
r = 0, the conclusion is trivial. Assume that r > 0. Then

lim sup
n→∞

‖T f (n)(xn) − z‖ = lim sup
n→∞

‖T f (n)(xn) − T f (n)(z)‖ ≤ lim sup
n→∞

k f (n) ‖xn − z‖ = r,

since xn � z, for any n ≥ 1. On the other hand,

‖xn+1 − z‖ ≤ tn‖T f (n)(xn) − z‖ + (1 − tn)‖xn − z‖,

for any n ≥ 1. LetU be a nontrivial ultrafilter over N. Then limU tn = t ∈ [a, b], where
0 < a ≤ b < 1. Hence

r = lim
U
‖xn+1 − z‖ ≤ t lim

U
‖T f (n)(xn) − z‖ + (1 − t)r.

Since t , 0, we get limU ‖T f (n)(xn) − z‖ ≥ r. Hence

r ≤ lim
U
‖T f (n)(xn) − z‖ ≤ lim sup

n→∞
‖T f (n)(xn) − z‖ ≤ r,

which implies limU ‖T f (n)(xn) − z‖ = r. Let (X)U be the ultrapower of X and set
x̃ = ({xn})U , ỹ = ({T f (n)(xn)})U and z̃ = ({z})U . Then

‖x̃ − z̃‖U = ‖ỹ − z̃‖U = ‖tx̃ + (1 − t)ỹ − z̃‖U = r.

From the uniform convexity of X, we know that (X)U is strictly convex. Since t ∈ (0,1),
we get x̃ = ỹ, that is, limU ‖xn − T f (n)(xn)‖ = 0. Since U was an arbitrary nontrivial
ultrafilter, we conclude that limn→∞ ‖xn − T f (n)(xn)‖ = 0, which completes the proof. �

The map T is said to be compact if it maps bounded sets into relatively compact
ones. The following result is the monotone version of [10, Theorem 2.2].
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Theorem 3.6. Let K be a nonempty weakly compact convex subset of a uniformly
convex X. Let T : K → K be a monotone asymptotically nonexpansive mapping with
the Lipschitz constants {kn} and assume that

∑∞
n=1(kn − 1) <∞ and T m is compact for

some m ≥ 1. Let x0 ∈ K be such that x0 and T (x0) are comparable. Let {tn} @ [0, 1].
Consider the sequence {xn} generated by (3.1). Then {xn} converges strongly to a fixed
point of T which is comparable to x0.

Proof. Without loss of generality, assume that x0 � T (x0). Lemma 3.2 implies x0 � xn,
for any n ∈ N. By Lemma 3.5, limn→∞ ‖xn − T f (n)(xn)‖ = 0. Fix m ≥ 1 such that T m is
compact and set K0 = T m(K). Then K0 is a compact nonempty set. For any n > m and
x ∈ K, we have T n(x) ∈ K0. Since f (n) > m for n > m, we get T f (n)(xn) ∈ K0. Hence

lim
n→∞

d(xn,K0) ≤ lim
n→∞
‖xn − T f (n)(xn)‖ = 0

and limn→∞ d(T n(x0), K0) = 0. Since X is reflexive and both sequences {xn} and
{T n(x0)} are monotone increasing, Proposition 3.3 implies that {xn} and {T n(x0)} are
strongly convergent. Hence {T f (n)(xn)} is also strongly convergent and has the same
limit as {xn}. Let z be the strong limit of {T n(x0)}. We claim that z is a fixed point of
T . Indeed, since {T n(x0)} is monotone increasing, T n(x0) � z for any n ∈ N. Hence

‖T n+1(x0) − T (z)‖ ≤ k1 ‖T n(x0) − z‖,

for any n ≥ 1, which implies that {T n+1(x0)} converges to T (z) and z, that is, T (z) = z.
Lemma 3.2 implies

T f (n)(x0) � T f (n)(xn) � z,

for any n ∈ N. Since order intervals are closed, we conclude that z is also the limit of
{T f (n)(xn)} and {xn}, that is, {xn} converges strongly to a fixed point of T . �

Next we discuss the weak convergence of the Fibonacci–Mann sequence. Usually
this is done via the weak Opial condition [8], a property satisfied by any Hilbert space
and the classical Banach spaces `p, with 1 < p < +∞. It is also well known that the
classical Banach function spaces Lp([0, 1]), with 1 < p < +∞, fail the weak Opial
condition [8]. We will show that a weaker Opial condition is necessary to obtain the
weak convergence of the Fibonacci–Mann sequences. This weaker version holds in
Lp([0, 1]) with 1 < p < +∞.

Definition 3.7. We say that (X, ‖ · ‖,�) satisfies the monotone weak Opial condition
if, for any monotone increasing (respectively, decreasing) sequence {xn} which weakly
converges to x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

for any y , x with xn � y (respectively, y � xn) for any n ∈ N.

In the next result, we give a class of Banach spaces which satisfy the monotone
weak Opial condition. The norm ‖ · ‖ of X is said to be monotone if u � v � w implies
max{‖v − u‖, ‖w − v‖} ≤ ‖w − u‖ for any u, v,w ∈ X. If the norm is monotone and
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{xn} is monotone increasing (respectively, decreasing), then the sequence {‖xn − y‖}
is decreasing for any y such that xn � y (respectively, y � xn), for any n ∈ N. In this
case,

lim inf
n→∞

‖xn − y‖ = lim
n→∞
‖xn − y‖ = inf

n∈N
‖xn − y‖.

Before we state the next result, the following proposition is needed. Let K be a
subset of a Banach space (X, ‖ · ‖) and ϕ : K→ [0,+∞). Recall that {zn} is a minimising
sequence of ϕ if limn→∞ ϕ(zn) = inf{ϕ(x); x ∈ K}.

Proposition 3.8. Let {xn} be a monotone increasing (respectively, decreasing) bounded
sequence of a uniformly convex Banach space (X, ‖ · ‖). Assume that the norm ‖ · ‖ is
monotone. Consider the function ϕ : K → [0,+∞) defined by

ϕ(x) = lim
n→∞
‖xn − x‖,

where K = {x : xn � x (respectively, x � xn) for any n ∈ N}. Let z be the weak limit
of {xn}. Then ϕ(z) = inf{ϕ(x) : x ∈ K} and any minimising sequence {zn} of ϕ in K
converges strongly to z. In particular, ϕ has one minimum point.

Proof. Let (X, ‖ · ‖) be a uniformly convex Banach space and δX its modulus of uniform
convexity [3]. Without loss of generality, assume that {xn} is monotone increasing.
Since X is reflexive, {xn} is weakly convergent to z. Since order intervals are closed
and convex, we conclude that z ∈ K. For any x ∈ K, we have xn � z � x, for any n ∈ N.
Using the monotonicity of the norm, ‖z − xn‖ ≤ ‖x − xn‖, for any n ∈ N, which implies
ϕ(z) ≤ ϕ(x). Therefore, z is a minimum point of ϕ in K. Let {zn} be a minimising
sequence of ϕ in K. Since ‖zn − z‖ ≤ ϕ(zn) + ϕ(z), for any n ∈ N, we conclude that {zn}

is bounded. Moreover, if ϕ(z) = 0, then {zn} strongly converges to z. Assume that {zn}

is not strongly convergent to z. Then there exist ε > 0 and a subsequence {zψ(m)} such
that ‖zψ(m) − z‖ ≥ ε. Set

η = δX

(
ε

max
n,m

(‖zm − xn‖, ‖z − xn‖) + 1

)
.

Note that η is well defined since {zn} is bounded. The uniform convexity of X implies∥∥∥∥∥xn −
zψ(m) + z

2

∥∥∥∥∥ ≤ max(‖xn − zψ(m)‖, ‖xn − z‖) (1 − η),

for any n,m ∈ N. Letting n→∞ gives

ϕ
(zψ(m) + z

2

)
≤ max(ϕ(zψ(m)), ϕ(z))(1 − η) = ϕ(zψ(m))(1 − η),

which implies ϕ(z) ≤ ϕ(zψ(m))(1 − η), for any m ∈ N. If we let m → ∞, we get
ϕ(z) ≤ ϕ(z)(1 − η). Since {zn} is not strongly convergent to z, we must have ϕ(z) > 0.
This is a contradiction with η > 0. �

A direct consequence of Proposition 3.8 is the following result which describes a
class of Banach spaces which satisfy the monotone weak Opial condition.
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Theorem 3.9. Let (X, ‖ · ‖,�) be a uniformly convex partially ordered Banach space for
which order intervals are convex and closed. Assume that the norm ‖ · ‖ is monotone.
Then X satisfies the monotone weak Opial condition.

Since the classical Lebesgue function spaces Lp([0, 1]), with 1 < p < +∞, are
uniformly convex and their norm is monotone we have the following corollary.

Corollary 3.10. The Banach function spaces Lp([0, 1]), with 1 < p < +∞, satisfy the
monotone weak Opial condition.

In the next result, we discuss the weak convergence of the Fibonacci–Mann iteration
sequence. This result is the monotone version of [10, Theorem 2.1].

Theorem 3.11. Let K be a nonempty weakly compact convex subset of a uniformly
convex Banach space (X, ‖ · ‖). Assume that the norm ‖ · ‖ is monotone. Let T : K → K
be a monotone asymptotically nonexpansive mapping with the Lipschitz constants
{kn} and assume that

∑∞
n=1(kn − 1) < ∞. Let x0 ∈ K be such that x0 and T (x0) are

comparable. Let {tn} @ [0, 1]. Consider the sequence {xn} generated by (3.1). Then
{xn} converges weakly to a fixed point of T which is comparable to x0.

Proof. Without loss of generality, assume that x0 � T (x0). In this case, we know
that {T n(x0)} is monotone increasing. Since K is weakly compact, {T n(x0)} is weakly
convergent to some point z. Theorem 3.9 implies that X satisfies the monotone weak
Opial condition. Hence z is the minimum point of ϕ : K∞ → [0,+∞) defined by

ϕ(y) = lim inf
n→∞

‖T n(x0) − y‖ = lim
n→∞
‖T n(x0) − y‖,

where K∞ = {y ∈ K : T n(x0) � y for any n ∈ N}. It is easy to check that

ϕ(z) ≤ ϕ(T m(z)) ≤ km ϕ(z),

for any m ≥ 1. Since limm→∞ km = 1, {T m(z)} is a minimising sequence of ϕ.
Proposition 3.8 implies that {T m(z)} converges strongly to z. Since T n(x0) � z, we get
T n+1(x0) � T (z), for any n ≥ 1. Since {T m(z)} converges to z and the order intervals are
closed, we get z � T (z). Using the monotonicity of T , we conclude that the sequence
{T m(z)} is monotone increasing and converges to z. So we must have T m(z) � z, for
any m ≥ 1. In particular, T (z) � z which implies T (z) = z. By Lemma 3.2,

T f (n)(x0) � T f (n)(xn) � z,

for any n ∈ N. Since the order intervals are closed and convex and the sequence
{T n(x0)} is monotone increasing and converges weakly to z, we conclude that
{T f (n)(xn)} also converges weakly to z. By Lemma 3.5,

lim
n→∞
‖xn − T f (n)(xn)‖ = 0,

which implies that {xn} weakly converges to z, a fixed point of T . �

Note that the conclusion of Theorem 3.11 was obtained without assuming that T is
continuous, an assumption necessary in Theorem 2.2.
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