Exploring the nucleosynthesis region of metal-poor Stars

Yuan-Yuan Geng, Dong-Nuan Cui, Jiang Zhang and Bo Zhang

Department of Physics, Hebei Normal University, 113 Yuhua Dong Road, Shijiazhuang 050016, P.R.China
email: gengyuanyuan1982@126.com; zhangbo@hebtu.edu.cn

Abstract. The chemical abundances of the very metal poor double-enhanced stars are excellent information to set new constraints on models of neutron-capture processes at low metallicity. There have been many theoretical studies of s-process nucleosynthesis in low-mass AGB stars. Using the parametric approach based on the radiative s-process nucleosynthesis model, we calculate the following five parameters for a series of metal-poor stars. They are: the mass fraction of 13C pocket q, the overlap factor r, the neutron exposure per interpulse $\Delta \tau$, and the component coefficients that correspond to relative contribution from the s-process and the r-process. We find that the mass fraction of 13C pocket q deduced for the Pb stars is comparable to the overlap factor r, which is about 10 times larger than normal AGB model; $q \sim 0.05$; and the neutron exposure per interpulse $\Delta \tau$ for all Pb stars are about 10 times smaller than the ST case ($\Delta \tau \sim 7.0 \, \text{mb}^{-1}$). Although the two fundamental parameters $\Delta \tau$ and q obtained for the Pb stars are very different from the AGB stellar model, the results of the larger value of q and the smaller value of $\Delta \tau$ can also explain the abundance distribution of the Pb stars. This suggest that the q change to larger than that of normal AGB model. Then, this factor will result in the descent of the density of 13C in the nuclear synthesis region directly. So, the neutron exposure $\Delta \tau$ will also decrease to the same extent. Although the neutron number density in the larger initial mass AGB stars ($m > 3M_\odot$) is high, the neutron irradiation time is shorter, obviously the neutron exposure per interpulse in the AGB stars should be smaller. It is noteworthy that the total amount of 13C in metal poor condition is close to the ST case, which is consistent with the primary nature of the neutron source.

Keywords. Nucleosynthesis, metal-poor Stars

1. Introduction

The elements heavier than the iron peak are made through neutron capture via two principal processes: the r-process and the s-process. In order to investigate the efficiency and sites of the s- and r-process, the elemental abundances of double-rich stars are particularly useful. There have been many theoretical studies of s-process nucleosynthesis in low-mass AGB stars. Unfortunately, however, the precise mechanism for chemical mixing of protons from the hydrogen-rich envelop into the 13C -rich layer to form 13C-pocket is still unknown. This makes it even harder to understand the particular abundance pattern of the s- and r-process elements found in carbon-rich metal-poor stars. The calculated results and discussion are described in sect.2. The conclusions are given in sect.3.

2. Results and Discussion

There are five parameters in the parametric model on s-process nucleosynthesis: the neutron exposure per pulse, $\Delta \tau$, the mass fraction of 13C pocket in the He intershell q,
overlap factor r, Cs and Cr. We explored the origin of the neutron-capture elements in the double-enhanced stars by comparing the observed abundances with predicted s- and r-process contribution. In the AGB model, the overlap factor r and the neutron exposure per pulse, $\Delta \tau$ are the fundamental parameters. The mass fraction of 13C pocket, q is an important parameter in the radiative s-process nucleosynthesis models.

We find the mass fraction of 13C pocket q deduced for the Pb stars is comparable to the overlap factor r, which is larger than normal AGB model $q \sim 0.05$ about 10 times, and the neutron exposure per interpulse $\Delta \tau$ for all Pb stars are smaller than the ST case ($\Delta \tau \sim 7.0 \text{mb}^{-1}$) about 10 times. Although the two fundamental parameters $\Delta \tau$ and q obtained for the Pb stars are very different from the AGB stellar model, the results of the larger value of q and the smaller value of $\Delta \tau$ can also explain the abundance distribution of the Pb stars. This suggests that the q change to larger than that of normal AGB model. Then, this factor will result in the descent of the density of 13C in the nuclear synthesis region directly. So, the neutron exposure $\Delta \tau$ will also decrease to the same extent. Although the neutron number density in the larger initial mass AGB stars ($m > 3M_\odot$) is high, the neutron irradiation time is shorter, obviously the neutron exposure per interpulse in the AGB stars should be smaller.

3. Conclusions

It is noteworthy that the total amounts of 13C in metal poor condition are close to the ST case, which is consistent with the primary nature of the neutron source.

Acknowledgements

We would like to acknowledge the useful comments of a referee. This work is supported by the National Natural Science Foundation of China under grant grant no. 10673002.

References

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Houle, F. 1957, Rev. Mod, Phys. 29, 547

Figure 1. Left: As an example, we show our calculated best-fit results for a CEMP star HE 0338-3945. Right: show our between the mass fraction of 13C pocket in the He intershell q and the overlap factor r is fitted approximately.