APPROXIMATING APPROXIMATE FIBRATIONS BY FIBRATIONS

L. S. HUSCH

1. Introduction. A map $p: E \rightarrow B$ between metric spaces has the approximate homotopy lifting property with respect to the space X if given a cover \bar{U} of B and maps $g: X \rightarrow E$ and $H: X \times[0,1] \rightarrow B$ such that $H(x, 0)=p g(x)$ for all $x \in X$, then there exists a map $G: X \times[0,1] \rightarrow E$ such that $G(x, 0)=$ $g(x)$ and $p G_{t}$ and H_{t} are \bar{U}-close for all $x \in X$ and $t \in[0,1]$; i.e., given $(x, t) \in$ $X \times[0,1]$, there exists $U \in \bar{U}$ such that $p G(x, t)$ and $H(x, t)$ are elements of U. $p: E \rightarrow B$ is an approximate fibration if p has the approximate homotopy lifting property with respect to all spaces X. Coram and Duvall [13] introduced these concepts as a generalization of $U V^{\infty}$ maps and showed that approximate fibrations have many properties in common with Hurewicz fibrations if one uses shape theoretic concepts in place of their homotopy theoretic analogues (see, for example, Propositions 1 and 2). Hence, an approximate fibration may be regarded as the shape theoretic analogue of Hurewicz fibrations. They also showed that the uniform limit of a sequence of Hurewicz fibrations between two compact $A N R$'s is an approximate fibration.

In [25], Lacher showed that a cell-like mapping between $A N R$'s has the approximate homotopy lifting property with respect to polyhedra. By [14] (see Proposition 4), this implies that cell-like mappings are approximate fibrations. Armentrout [2], Siebenmann [30] and Finney [17] showed that celllike mappings between manifolds of dimension $\neq 4$ are precisely those mappings which can be approximated by homeomorphisms. Hence, the natural question arises whether the approximate fibrations between manifolds are precisely those mappings which can be approximated by Hurewicz fibrations.

Recall that a map $F: E \rightarrow B$ is a locally trivial fiber map if for each $x \in B$ there exists a neighborhood U of x in B and a homeomorphism h of $F^{-1}(x) \times$ U onto $F^{-1}(U)$ such that $F h(y, z)=z$ for all $(y, z) \in F^{-1}(x) \times U$. If B is paracompact and if F is a locally trivial fiber map, then F is a Hurewicz fibration [31; p. 96]. In this note the following results are proved.

Theorem A. Let E be a closed connected 3-manifold such that each inessential tame 2 -sphere in E bounds a 3 -cell and let B be a connected n-manifold, $n=1,2$. Let $f: E \rightarrow B$ be an approximate fibration and let $\epsilon>0$ be given. If $n=1$, then assume that $\bar{\pi}_{1}(F) \neq Z_{2}$ where F is a fiber of f. Then there exists a locally trivial fiber map $g: E \rightarrow B$ such that $d(f, g)<\epsilon$.

Received July 25, 1975 and in revised form, March 31, 1977. This research was supported in part by N.S.F. Grant MP572-04690.

The condition on inessential 2 -spheres is related to the Poincaré conjecture and the condition on $\bar{\pi}_{1}(F)$ is related to the conjecture that an h-cobordism bounded by projective planes is a product cobordism. A counterexample to either of these two conjectures would provide a counterexample to Theorem A if the corresponding hypothesis were removed.

Theorem B. Let $f: M \rightarrow S^{1}$ be an approximate fibration such that either i) M is a closed connected m-dimensional manifold, $m \geqq 6$, or ii) M is a compact connected Hilbert cube manifold. f can be approximated arbitrarily close by a locally trivial fiber map if and only if f is homotopic to a Hurewicz fibration.

Theorem C. There exists a closed connected manifold M and an approximate fibration $f: M \rightarrow S^{1}$ such that f cannot be approximated arbitrarily close by a Hurewicz fibration. Let Q denote the Hilbert cube and let $\pi: M \times Q \rightarrow M$ denote the projection on the first factor. The map $f \pi: M \times Q \rightarrow S^{1}$ is an approximate fibration of a Hilbert cube manifold which cannot be approximated arbitrarily close by a Hurewicz fibration.

Combining Theorem B with a result of R . D. Edwards [16], we have the following result for arbitrary compact $A N R$'s.

Corollary D. Let $f: M \rightarrow S^{1}$ be an approximate fibration of a compact ANR M onto S^{1}. f can be stably approximated arbitrarily close by a Hurewicz fibration if and only if f is stably homotopic to a Hurewicz fibration; i.e., $f \pi: M \times Q \rightarrow S^{1}$ can be approximated arbitrarily close by a Hurewicz fibration if and only if f is homotopic to a Hurewicz fibration.

Theorem E. Let $f: M \rightarrow R^{1}$ be a proper approximate fibration onto the real numbers and suppose that either i) M is a connected m-dimensional manifold, $m \geqq 6$, or ii) M is a connected Hilbert cube manifold. f can be approximated arbitrarily close by a proper locally trivial fiber map if and only if f is properly homotopic to a Hurewicz fibration.

Siebenmann [29] has determined necessary and sufficient conditions that a mapping of a closed connected m-dimensional manifold onto $S^{1}, m \geqq 6$, be homotopic to a locally trivial fiber map.

Corollary F. Let $f: M \rightarrow S^{1}$ be an approximate fibration and suppose that M is a closed connected m-dimensional manifold, $m \geqq 6$. f can be approximated arbitrarily close by a locally trivial fiber map if and only if Siebenmann's obstruction $F(M)$ in the Whitehead group of $\pi_{1} M$ vanishes.
R. Goad [18] has obtained a higher-dimensional analogue of Theorem A for approximate fibrations between manifolds whose fibers have the shape of S^{1}. T. Chapman has informed the author that he and S. Ferry also have proved Theorem B in the case when M is a Hilbert cube manifold. The author expresses his gratitude to Z. Čerin and R. Daverman who read earlier versions of parts of this paper and pointed out errors and some improvements.
2. Preliminaries. We need the following four results from the work of Coram and Duvall $[\mathbf{1 3} ; \mathbf{1 4}]$. Suppose that $f: E \rightarrow B$ is a proper mapping between locally compact $A N R$'s.

Proposition 1. If f is an approximate fibration and if B is path-connected, then the fiber, $F=f^{-1}(x)$, is well-defined up to shape equivalence; i.e., if $x, y \in B$, then $f^{-1}(x)$ and $f^{-1}(y)$ have the same shape. F is a fundamental absolute neighborhood retract (FANR).

Let $\bar{\pi}_{i}(F, z)$ denote the i th shape homotopy group of F based at $z \in F$.
Proposition 2. Let f be an approximate fibration; then there exists a long exact sequence

$$
\ldots \rightarrow \bar{\pi}_{i}(F, z) \xrightarrow{j_{*}} \pi_{i}(E, z) \xrightarrow{f_{*}} \pi_{i}(B, f(z)) \rightarrow \bar{\pi}_{i-1}(F, z) \rightarrow \ldots
$$

where j_{*} is the homomorphism (map when $i=0$) induced by inclusion.
Suppose that $f: E \rightarrow B$ is a map; let \bar{U} be a cover of B and let $g: X \rightarrow E$ and $H: X \times[0,1] \rightarrow B$ be maps such that $H(x, 0)=f g(x), x \in X$. If there exists $G: X \times[0,1] \rightarrow E$ such that $G(x, 0)=g(x), f G$ and H are \bar{U}-close and whenever $H(x, t)=f g(x)$ for all $t, G(x, t)=f g(x)$ for all t, then f is said to have the regular approximate homotopy lifting property with respect to X.

Proposition 3. If f is an approximate fibration, then f has the regular approximate homolopy lifting property with respect to all spaces.

Proposition 4. If f has the approximate homotopy lifting property for n-cells, $n \geqq 0$, then f is an approximate fibration.

Proposition 5. If f is an approximate fibration and if $U \subseteq B$ is open, then $f \mid f^{-1}(U): f^{-1}(U) \rightarrow U$ is an approximate fibration.

Proof. It is easily seen that $f \mid f^{-1}(U)$ has the approximate homotopy lifting property with respect to n-cells for all $n \geqq 0$. The result follows from Proposition 4.

We use the theory of ends (see [28]). If $f: E \rightarrow B$ is a proper monotone mapping between connected spaces, then f induces a bijection from the ends of E to the ends of B.

Proposition 6. Let $f: E \rightarrow B$ be a proper map of connected $A N R$'s which is an approximate fibration with connected fiber. Let $\left\{U_{i}\right\}$ be a sequence of path-connected neighborhoods of the end ϵ of B such that
6.1. $U_{i+1} \subseteq U_{i}$ for all i.
6.2. The inclusion induced homomorphism $\pi_{1} U_{i+1} \rightarrow \pi_{1} U_{i}$ is an isomorphism for all i.
6.3. $\cap U_{i}=\emptyset$.
6.4. $\pi_{2} U_{i}$ is trivial for all i.

Then, $\left\{f^{-1}\left(U_{i}\right)\right\}$ is a sequence of neighborhoods of the end of E which corresponds to ϵ by the above-mentioned bijection such that
6.5. $f^{-1}\left(U_{i+1}\right) \subseteq f^{-1}\left(U_{i}\right)$ for all i.
6.6. The inclusion induced homomorphism $\pi_{1} f^{-1}\left(U_{i+1}\right) \rightarrow \pi_{1} f^{-1}\left(U_{i}\right)$ is an isomorphism for all i.
6.7. $\cap f^{-1}\left(U_{i}\right)=\emptyset$.

Proof. Fix i and let $b \in U_{i+1}$. By Proposition 2, we have the following commutative diagram

where α_{*} and β_{*} are induced by inclusions and the rows are exact. The proposition follows by the five lemma.

Proposition 7. Let f be an approximate fibration and let $x \in B$. Then $\bar{\pi}_{1}\left(f^{-1}(x), z\right)$ is finitely presented.

Proof. By Proposition 1, $f^{-1}(x)$ is an $F A N R$ and, hence, $\left(f^{-1}(x), z\right)$ is fundamentally dominated by a finite polyhedron (P, p) [3]. By [3], $\bar{\pi}_{1}\left(f^{-1}(x), z\right)$ is isomorphic to a retract of $\pi_{1}(P, p)$ and the conclusion follows from Lemma 1.3 of [33].

Proposition 8. If Theorems A and B are true for approximate fibrations with connected fibers, then Theorems A and B are true for arbitrary approximate fibrations.

Proof. Let $f: E \rightarrow B$ be an approximate fibration whose fiber F is not necessarily connected. Since F is fundamentally dominated by a finite polyhedron (see the proof of the previous proposition), F has a finite number of components. Let $m: E \rightarrow Y$ and $l: Y \rightarrow B$ be the monotone-light factorization of f.

We will now show that l is a covering map. Let $x \in B$ and let $U \subseteq B$ be a closed n-cell which is a neighborhood of x. Let V be a component of $l^{-1}(U)$. From the exact sequence

$$
\pi_{1}(U, b) \rightarrow \pi_{0}\left(f^{-1}(b), e\right) \rightarrow \pi_{0}\left(f^{-1}(U), e\right)
$$

we see that each component of $f^{-1}(b)$ lies in precisely one component of $f^{-1}(U)$. Hence $l \mid V$ is $1-1$ and, thus, is a homeomorphism. Therefore l is a covering map and Y is a n-manifold. Note that it is possible to put a metric \tilde{d} on Y so that l is a local isometry; i.e., there exists $\epsilon_{0}>0$ such that if $\tilde{d}(x, y)<\epsilon_{0}$, then $\tilde{d}(x, y)=d(l(x), l(y))$.

We now claim that $m: E \rightarrow Y$ is an approximate fibration. Let $\epsilon>0$, $g: X \rightarrow E$ and $H: X \times[0,1] \rightarrow Y$ be given such that $H(x, 0)=m g(x)$ for all $x \in X$. We may assume that $\epsilon<\epsilon_{0}$. Let $G: X \times[0,1] \rightarrow E$ be a map such
that $G(x, 0)=g(x)$ and $d(f G(x, t), l H(x, t))<\epsilon$ for all $x \in X$ and $t \in[0,1]$. We now claim that $\tilde{d}(m G(x, t), H(x, t))<\epsilon$; let $A_{x}=\{t \in[0,1] \mid \tilde{d}(m G(x, t)$, $H(x, t))<\epsilon\}$. By using the facts that l is a covering map and a local isometry, it is straightforward to check that A_{x} is both open and closed in $[0,1]$. Thus $m: E \rightarrow Y$ is an approximate fibration and the fiber of m is connected.

If we assume the hypotheses of Theorem A and assume that Theorem A is true for connected fibers, then we can find a locally trivial fiber map $\phi: E \rightarrow Y$ which approximates m. Then $l \phi: E \rightarrow B$ is a locally trivial fiber map which approximates f.

Now, suppose that Theorem B is true for approximate fibrations with connected fibers. By hypothesis, f is homotopic to a Hurewicz fibration f_{0}. Since l is a covering map, this homotopy can be lifted to a homotopy between m and m_{0} where $l m_{0}=f_{0}$. By [31], m_{0} is also a Hurewicz fibration. Now we can apply Theorem B and proceed as above.
3. Proof of Theorem A. Suppose that $f: E \rightarrow B$ is an approximate fibration where E is a closed connected 3 -manifold such that each inessential tame 2sphere in E bounds a 3 -cell and B is a connected n-manifold, $n=1,2$. By Proposition 8, it suffices to consider the case that $F=f^{-1}(b)$ is connected for some $b \in B$.

Lemma 9. If $n=2$, then $\bar{\pi}_{1}(F, e)$ is infinite.
Proof. Suppose that $\bar{\pi}_{1}(F, e)$ is finite. Let U be an open 2 -cell in B and let $b \in U$; by Proposition $5, f \mid f^{-1}(U): f^{-1}(U) \rightarrow U$ is an approximate fibration. It follows from Proposition 2 that $\pi_{1}\left(f^{-1}(U), e\right)$ is isomorphic to $\bar{\pi}_{1}(F, e)$. If $f^{-1}(U)$ is not orientable, then let $\rho: W \rightarrow f^{-1}(U)$ be the oriented double covering. Note that, by covering space theory and Proposition $4, \rho^{\prime}=f_{\rho}: W \rightarrow$ U is an approximate fibration whose fiber F^{\prime} double covers F. It is straightforward to check that $\bar{\pi}_{1}\left(F^{\prime}, e^{\prime}\right)$ is also finite. Thus, it suffices to consider the case when $f^{-1}(U)$ is orientable.

Let $b^{\prime} \neq b$ be an element of U. Again, $f \mid f^{-1}\left(U-b^{\prime}\right)$ is an approximate fibration and it follows from Proposition 2 that $\pi_{1}\left(f^{-1}\left(U-b^{\prime}, e\right)\right.$ is infinite. Since the integers is a homomorphic image of $\pi_{1}\left(f^{-1}\left(U-b^{\prime}\right)\right), H_{1}\left(f^{-1}\left(U-b^{\prime}\right)\right)$ is also infinite. From the exact homology sequence of the pair $\left(f^{-1}(U)\right.$, $\left.f^{-1}\left(U-b^{\prime}\right)\right)$, we see that $H_{2}\left(f^{-1}(U), f^{-1}\left(U-b^{\prime}\right)\right)$ is infinite. But, by duality, $H_{2}\left(f^{-1}(U), f^{-1}\left(U-b^{\prime}\right)\right)$ is isomorphic to $\check{H}^{1}\left(f^{-1}\left(b^{\prime}\right)\right)=\check{H}^{1}(F)$; however, since $\bar{\pi}_{1}(F, e)$ is finite, $\check{H}^{1}(F)$ is also finite, a contradiction.

Lemma 10. If $U \subseteq B$ is an open subset with a finite number of ends, then $f^{-1}(U)$ is homeomorphic to the interior of a compact 3-manifold provided $\bar{\pi}_{1}(F) \neq$ Z_{2}, the cyclic group of order 2 .

Proof. Fix an end ϵ of U and let $\bar{\epsilon}$ be the end of $f^{-1}(U)$ which h corresponds
to ϵ. Let $\left\{U_{i}\right\}$ be a sequence of connected open sets in U such that each U_{i} is a neighborhood of the end $\epsilon, U_{i} \supseteq U_{i+1}$ for each i and $\cap U_{i}=\emptyset$. If $n=2$, we may assume that U_{i} is an open annulus for each i. It follows from Proposition 6 that $\left\{\pi_{1}\left(f^{-1}\left(U_{i}\right)\right)\right\}$ is essentially constant [28] or, in the terminology of [22], π_{1} is stable at the end $\bar{\epsilon}$ of $f^{-1}(U)$. The conclusion follows from [22].

Now, let $n=2$.
Lemma 11. $\bar{\pi}_{1}(F)$ is isomorphic to the integers.
Proof. Let $U \subseteq B$ be an open 2 -cell and let $p \neq q$ be points of U. By Lemmas 9 and $10, f^{-1}(U-\{p, q\})$ is homeomorphic to the interior of a compact 3 -manifold R. By Proposition 2, we have the exact sequence

$$
1 \rightarrow \bar{\pi}_{1}(F) \rightarrow \pi_{1} f^{-1}(U-\{p, q\}) \rightarrow \pi_{1}(U-\{p, q\}) \rightarrow 1 .
$$

Since $\pi_{1} R$ is isomorphic to $\pi_{1} f^{-1}(U-\{p, q\})$, the conclusion follows from [19] and Proposition 7.

Lemma 12. If $U \subseteq B$ is an open 2 -cell, then $f^{-1}(U)$ is homeomorphic to $S^{1} \times \mathbf{R}^{2}$.

Proof. By Lemma 10, $f^{-1}(U)$ is homeomorphic to the interior of a compact 3 -manifold R. Let $\left\{U_{i}\right\}_{i=1}^{\infty}$ be open annuli in U as in the proof of Lemma 10. Since $\pi_{1}($ bdry $R)$ is isomorphic to the inverse limit of $\left\{\pi_{1}\left(f^{-1}\left(U_{i}\right)\right)\right\}$, it follows from the previous lemma and the exact sequence

$$
1 \rightarrow \bar{\pi}_{1}(F) \rightarrow \pi_{1}\left(f^{-1}\left(U_{i}\right)\right) \rightarrow \pi_{1}\left(U_{i}\right) \rightarrow 1
$$

that bdry R is a torus or a Klein bottle. We will now show that the latter cannot occur; hence, to obtain a contradiction, suppose that bdry R is a Klein bottle. Let σ and τ denote generators of $\bar{\pi}_{1}(F)$ and $\pi_{1}\left(U_{i}\right)$, respectively. Since $\pi_{1}\left(f^{-1}\left(U_{i}\right)\right)$ is isomorphic to π_{1} (bdry R), a presentation for $\pi_{1}\left(f^{-1}\left(U_{i}\right)\right)$ is $\left|\sigma^{\prime}, \tau^{\prime}: \tau^{\prime} \sigma^{\prime} \tau^{\prime-1}=\sigma^{\prime-1}\right|$ where σ^{\prime} is the image of σ and τ^{\prime} is some preimage of τ. Consider the commutative diagram

where the vertical maps are induced by inclusion. Note that $\pi_{1}\left(f^{-1}(U)\right)$ is generated by $\gamma_{*}\left(\sigma^{\prime}\right)$ and note that $\gamma_{*}\left(\tau^{\prime}\right)=1$. From the presentation of $\pi_{1}\left(f^{-1}\left(U_{i}\right)\right)$, it follows that $\pi_{1}\left(f^{-1}(U)\right)$ is either trivial or cyclic of order 2 ; this contradicts the exactness of the last row and Lemma 11 . Hence bdry R is a torus; since $\pi_{1}\left(f^{-1}(U)\right)$ is infinite cyclic, R is homeomorphic to a solid torus [27] and the lemma is proved.

Lemma 13. Let $U \subseteq B$ be an open 2 -cell and let $L \subseteq U$ be either a point or a closed 2 -cell; then $f^{-1}(U-L)$ is homeomorphic to $S^{1} \times S^{1} \times \mathbf{R}$.

Proof. Since $U-L$ has two ends, $f^{-1}(U-L)$ is homeomorphic to the interior of a compact 3 -manifold R and, as in the proof of Lemma 12 , bdry R is homeomorphic to the union of two tori. Since $\pi_{1} f^{-1}(U-L)$ is isomorphic to $Z \oplus Z$ and the inclusion of each end induces an isomorphism on fundamental groups, it follows from [15] that R is homeomorphic to $S^{1} \times S^{1} \times[0,1]$.

Lemma 14. Let U be an open 2 -cell in B and let $\left\{U_{1}, U_{2}, \ldots, U_{r}\right\}, r \geqq 2$, be a collection of pairwise disjoint open 2 -cells in U. Then there exists an embedding $\phi: S^{1} \times \Delta^{2} \rightarrow f^{-1}(U)\left[\Delta^{2}\right.$ is a closed 2 -cell $]$ and points $x_{1}, x_{2}, \ldots, x_{r} \in$ bdry Δ^{2} such that
(i) $\phi\left(S^{1} \times\left\{x_{i}\right\}\right) \subseteq f^{-1}\left(U_{i}\right)$;
(ii) the pair $\left(f^{-1}(U), \phi\left(S^{1} \times\left\{x_{i}\right\}\right)\right)$ is homeomorphic to $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{0\}\right)$;
(iii) for each $i, \phi\left(\operatorname{bdry}\left(S^{1} \times \Delta^{2}\right)\right) \cap f^{-1}\left(U_{i}\right) \subseteq \phi\left(S^{1} \times W_{i}\right)$ where W_{1} is an open connected subset of bdry Δ^{2} such that if $i \neq j$, then $W_{i} \cap W_{j}=\phi$.

Proof. Let $p_{i} \in U_{i}$. Since $\pi_{1}\left(U-\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}\right)$ is isomorphic to F_{r}, the free group with r generators, $\pi_{1}\left(f^{-1}\left(U-\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}\right)\right)$ is isomorphic to the semi-direct product $Z \times{ }_{\alpha} F_{r}$ for some action α of F_{r} on Z. By considering the following commutative diagram for each i,

and using Lemma 13, one can show that the action α of F_{r} on Z is trivial and, hence, $\pi_{1}\left(f^{-1}\left(U-\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}\right)\right)$ is isomorphic to the direct product of Z and F_{r}. By Lemma 10, there exists a compact manifold R whose interior is homeomorphic to $f^{-1}\left(U-\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}\right)$; we can assume that $R \subseteq$ $f^{-1}\left(U-\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}\right)$ and bdry $R \subseteq \cup_{i=1}^{n} f^{-1}\left(U_{i}\right)$.

By [19], there exists a fibration $R \rightarrow S$ with the 1 -sphere as fiber and which base S is a compact 2 -manifold with $\pi_{1}(S) \cong F_{r}$. Since $\pi_{1}(R) \cong Z \times F_{r}, R$ is an orientable S^{1}-bundle over S, i.e., the structural group which is the homeomorphisms of S^{1} reduces to the group of orientation preserving homeomorphisms of S^{1} [21]. Since S^{1} is a deformation retract of the latter group, the classifying space for this group is simply-connected. Hence R is the trivial bundle over S, i.e., R is homeomorphic to $S^{1} \times S$. Since bdry R has $(r+1)$ components, bdry S also has $r+1$ components and thus S is a punctured disk. Let Δ^{\prime} be a closed 2 -cell in S which meets each component of bdry S in a connected set. The restriction of the inverse of the above-mentioned homeomorphism from R to $S^{1} \times S$ is the desired homeomorphism.

Lemma 15. Let U, V be open 2 -cells in $B, U \subseteq V$ and let Σ be a 1 -sphere in
$f^{-1}(U)$. The pair $\left(f^{-1}(U), \Sigma\right)$ is homeomorphic to the pair $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{0\}\right)$ if and only if the pair $\left(f^{-1}(V), \Sigma\right)$ is homeomorphic to the pair $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{0\}\right)$,

Proof. Let $D \subseteq U$ be a closed 2 -cell such that $f(\Sigma) \subseteq D$. By Lemma 13, there exist homeomorphisms $h_{1}: S^{1} \times S^{1} \times \mathbf{R} \rightarrow f^{-1}(U-D)$ and $h_{2}: S^{1} \times$ $S^{1} \times \mathbf{R} \rightarrow f^{-1}(V-D)$; by [15], we may assume that $h_{1}(x, t)=h_{2}(x, t)$ for $x \in S^{1} \times S^{1}$ and $t \geqq 0$. The conclusion of the lemma follows from another application of [15].

Lemma 16. Let U_{1}, U_{2}, V be open 2 -cells in $B, U_{1} \cup U_{2} \subseteq V, U_{1} \cap U_{2}=\phi$; let Σ_{i} be a 1 -sphere in $f^{-1}\left(U_{i}\right), i=1,2$, such that the pair $\left(f^{-1}\left(U_{i}\right), \Sigma_{i}\right)$ is homeomorphic to the pair $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{0\}\right)$. Then the triple $\left(f^{-1}(V), \Sigma_{1}, \Sigma_{2}\right)$ is homeomorphic to the triple $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{p\}, S^{1} \times\{q\}\right)$.

Proof. Let $p_{i} \in U_{i}-f\left(\Sigma_{i}\right), i=1,2$, As in the proof of Lemma 14, there exists a compact genus zero surface S with three boundary components and a homeomorphism k of the interior of $S^{1} \times S$ onto $f^{-1}\left(V-\left\{p_{1}, p_{2}\right\}\right)$. Let S_{0} be a component of bdry S such that the interior of some collar neighborhood of $S^{1} \times S_{0}$ in $S^{1} \times S$ is mapped onto a neighborhood of the end of $f^{-1}\left(V-\left\{p_{1}, p_{2}\right\}\right)$ which is determined by $f^{-1}\left(p_{1}\right)$. Let S_{1} be a 1 -sphere in the interior of S such that there exists an annulus $A \subseteq S$ with bdry $A=S_{0} \cup S_{1}$ and $\Sigma_{1} \subseteq$ $k\left(S^{1} \times \operatorname{int} A\right) \subseteq k\left(S^{1} \times\left(S_{1} \cup \operatorname{int} A\right)\right) \subset f^{-1}\left(U_{1}\right)$.

Let $x \in S^{1}$ and consider $\gamma=k\left(\{x\} \times S_{1}\right)$. Note that γ is homotopically trivial in $f^{-1}(V)$ and hence in $f^{-1}\left(U_{1}\right)$. Since $\left(f^{-1}\left(U_{1}\right), \Sigma_{1}\right)$ is homeomorphic to ($S^{1} \times \mathbf{R}^{2}, S^{1} \times\{0\}$), by using [15], one can show that the triple $\left(f^{-1}\left(U_{1}\right)\right.$, $\left.k\left(S^{1} \times S_{1}\right), \Sigma_{1}\right)$ is homeomorphic to ($S^{1} \times \mathbf{R}^{2}, S^{1} \times S^{1}, S^{1} \times\{0\}$). Hence, the closure of the component of $f^{-1}(V)-k\left(S^{1} \times S_{1}\right)$ which contains Σ_{1} is a solid torus in which γ is homotopically trivial. Hence γ bounds a disk in the latter solid torus which meets Σ_{1} in precisely one point. Let \hat{S} be the union of $S-\operatorname{int} A$ and the cone over S_{1}; it is straightforward to extend $k \mid S-$ int A to \hat{S}. The lemma is proved by preforming a similar construction on the boundary component of S which corresponds to p_{2}.

Lemma 17. Let K be a triangulation of B. Then there exists a locally trivial fiber map $g: E \rightarrow B$ such that if $x \in E$ and $\tau \in K$ such that $f(x) \in \tau$, then $g(x) \in$ $N(\tau, K)$, the simplicial neighborhood of τ in K.

Proof. Let v be a vertex of K, let N be the star of v in $K^{\prime \prime}$, the second barycentric subdivision of K and let

$$
\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}=(\text { bdry } N) \cap \bigcup_{\sigma \in K_{1}} \sigma,
$$

where K_{1} is the 1 -skeleton of K. Let $N_{i}{ }^{0}$ be the star of v_{1} in $K^{(t v)}$ and let $N_{i}=$ $N_{i}{ }^{0} \cap N$. By Lemma 14, there exists an embedding $\phi: S^{1} \times \Delta^{2} \rightarrow f^{-1}$ (int N) and points $x_{1}, x_{2}, \ldots, x_{r} \in \operatorname{bdry} \Delta^{2}$ such that $\phi\left(S^{1} \times\left\{x_{i}\right\}\right) \subseteq f^{-1}$ (int $\left.N_{i}\right)$. Choose a homeomorphism $\lambda: \Delta^{2} \rightarrow N$ so that $\lambda\left(x_{i}\right)=v_{1}$. Define g_{1} : image $\phi \rightarrow N$ by $g_{1}(\phi(x, y))=\lambda(y)$ where $x \in S^{1}, y \in \Delta^{2}$. If we repeat this con-
struction for each vertex v of K, we get a fiber map g_{1} over a neighborhood of the 0 -skeleton of K.

Let σ be a 1 -simplex in K; bdry $\sigma=\left\{v, v^{\prime}\right\}$. Let N and N^{\prime} be the stars of v and v^{\prime}, respectively, in $K^{\prime \prime}$ and let $\sigma \cap$ bdry $N=\left\{v_{1}\right\}$ and $\sigma \cap$ bdry $N^{\prime}=$ $\left\{v_{1}{ }^{\prime}\right\}$. Let σ^{\prime} be the subarc of σ such that bdry $\sigma^{\prime}=\left\{v_{1}, v_{1}{ }^{\prime}\right\}$. Let ϕ and ϕ^{\prime} be the embeddings of $S^{1} \times \Delta^{2}$ into $f^{-1}(N)$ and $f^{-1}\left(N^{\prime}\right)$, respectively. Let V be the fourth derived simplicial neighborhood of σ^{\prime}. Note that V does not meet the star (in $K^{(i v)}$) of $v_{i}, i>1$ and the corresponding $v_{i}{ }^{\prime}, i>2$.

Let $\Sigma=\phi\left(S^{1} \times\left\{x_{1}\right\}\right)$ and $\Sigma^{\prime}=\phi\left(S^{1} \times\left\{x_{1}{ }^{\prime}\right\}\right)$ where $x_{1}, x_{1}{ }^{\prime}$ are chosen as above. By Lemmas 15 and 16 , the triple (f^{-1} (int V), Σ, Σ^{\prime}) is homeomorphic to the triple $\left(S^{1} \times \mathbf{R}^{2}, S^{1} \times\{p\}, S^{1} \times\{q\}\right)$. In particular, there exists an annulus $A \subseteq f^{-1}$ (int V) such that bdry $A=\Sigma \cup \Sigma^{\prime}$. Isotope A, keeping $\Sigma \cup \Sigma^{\prime}$ fixed, into general position in f^{-1} (int V) with respect to $\Gamma \cup \Gamma^{\prime}$ where $\Gamma=f^{-1}($ int $V) \cap$ bdry image ϕ and $\Gamma^{\prime}=f^{-1}$ (int $\left.V\right) \cap$ bdry image ϕ. Hence we may assume that int $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ is a finite number of simple closed curves and arcs. Note that these arcs must have their boundary in a component of bdry A.

Suppose that there exists a simple closed curve $\gamma \subseteq A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ such that γ bounds a disk D on A. By choosing a "minimal" curve having this property, we may assume that D contains no points of $\Gamma \cup \Gamma^{\prime}$ in its interior. Suppose that $\gamma \subseteq \Gamma$. Since $\gamma \cap \Sigma=\phi, \gamma$ has to be homotopically trivial and, hence, bounds a disk D^{\prime} on bdry image ϕ. Note that $D \cup D^{\prime}$ bounds a 3 -cell C in $f^{-1}(N \cup V)$ and hence we can find an ambient isotopy h_{t} whose support lies in a small neighborhood of C in $f^{-1}(N \cup V)$ so that h_{1} (bdry image $\left.\phi\right) \cap$ $A \cap C=\phi$. If we choose the neighborhood of C sufficiently small, then the isotopy will keep $\phi\left(S^{1} \times\left\{x_{i}\right\}\right)$ fixed for all i. In order to avoid a plethora of notation, we will replace the symbols $h_{1} \phi$ and $g_{1} h_{1}$ by ϕ and g_{1}, respectively. By induction, we may assume that $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ contain no simple closed curves which are homotopically trivial in A.
Suppose that int $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ contains a simple closed curve γ; then γ and Σ bound an annulus in A. We can find simple closed curves γ_{1} and γ_{2} in $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ such that $\gamma_{1} \subseteq \Gamma, \gamma_{2} \subseteq \Gamma^{\prime}$ and the interior of the annulus $A_{0} \subseteq A$ which is bounded by $\gamma_{1} \cup \gamma_{2}$ does not meet any simple closed curve in $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$. We will replace A by A_{0} and we need to make corresponding changes in g_{1} and ϕ. If $\gamma_{1} \neq \Sigma$, note that γ_{1} and Σ are homotopic in bdry image ϕ; by condition (iii) of Lemma 14, γ_{1} and Σ bound an annulus in bdry image ϕ which misses $\phi\left(S^{1} \times\left\{x_{i}\right\}\right), i>1$. Hence we can find an isotopy which takes Σ to γ_{1} and whose support lies in a small neighborhood of this annulus which also misses $\phi\left(S^{1} \times\left\{x_{i}\right\}\right), i>1$. Similarly, if $\gamma_{1}{ }^{\prime} \neq \Sigma^{\prime}$, then we make the corresponding adjustments. Hence, we may assume that int $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$ consists of at most arcs; this could occur if, for example, $\gamma_{1}=\Sigma$.

Let τ_{0} be an "innermost" arc which meets Σ; i.e., there exists an arc τ_{1} on Σ such that bdry $\tau_{0}=$ bdry τ_{1} and $\tau_{0} \cup \tau_{1}$ is a simple closed curve on A which bounds a disk δ_{1} on A whose interior contains no point of int $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)$
bounds a disk δ_{2} on bdry image ϕ. By using the three cell bounded by $\delta_{1} \cup \delta_{2}$ we make alterations similar to above and replace A by $\operatorname{cl}\left(A-\delta_{1}\right)$. By induction, we may assume that int $A \cap\left(\Gamma \cup \Gamma^{\prime}\right)=\phi$. Note that $f\left(A_{1}\right) \subseteq$ int $\left(N \cup N^{\prime} \cup V\right)$. It is easy to extend $g_{1}: \Sigma \cup \Sigma^{\prime} \rightarrow$ bdry σ^{\prime} to a locally trivial fiber map $g_{2}: A \rightarrow \sigma^{\prime}$. We repeat this construction for each 1 -simplex of K.

Let λ be a 2 -simplex in K and let W be the union of the stars of the vertices of λ in $K^{\prime \prime}$ and the derived neighborhoods V of the 1 -cells used in the above construction. Let λ^{\prime} be the boundary of the 2 -cells λ_{0} in λ which is the closure of the complement of the union of the stars of the vertices of λ. Note that $g_{2}{ }^{-1}\left(\lambda^{\prime}\right)$ is a torus in $f^{-1}(W)$ and there exists a homeomorphism $\xi: S^{1} \times \lambda^{\prime} \rightarrow g_{2}{ }^{-1}\left(\lambda^{\prime}\right)$ such that $g_{2} \xi(x, y)=x$ and $\xi\left(x \times \lambda^{\prime}\right)$ is homotopically trivial in $f^{-1}(W)$. It follows from Lemma 13 and [4] that $g_{2}{ }^{-1}\left(\lambda^{\prime}\right)$ is the boundary of a solid torus T in $f^{-1}(W)$. It is easy to extend ξ to a homeomorphism of $S^{1} \times \lambda_{0}$ to T and then to extend g_{2} to a locally trivial fibre map $g: T \rightarrow \lambda_{0}$. We repeat this construction for each 2 -simplex of K to get the desired fiber map g.

Now, let $n=1$.
Lemma 18. If $\pi_{1}(F) \neq Z_{2}$ and $U \subseteq B$ is a proper connected open subset of B, then $f^{-1}(U)$ is homeomorphic to $T \times \mathbf{R}$ for some 2 -manifold T.

Proof. By Lemma 10, $f^{-1}(U)$ is homeomorphic to the interior of a compact manifold R with two boundary components R_{1} and R_{2}. Note that from the proof of Lemma $10, \pi_{1}\left(R_{i}\right)$ is isomorphic to $\bar{\pi}_{1}(F), i=1,2$, and the inclusion induced map $\pi_{1}\left(R_{i}\right) \rightarrow \pi_{1}(R)$ is an isomorphism. By [4], R is homeomorphic to $R_{1} \times[0,1]$.

Lemma 19. Let K be a triangulation of B and suppose that $\bar{\pi}_{1}(F) \neq Z_{2}$. Then there exists a locally trivial fiber map $g: E \rightarrow B$ such that if $x \in E$ and $\tau \in K$ such that $f(x) \in \tau$, then $g(x) \in N(\tau, K)$.

Proof. Let v be a vertex of K and let U be the open star of v in $K^{\prime \prime}$. By the previous lemma $f^{-1}(U)$ is homeomorphic to $T \times \mathbf{R}$; let T_{v} be the image of $T \times\{0\}$. Suppose that this construction is performed for each vertex of K. Let σ be a 1 -simplex of K, bdry $\sigma=\{v, w\}$, and let V be the open simplicial neighborhood of σ in $K^{\prime \prime}$. By the previous lemma and [4], the connected submanifold W of $f^{-1}(V)$ whose boundary is $T_{v} \cup T_{w}$ is homeomorphic to $T \times$ $[0,1]$. Define $g\left(T_{v}\right)=v, g\left(T_{w}\right)=w$ and extend naturally over W to σ so that g is a locally trivial fiber map.

Theorem A now follows from Lemmas 17 and 19.
4. Proof of Theorem B. Suppose that $f: M \rightarrow S^{1}$ is an approximate fibration satisfying the hypotheses of Theorem B. Let F denote the fiber of f; by Proposition 1, F is an FANR and, hence, has a finite number of components. By Proposition 2, the induced map $f_{*}: \pi_{1} M \rightarrow \pi_{1} S^{1}$ is nontrivial. By Proposition 8,
it suffices to consider the case when F is connected and, hence, f_{*} is assumed onto.

Suppose that f is homotopic to the Hurewicz fibration g and let $\epsilon>0$ be given. Let $p: \mathbf{R} \rightarrow S^{1}$ be the universal covering map and let $q: \tilde{M} \rightarrow M$ be the pullback of p using the map g. Let $\tilde{g}: \tilde{M} \rightarrow \mathbf{R}$ be the natural map such that $p \tilde{g}=g q$. From covering space theory, there exists a map $\tilde{f}: \tilde{M} \rightarrow \mathbf{R}$ such that $p \tilde{f}=f q$ and \tilde{f} is homotopic to \tilde{g}.

Let $\pi: \tilde{M} \times Q \rightarrow \tilde{M}$ and $\pi^{\prime}: M \times Q \rightarrow M$ denote the projection along the first factor. Let $q_{0}=q \times$ identity: $\widetilde{M} \times Q \rightarrow M \times Q$ and let $\tilde{g}_{0}=\widetilde{g} \pi, g_{0}=$ $g \pi^{\prime}, \tilde{f}_{0}=\tilde{f} \pi$ and $f_{0}=f \pi^{\prime}$.

By Chapman and Ferry [11], \tilde{g}_{0} and g_{0} are locally trivial fibre maps whose fibres are compact Q-manifolds. Hence, if Y is a fiber of g, then there exists a homeomorphism $\lambda: Y \times Q \times \mathbf{R} \rightarrow \tilde{M} \times Q$ such that $\tilde{g}_{0} \lambda=\rho$ where $\rho: Y \times$ $Q \times \mathbf{R} \rightarrow \mathbf{R}$ is the projection along the last factor. By Chapman [9], $Y \times Q$ has the homotopy type of a finite polyhedron P and, hence, \tilde{M} has the homotopy type of P.

Let U be a proper connected open subset of S^{1}. By Proposition 5, $f \mid f^{-1}(U)$ is an approximate fibration. By Proposition 2 it follows that the inclusion of F into $f^{-1}(U)$ induces isomorphism $\bar{\pi}_{i}(F) \rightarrow \pi_{i} f^{-1}(U)$ for all i. Let V be an open subset of \mathbf{R} such that $p \mid V$ is a homeomorphism of V onto U; then $q \mid \tilde{f}^{-1}(V)$: $\tilde{f}^{-1}(V) \rightarrow f^{-1}(U)$ is a homeomorphism. Note that \tilde{f} and, hence, $\tilde{f} \mid \tilde{f}^{-1}(V)$ have the approximate homotopy lifting property for n-cells for all n. Again, by Propositions 2 and 4, the inclusion induced homomorphisms $\bar{\pi}_{i}(F) \rightarrow \pi_{i}\left(\bar{f}^{-1}(V)\right)$ and $\bar{\pi}_{i}(F) \rightarrow \pi_{i}(\widetilde{M})$ are isomorphisms for all i. Thus, the inclusion of $\tilde{f}^{-1}(V)$ into \tilde{M} also induces isomorphisms on all homotopy groups; since these spaces are homotopy equivalent to $C W$ complexes [9] [16], this inclusion is a homotopy equivalence [31]. Thus we have the following.

Lemma 20. If U is a proper open connected subset of S^{1}, then $f^{-1}(U)$ is homotopy equivalent to the finite polyhedron P. If $U_{0} \subseteq U$ is a connected open subset, then the inclusion of $f^{-1}\left(U_{0}\right)$ into $f^{-1}(U)$ is a homotopy equivalence.

Lemma 21. Let U be a proper open connected subset of S^{1}. Then there exists a compact connected Q-manifold $Z_{0} \subseteq f_{0}{ }^{-1}(U)$ such that the inclusion is a homotopy equivalence, Z_{0} separates the two ends of $f_{0}{ }^{-1}(U)$ and Z_{0} is collared in the closure of each component of $f_{0}{ }^{-1}(U)-Z_{0}$.

Proof. The proof is essentially contained in [5]; we shall sketch a proof indicating the necessary changes. Let V be an open subset of \mathbf{R} such that $p \mid V$ is a homeomorphism of V onto U.

By using [5] and [6], we can find a compact connected Q-manifold $Z_{1} \subseteq$ $\tilde{f}_{0}^{-1}(V)$ such that Z_{1} separates the ends of $\tilde{f}_{0}^{-1}(V)$ and Z_{1} is collared in the closure of each of the two components, A and B, of $\tilde{f}_{-}^{-1}(V)-Z_{1}$. Let A^{*} and B^{*} be the closure of the components of $(\tilde{M} \times Q)-Z_{1}$ such that $A \subseteq A^{*}$ and $B \subseteq B^{*}$. Since $\tilde{M} \times Q$ is homeomorphic to $Y \times Q \times \mathbf{R}$, it is easy to show that
A^{*} and B^{*} have compact Q-submanifolds which are deformation retracts; hence A^{*} and B^{*} have the homotopy type of finite complexes [9].

We need the following proposition whose proof will be given at the end of the proof of Lemma 21.

Lemma 22. The inclusions $A \hookrightarrow A^{*}$ and $B \hookrightarrow B^{*}$ are homotopy equivalences.
Thus A and B have the homotopy type of finite complex. Let $\alpha_{1}: K \rightarrow A$ be a homotopy equivalence of a finite complex with A; α_{1} may be assumed to be a Z-embedding and can be extended to an open embedding $\alpha_{2}: K \times Q \times[0,1]$ $\rightarrow A[7]$. Using Z-set unknotting [1], it may be assumed that $\alpha_{2}(K \times Q \times\{0\})$ contains Z_{1}. Let $Z_{2}=\alpha_{2}(K \times Q \times\{1 / 2\})$ and let $A_{1}{ }^{*}$ and $B_{1}{ }^{*}$ be the closure of the complements of $M \times Q-Z_{2}$ such that $A^{*}-A \subseteq A_{1}{ }^{*}$. Let $A_{1}=A_{1}{ }^{*} \cap$ $\tilde{f}_{0}^{-1}(V)$ and let B_{1} be the closure of $\tilde{f}_{0}^{-1}(V)-B_{1}$.

As before, $B_{1}{ }^{*}$ has the homotopy type of a finite complex and the inclusion $B_{1} \hookrightarrow B_{1}^{*}$ (see Lemma 22) is a homotopy equivalence. We now perform the same construction in B_{1} to get a compact Q-manifold Z_{3} as we did for finding Z_{2} in $A . Z_{3}$ is the desired submanifold.

Proof of Lemma 22. Since A and A^{*} have the homotopy type of a $C W$ complex $[\mathbf{9} ; \mathbf{1 6}]$, it suffices to show that the inclusion induced homomorphism $i_{*}: \pi_{k}\left(A, x_{0}\right) \rightarrow \pi_{k}\left(A^{*}, x_{0}\right)$ is an isomorphism for all $k \geqq 0$.

Suppose that $\beta:\left(S^{k}, y_{0}\right) \rightarrow\left(A, x_{0}\right)$ represents an element $\pi_{k}\left(A, x_{0}\right)$ whose image under i_{*} is zero; thus β can be extended to a map β : $\left(D^{k+1}, y_{0}\right) \rightarrow\left(A^{*}, x_{0}\right)$ where D^{k+1} denotes the $(k+1)$-cell. Let $z \in \mathbf{R}$ be the limit point of V such that $z \notin V$ and $\tilde{f}_{0}^{-1}(z) \subseteq A^{*}$; let us assume that z is an upper bound of V. Then there exists $y \in V$ such that $\tilde{f}_{0}^{-1}((y, z)) \subseteq A-\beta\left(S^{k}\right)$. Let h_{t} be a strong deformation retraction of \mathbf{R} onto $(-\infty,(z+y) / 2]$ with $h_{0}=$ identity and $\left.h_{t}((z+y) / 2,+\infty)\right)=[(z+y) / 2,+\infty)$ for all $t \in[0,1]$. Since \tilde{f}_{0} has the approximate homotopy lifting property, there exists a homotopy $\beta_{t}: D^{k+1} \rightarrow$ $\tilde{M} \times Q$ such that $\beta_{0}=\beta$ and $\tilde{f}_{0} \beta_{t}$ and $h_{t} \tilde{f}_{0} \beta$ are $(z-y) / 2$-close for all t. Since $h_{t} \tilde{f}_{0} \beta(x)=\tilde{f}_{0} \beta(x)$ for $\left.x \in \beta^{-1} \tilde{f}_{0}\right)^{-1}((-\infty,(z+y) / 2]), t \in[0,1], \beta_{t}(x)=\beta(x)$ for $x \in \alpha^{-1} f_{0}{ }^{-1}((-\infty,(z+y) / 2])$ for all t by Proposition 3. In particular, $\beta_{t}(x)=\beta(x)$ for all $x \in S^{k}$. Since $\tilde{f}_{0} \beta_{t}$ and $h_{t} \tilde{f}_{0} \beta$ are $(z-y) / 2$ close, the image of β_{t} lies in A_{*} for all t and image of β_{1} is contained in A.

The proof for showing that i_{*} is onto is similar.
Lemma 23. Suppose that M is a Q-manifold and let U be a proper open connected subset of S^{1}. Then there exists a compact connected Q-manifold $Z_{0} \subseteq f^{-1}(U)$ such that the inclusion is a homotopy equivalence, Z_{0} separates the two ends of $f^{-1}(U)$ and Z_{0} is collared in the closure of each component of $f^{-1}(U)-Z_{0}$.

Proof. This lemma follows from the previous lemma and the fact that π^{\prime} : $M \times Q \rightarrow M$ is a near homeomorphism [8].

Lemma 24. Suppose that M is finite-dimensional and let U be a proper open connected subset of S^{1}. Then there exists a closed connected codimension one locally flat submanifold $Z_{0} \subseteq f^{-1}(U)$ such that the inclusion map is a homotopy equivalence.

Proof. In order to prove this lemma, we will need the topological analogue of the proof of the main result of Siebenmann's thesis [23;28]; we shall assume familiarity with the definitions of [28]. Let E be an end of $f^{-1}(U)$; by using Proposition 6, it is easily shown that π_{1} is stable at E. Let W be a 1 -neighborhood of E. As in the proof of Lemma 21, we can show that $W \times Q$ has the homotopy type of a finite complex ($W \times Q$ corresponds to A in the proof). Thus W has the homotopy type of a finite complex and Siebenmann's obstruction for putting a boundary on $f^{-1}(U)$ vanishes. The boundary of the $(n-2)$ neighborhood is the desired submanifold.

Choose a triangulation K of S^{1} such that the mesh of K is $\epsilon / 2$. Let the vertices $\left\{v_{i}\right\}_{i=1}^{m}$ of K be indexed so that v_{i} and v_{i+1} form the boundary of a 1 -simplex in $K, i=1,2, \ldots, n-1$. Let U_{i} be the open star of v_{i} in the first barycentric subdivision K^{\prime} of K; let W_{i} be the open star in K^{\prime} of the 1 -simplex whose boundary is $\left\{v_{i}, v_{i+1}\right\}$ for $i \neq n$ and $\left\{v_{n}, v_{1}\right\}$ for $i=n$.

Let N_{i} be the submanifold of $f^{-1}\left(U_{i}\right)$ given by Lemmas 23 and 24 . Since the inclusion of $f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ into $f^{-1}\left(W_{1}\right)$ are homotopy equivalences by Lemma 20, the inclusions of N_{1} and N_{2} into C_{1} are also homotopy equivalences where C_{1} is the compact submanifold of $f^{-1}\left(W_{1}\right)$ whose frontier in $f^{-1}\left(W_{1}\right)$ is $N_{1} \cup N_{2}$. In general, C_{1} is not homeomorphic to $N_{1} \times[0,1]$; the vanishing of the Whitehead torsion $[\mathbf{1 0}]$ of the inclusion map $N_{1} \leftrightarrows C_{1}$ is a necessary and sufficient condition for the existence of such a homeomorphism. We will replace N_{2} by $N_{2}{ }^{\prime}$ which will satisfy this condition; first, we need the following result from [12].

Proposition 25. If N is a Q-manifold and $\mu \in \mathrm{Wh} \pi_{1}(N)$, then there is a decomposition $N \times[0,1]=N^{1} \cup N^{2}$ such that
(1) the N^{i} 's are compact Q-manifolds and $N^{1} \cap N^{2}$ is a bicollared Q-manifold;
(2) $N \times\{0\} \subseteq$ int N^{1} and $N \times\{1\} \subseteq$ int N^{2};
(3) $N \times\{0\} \leftrightarrows N^{1}$ is a homotopy equivalence and μ is the Whitehead torsion of this inclusion.

Lemma 26. The submanifold $N_{2}{ }^{\prime}$ of $f^{-1}\left(U_{2}\right)$ given by Lemmas 23 and 24 can be chosen such that there exists a homeomorphism ξ of $N_{1} \times[0,1]$ onto $C_{1}{ }^{\prime}$ such that $\xi\left(N_{1} \times\{0\}\right)=N_{1}$ and $\xi\left(N_{1} \times\{1\}\right)=N_{2}{ }^{\prime}$.

Proof. If M is finite-dimensional, then $C_{1}-N_{2}$ is homeomorphic to $N_{1} \times$ $[0,1)$ by $[32]$ and the result follows by choosing the image of $N_{1} \times\{t\}$ for t sufficiently close to 1 .

Suppose that M is a Q-manifold. Let $\xi_{0} ; N_{2} \times[0,1] \rightarrow f^{-1}\left(U_{2}\right)$ be an embedding such that $\xi_{0} \mid N_{2} \times[0,1)$ is an open embedding, $\xi_{0}(x, 0)=x$ for
$x \in N_{2}$ and image $\xi_{0} \cap C_{1}=N_{2}$. Let $N^{1} \cup N^{2}=$ image ξ_{0} be the decomposition of image ξ_{0} given by Proposition 25 such that $\mu=i_{2 *}{ }^{-1}\left(-\tau\left(i_{1}\right)\right)$ where $i_{1}: N_{1} \rightarrow C_{1}$ and $i_{2}: N_{2} \rightarrow C_{1}$ are inclusions. Let $W=C_{1} \cup N^{1}$ and consider the following diagram where all maps are inclusion maps.

By construction, $\tau\left(i_{3}\right)=i_{3 *}(\mu)$. By excision [10],

$$
\tau\left(i_{4}\right)=i_{6 *} \tau\left(i_{3}\right)=i_{6 *} i_{3 *}(\mu)=i_{4 *} i_{2 *}(\mu)=i_{4 *}\left(-\tau\left(i_{1}\right)\right)
$$

By the composition formula, $\tau\left(i_{5}\right)=\tau\left(i_{4} i_{1}\right)=\tau\left(i_{4}\right)+i_{4 *} \tau\left(i_{1}\right)=0$. Hence the inclusion of N_{1} into W is a simple homotopy equivalence; by [6], there exists a homeomorphism ξ_{1} from $N_{1} \times[0,1]$ onto W. By using the Z-set unknotting theorem [1], we may assume that $\xi_{1}(x, 0)=x$ for $x \in N_{1}$. If $j: W \rightarrow N^{1} \cap N^{2}$ denotes the homotopy inverse of $i_{6} \mid N^{1} \cap N^{2}$, then it is easily seen that $j i_{5}$: $N_{1} \rightarrow N^{1} \cap N^{2}$ is also a simple homotopy equivalence. By using [1] and [6], we again may assume that $\xi_{1}\left(N_{1} \times\{1\}\right)=N^{1} \cap N^{2} . N_{2}{ }^{\prime}=N^{1} \cap N^{2}$ is our desired submanifold.

By induction, we can replace $N_{3}, N_{4}, \ldots, N_{n}$ by $N_{3}{ }^{\prime}, N_{4}{ }^{\prime}, \ldots, N_{n}{ }^{\prime}$ respectively so that there exists a homeomorphism ξ of $N_{1} \times[1, n]$ into M such that $\xi\left(N_{1}\right) \times\{i\}=N_{i}{ }^{\prime}, i=2, \ldots, n$ and $\xi\left(N_{1}\right) \times\{1\}=N_{1}$. Let C_{0} be the closure of the complement of image ξ in M; note that the frontier of C_{0} in M is $\xi\left(N_{1} \times\{1, n\}\right)$ and the inclusion of each component of the latter set into C_{0} is a homotopy equivalence.

Lemma 27. If there exists a homeomorphism $\mu: N_{1} \times[0,1] \rightarrow C_{0}$ such that $\mu\left(N_{1} \times\{0,1\}\right)=\xi\left(N_{1} \times\{1, n\}\right)$, then there exists a locally trivial fiber map $f: M \rightarrow S^{1}$ such that f and \bar{f} are ϵ-close and, hence Theorem B is proved.

Proof. There is no loss of generality in assuming that $\mu\left(N_{1} \times\{1\}\right)=$ $\xi\left(N_{1} \times\{1\}\right)$ and the covering map $p: \mathbf{R} \rightarrow S^{1}$ is the epimorphism whose kernel is the integers. Define $\bar{f}: M \rightarrow S^{1}$ by $\bar{f}(z)=p(t / n)$ where $z=\xi(x, t)$ or $\mu(x, t) . \bar{f}$ is the desired function.

Lemma 28. The homeomorphism μ exists if the inclusion of $N_{0}=\xi\left(N_{1} \times\{1\}\right)$ into C_{0} is a simple homotopy equivalence.

Proof. If M is finite dimensional, then this lemma is a consequence of the s-cobordism theorem in the topological category [23]. If M is a Q-manifold, then this was essentially proved in the proof of Lemma 26.

Consider $C_{0} \times Q \subseteq M \times Q$; let $\Phi: C_{0} \times Q \rightarrow \tilde{M} \times Q$ be an embedding such that $q_{0} \Phi=$ identity. Let T be the generator of the covering transformation group of $q_{0}: \tilde{M} \times Q \rightarrow M \times Q$ such that $\lambda^{-1} T \lambda(Y \times Q \times\{t\})={ }^{-} Y \times$
$Q \times\{t+1\}$) for all $t \in \mathbf{R}$. (Recall that $p: \mathbf{R} \rightarrow S^{1}$ is the epimorphism whose kernel is the integers.) Pick integers x_{0} and x_{1} such that

$$
\lambda^{-1}\left[\Phi\left(C_{0} \times Q\right) \cup T \Phi\left(C_{0} \times Q\right)\right] \subseteq Y \times Q \times\left(x_{0}+1, x_{1}-1\right)
$$

Let W_{1} be the closure of the component of $Y \times Q \times\left[x_{0}, x_{1}\right]-\lambda^{-1} \Phi\left(N_{0} \times Q\right)$ which contains $Y \times Q \times\left\{x_{0}\right\}$ and let W_{2} be the closure of the component of $Y \times Q \times\left[x_{0}, x_{1}\right]-\lambda^{-1}\left[\Phi\left(N_{0} \times Q\right) \cup T \Phi\left(N_{0} \times Q\right)\right]$ which misses $Y \times Q \times$ $\left\{x_{0}, x_{1}\right\}$.

For $t \in \mathbf{R}$, define $S_{t}: Y \times Q \rightarrow Y \times Q$ by $\lambda^{-1} T \lambda(y, t)=\left(S_{t}(y), t+1\right)$ for $y \in Y \times Q$ and define S from $Y \times Q \times\left[x_{0}, x_{1}\right]$ onto itself by

$$
S(y, t)=\left\{\begin{array}{l}
\left(S_{t}(y), x_{0}+2\left(t-x_{0}\right)\right) \quad t \in\left[x_{0}, x_{0}+1\right] \\
\left(S_{t}(y), t+1\right) \quad t \in\left[x_{0}+1, x_{1}-2\right] \\
\left(S_{t}(y), \frac{1}{2}\left(x_{1}+t\right)\right) \quad t \in\left[x_{1}-2, x_{1}+1\right]
\end{array}\right.
$$

Note that S is a homeomorphism of $Y \times Q \times\left[x_{0}, x_{1}\right]$ onto itself such that $S\left(W_{1}\right)=W_{1} \cup W_{2}$.

Lemma 29. There exists a homeomorphism $\kappa: N_{0} \times Q \times[0,1] \rightarrow W_{2}$ such that $\kappa\left(N_{0} \times Q \times\{0\}\right)=\lambda^{-1} \Phi\left(N_{0} \times Q\right)$ and $\kappa\left(N_{0} \times Q \times\{1\}\right)=\lambda^{-1} T \lambda\left(N_{0} \times Q\right)$.

Proof. Let E be the closure of the component of $Y \times Q \times \mathbf{R}-\lambda^{-1} \Phi\left(N_{0} \times Q\right)$ which contains $Y \times Q \times\left\{x_{0}\right\}$. The inclusion of $\lambda^{-1} \Phi\left(N_{0} \times Q\right)$ into E is a homotopy equivalence. As in the proof of Lemma 26, there exists an embedding $\delta: N_{0} \times Q \times[0,1] \rightarrow E$ such that

$$
\delta\left(N_{0} \times Q \times\{0\}\right)=\lambda^{-1} \Phi\left(N_{0} \times Q\right)
$$

and

$$
Y \times Q \times\left\{x_{0}\right\} \subseteq \delta\left(N_{0} \times Q \times(0,1)\right)
$$

Let W_{0} be the closure of (image δ) $-W_{1}$; note that image $\delta=W_{0} \cup W_{1}$. Since $W_{0} \cap W_{1}$ is a Z-set in $W_{0}, S \mid W_{1}$ can be extended to a homeomorphism of $W_{0} \cup W_{1}$ onto $W_{0} \cup W_{1} \cup W_{2}[\mathbf{1}]$. Since $W_{0} \cup W_{1}$ is homeomorphic to $N_{0} \times Q \times[0,1]$ and $\left(W_{0} \cup W_{1}\right) \cap W_{2}$ is a Z-set in $W_{2}, W_{0} \cup W_{1} \cup W_{2}$ is homeomorphic to $W_{2}[7]$. The composition of these three homeomorphisms gives the desired homeomorphism.

Lemma 30. The inclusion of N_{0} into C_{0} is a simple homotopy equivalence.
Proof. First, note by construction that the pair ($C_{0} \times Q, N_{0} \times Q$) is homeomorphic to the pair $\left(W_{2}, \lambda^{-1} \Phi\left(N_{0} \times Q\right)\right)$. By the previous proposition, the Whitehead torsion of the inclusion of $N_{0} \times Q$ into $C_{0} \times Q$ is trivial; hence, the Whitehead torsion of the inclusion of N_{0} into C_{0} is also trivial and, thus, this map is a simple homotopy equivalence.

By Lemma 28, the proof of Theorem B is completed.
5. Proof of Theorem C. Let X be a nontrivial h-cobordism such that if bdry $X=X_{0} \cup X_{1}$, then the component X_{0} is homeomorphic to X_{1}; such h-cobordisms have been constructed by Milnor [26]. Let $\Phi: X_{0} \times[0,1) \rightarrow$ $X-X_{1}$ be a homeomorphism such that $\Phi(x, 0)=x$ for all $x \in X_{0}[\mathbf{3 2}]$. Define $f^{\prime}: X \rightarrow[0,1]$ by

$$
f^{\prime}(y)= \begin{cases}t & \text { if } y=\Phi(x, t),(x, t) \in X_{0} \times[0,1) \\ 1 & \text { if } y \in X_{1}\end{cases}
$$

Note that f^{\prime} is a continuous map.
Let M be the decomposition space obtained from X by identifying X_{0} with X_{1} by means of some homeomorphism of X_{0} onto $X_{1} . f^{\prime}$ induces a map $f: M \rightarrow$ S^{1} where S^{1} is obtained from $[0,1]$ by identifying 0 with 1 . For each $x \in S^{1}$, $f^{-1}(x)$ is homeomorphic to X_{0}; by [14], f is an approximate fibration. If f were homotopic to a Hurewicz fibration, then it would follow as in the proof of Theorem B that the inclusion of X_{0} into X is a simple homotopy equivalence contradicting the fact that X is a non-trivial h-cobordism.

We leave the proof of Theorem E to the reader.

References

1. R. D. Anderson and T. A. Chapman, Extending homeomorphisms to Hilbert cube manifolds, Pacific J. Math. 38 (1971), 281-293.
2. S. Armentrout, Cellular decompositions of 3-manifolds that yield 3-manifolds, Memoirs Am. Math. Soc. 107 (1971).
3. K. Borsuk, Theory of shape, Aarhus Universitet Matematisk Institut Lecture Notes Series, 28 (1971).
4. E. M. Brown, Unknotting in $M^{2} \times I$, Trans. Am. Math. Soc. 123 (1966), 480-505.
5. T. A. Chapman, Surgery and handle straightening in Hilbert cube manifolds, Pacific J. Math. 45 (1973), 59-79.
6. - Compact Hilbert cube manifolds and the invariance of Whitehead torsion, Bull. Amer. Math. Soc. 79 (1973), 52-56.
7. - On the structure of Hilbert cube manifolds, Compositio Math. 24 (1972), 329-353.
8. Notes on Hilbert cube manifolds, Am. Math. Soc. Regional Conf. Ser. (1975).
9. - All Hilbert cube manifolds are triangulable, (to appear).
10. - Simple homotopy theory for ANR's, (to appear).
11. T. A. Chapman and S. Ferry, Hurewicz fiberings of $A N R$'s, (to appear).
12. T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube manifold, Acta Math. 137 (1976), 171-208.
13. D. S. Coram and P. F. Duvall, Jr., Approximate fibrations, (to appear).
14. - Approximate fibrations and a movability condition for maps, (to appear).
15. C. H. Edwards, Jr., Concentricity in 3-manifolds, Trans. Am. Math. Soc. 113 (1964), 406-423.
16. R. Edwards, (to appear).
17. R. Finney, Uniform limits of compact cell-like maps, Notices Am. Math. Soc, 15 (1968), 942.
18. R. Goad, Local homotopy properties of maps and approximation by fibre bundle projections, Thesis, University of Georgia, 1976.
19. J. Hempel and W. Jaco, 3-manifolds which fiber over a surface, Amer. J. Math. 94 (1972), 189-205.
20. J. F. P. Hudson, Piecewise linear topology (W. A. Benjamin, Inc., 1969).
21. D. Husemoller, Fibre bundles (McGraw-Hill Book Co., 1966).
22. L. Husch and T. Price, Finding a boundary for a 3-manifold, Ann. Math. 91 (1970), 223-235.
23. R. C Kirby and L. C. Siebenmann, Essays on topological manifolds, smoothings and triangulations, (to appear).
24. - On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
25. R. C. Lacher, Cell-like mappings I, Pacific J. Math. 30 (1969), 717-731.
26. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
27. C. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281-299.
28. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Thesis, Princeton University 1965.
29. - A total Whitehead torsion obstruction to fibering over the circle, Comm. Math. Helvetici 45 (1970), 1-48.
30. - Approximating cellular maps by homeomorphisms, Topology 11 (1973), 271-294.
31. E. H. Spanier, Algebraic topology (McGraw-Hill, 1966).
32. J. R. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology (Princeton University Press, 1965), 245-254.
33. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. Math. 81 (1965), 56-59.

University of Tennessee,
Knoxville, Tennessee 37916

