ON MEROMORPHIC OPERATORS, II
S. R. CARADUS

1. This paper forms a continuation of (1), extending the concept of a
meromorphic operator to not necessarily bounded, closed linear operators in
complex Banach space. Let 7" denote such an operator with range and domain
in Banach space X. We shall study the class of such operators 7" where A = 0
and A = « are the only allowable points of accumulation of ¢(7°) and every
isolated point of ¢(7") is a pole of R\(1"). We shall write (0, =) to represent
the class of such operators. If A = 0 (A = «) is the only allowable point of
accumulation of ¢ (7°), we shall write I (0) (M (= )) to denote the correspond-
ing class of operators.

If the non-zero points of ¢(7") are eigenvalues of finite multiplicities, then
we shall use the subscript *‘f”’ to denote the corresponding classes, e.g. I (0, =),
etc. We clearly have the inclusions

MO, ) DMO) 2M, MO, =) 2D M(=x) 2D My(),
N0) 2 M,H0) D N,
where I was defined in (1) and N in (2).

For any operator 7', we define n(7") as the dimension of N(7") and d(T") as
the codimension of R(7"). We note that, since we are discussing poles of the
resolvent, there is no ambiguity in speaking of ‘‘finite multiplicity.” For if \,
is such a pole, it is customary to define n(\y — 1") as the algebraic multiplicity
and, if E, is the spectral projection associated with the single point X\, then the
dimension of R(E,) is called the speciral mulizplicity of \o. By (3, Theorem
5.8-A), R(Ey) = N[(Ao — T)™] where m = a(\y), where a(\o) = a(h\¢ — T),
the ascent of A\g — 7. Clearly

n(ho — 1) < dim R(E,)
and by (3, Lemma 1)
dim R(E,) < a(\)n(he — T).
Hence if one of the multiplicities is finite, so is the other.

2. Example. The study of certain differential operators gives rise to elements
of M (= ). The following result is typical; for the proof, see (7).
Let X = L,[¢, 0], 1 < p < o, let a, B be fixed complex numbers, let
q(t) € Cla, b]. Define
D(T) = {x € X :x" is absolutely continuous and
x" € X;x(a) cosa + x' sina = x(b) cos 8 + x'(b) sin g = 0},
Tx = — x" 4+ q(t)x.
Then 7" € M(=).
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3. Decomposition of M0, «).

TuEOREM 1. Every operator T in IM(0, «) can be written as T = T1 + T,
T1Ty =TT,y =0, where Ty € M, Ty € M() in such a way that

1 R\(T) = Ra(T1) + Ra(T2) — 21/

The above assertion is also true if we replace M (0, « ), M, and M () respectively
by EUEf(O, o ), ER, and §.IRf(°° )

Proof. Choose » > 0 such that if C = {\: [\| =7}, then CNo(T) =
Define
NN <N e (D),
a=[{MN>r1Ne(D)]VU{=}.

Then ¢ and o, are spectral sets of 7. If E; and E; are, respectively, the associ-
ated spectral projections, thenitisclearthat E, + Ey; = I, E1 Ey = E; E; = 0.
Define T; = TE;, + = 1, 2. Then certainly T' = T1 + T and

T1T2=T2T1=

Now since o1 does not contain o, it is known from (6, Theorem 5.7-B), that
R(E:) € D(T), so that T is defined on all of X. It is simple to verify that T
is a closed operator so that, by the closed-graph theorem, it must be a member
of B(X).

We now apply the operational calculus for unbounded operators, as discussed
in (6, pp. 287-296), to deduce the remaining assertions of the theorem. Let
D, Dy, and D; be Cauchy domains such that D D o(T), D; D0y, 72 = 1, 2,
Di N\ D, = B, and D;\U D; = D. Let f;(\) be defined to equal 1 when » € D,
and to equal zero elsewhere. We shall write B (D) to denote the boundary of any
Cauchy domain D and +B (D) for the positively oriented boundary.

Then, for any u ¢ D,, we can write, using the above-mentioned operational
calculus,

@ RTY) = RaTE) = + 5 L§

271

+B(D) b — )\f f1(A) Ra(T)an

It 1
o 2md ypopp — A

Ry(T)ax + —-§ —Rx(T)dk

+B(D2) M

_ItE L L) g (ryan
u 2miJ isoym — A

LB [i. §+B<m fl(x>Rx<T>dx]

I 271

1
X [2—m §+B(D) — RA(T)dx]
+ E1R,(T).

I+E2
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Similarly
3) R,(T2) = R.(TE»)

1 1

T2 d wsmy ke — M2(N) R(T)d)
1 1 1 1

= - = Ry(T)ax ; Ry(T)d\

2m J 1poy K WD) * o +B(D b — A M)
g Y. L L 0)R(T)dN

M 2mJ ypoym — A

=@+[L§ L &wm}mn

© 2 J ypoy m — N
E
= _ﬂ_l + EZ RM(T)

Adding (2) and (3) and rearranging, we get (1).
Finally, suppose that every non-zero point of ¢(7") is an eigenvalue of finite
multiplicity for 7. Now, it is not difficult to show that

(4) o(T) =a;, J{0}  (=12).

For consider \¢ € (7)), Ao # 0. Then, if we write E, for the corresponding
spectral projection,

_ O if )\.0 & [N c
5) E,E, = {Eo i € o 1=1,2.
For E; Ey = f(T))fo(T), where we define fo(\) to be 1 near \¢ and zero on the
remaining points of ¢(7). Now f,(T)fo(T) = (fifo) (T) and the result follows
from the definition of f;.

It is clear from (2) and (3) that the only possible points in ¢(7';) are A = 0
or points of ¢(7"). Also, if we consider Ry\(7") near Ao, then Ry (7") has principal
part

0 g

n§=:1 N —=2)"
See (6, p. 306). From this, in conjunction with (2), (3), and (5), it follows
that (4) is valid and that the principal part of R\(7;) equals that of R\(T)
at any X € (7)), A #% 0. In particular, if every non-zero point of ¢(7T") is an
eigenvalue of finite multiplicity for R\(7"), the same must be true for T';. This
concludes the proof.

with B, = (T — \o)" 'E,.

CoROLLARY. Every operator in J(0) (IM,(0)) can be written as the sum of an
operator in M (N) and an operator whose spectrum has no non-zero points.

Proof. Let T € M(0). Since o¢(7T") is bounded, we can choose 7 so that
o2 = { o}. Our assertion then follows. Similarly for 9¢,(0).
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TueoreM 2. If T € M(0, =), then there exist Banach spaces X1, X» which
completely reduce T in the sense that
i) TN X)) S X,
(i) X = X1 ® X,
(iii) of E, s the projection of X onto X ;, then E; is continuous and

E;D(T) < D(T)
fori=1,2.
Moreover, it is possible to choose X ; so that if we write the restriction of T to X ;
as T, then TV € Mand T € M(w) and if x = x1 + x2 15 the decomposition
of x with x; € X, then

Ra(T)x = Ry(TD)x1 + Ry(T?)xs.

Proof. We define X; = R(E;) where E; is defined in the proof of Theorem 1,
so that certainly X; and X, completely reduce 7" as (6, p. 299) shows. By the
restriction of 7" to X;, we mean, of course, that D(7'») = X, N\ D(T") and
TWyx = T'x forx € D(TD), 2 =1,2.

Again, from (6, p. 299), we see that X1 € D(7T) since o; does not contain
N = o, Hence D(I'W) = X, and since this subspace X, is closed, we can
deduce from the closed-graph theorem that 77® € B(X;). Also ¢(7°?) = o,
so that we must now show that each point of ¢(7?) is a pole of R\(7"?). Now
Ry(1T) € B(X,), and it is not difficult to show that R\(7'?) is the restriction
of Ry(T) to X . Forifx; € Xy;and X € p(T) C p(T™)

[ — 1) — (= T0) s,
A=D1 =TD) = (N = D)\ = TO) e,
=\N—=D)UT = TOI\N = TO)"1x, =0
since (\ — TW)~1x, € D(1T'®),
If we now take Ny € o, with \¢ # 0, and consider the principal part of R\(7")

at A = \o, then it is clear that R\ (7?) has principal part at \y consisting of a
finite number of terms. Hence 7V € I and T® € M (= ). Finally

RA(T)x = R(T) (k1 + x2) = RA(TD)xy + RA(T®)xs
for A € p(I") and x € X. This concludes the proof.

4. LEmMa 1. Let (1), 6(1), and n(1") be finite and suppose that p = §(1).
Then, if D(17) has finite codimension 1n X, d(1") is finite.

Proof. By (6, p. 273), we can write
D(T?) = [R(T*) "ND(I7)] ® N(17).

Now #(7?) < pn(T) according to (3, Lemma 1). Hence R(77) M D(1?) has
finite codimension in D(71”) so that R(1?) has finite codimension in X. This
implies that d(7') is finite, for d(1") < d(717).
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THEOREM 3. Let T be a closed linear operator with D(1*) of finite codimension
in X for each k =1,2,.... Let X be a space of infinite dimension and
0= o(T) # C where € denotes the complex plane. Write ®, to denote the
Fredholm region of T that is, ®p is the set of complex numbers N such that
n(A\ = T)anda(\ — T) are finite. Then T € IM,(0) if and only if = € — {0}.

Proof. Let T € M,(0); by definition, (A — 7°) is finite for all X\ £ 0.
Moreover, by (6, Theorem 5.8-A), (A — T) and §(A — T") are finite for all
N = 0 since such \ are either in p(7") or are poles of R\(7"). By Lemma 1,
d(\ — T) is finite for all X 5 0. Hence &, D € — {0}. But &, cannot be the
entire complex plane; for it was shown in (4) that this would entail that X
were finite dimensional.

Conversely, if ®, = € — {0}, then by (5, Theorem 3.3) #()\) has a constant
value K on &, except at certain isolated points at which z(\) > K. Since by
assumption p(7°) # @, it is clear that ®, M p(7") is an open set so that K = 0.
Moreover, by (5, Theorem 3.1), d(\) — n()\) is constant on ®,. Hence we
can deduce that n(\) = d(\) = 0 for all non-zero \ except some isolated points.
Hence the non-zero points of o(7") are isolated. Let Ay be such a point and E,
be the corresponding spectral projection. Then it is known (5, p. 313) that
Xo is a pole of R\(T') if R(E,) is finite dimensional.

We shall denote R(E,) by X, and since E, is continuous, X, is closed and
can therefore be considered as a Banach space. By (6, Theorem 5.7-B),
Xy C D(T) since )\ is a finite point. Moreover, if 77 is the restriction of 7" to
X, then R(T)) C X, and so, by the closed-graph theorem, we can consider
Ty as a member of B(X,) and o¢(7) = {\¢}. We shall show that ®,, = G.
Then by (5, Theorem 3.2), we can deduce that X, is finite dimensional and
so conclude the proof.

Now we have X = X, ® N(E,) from which we can easily deduce that

D(T) = Xo® [N(E,) N D(T1)]
and

(6) R(T — No) = (T = N)Xo @ (" — No)[N(Eo) N D(T)].

Now the restriction of 7" to N(E,) has spectrum o (77) — {\o}, so that 7" — X,
maps N (E,) M D(T") onto N(E). Thus (6) becomes

Suppose now that Xo = R(To — No) @ Y. Then
X =R(Ty— \) ® Y @ N(Ey),

which, by (7), becomes X = R(T" — Ag) @ Y. Hence, since d(I" — \o) is
finite, Y is finite dimensional. Hence d(7Ty — \¢) is finite. Also n(Ty — X)) <
n(T — \¢) so that Ay € ®4,. Since all other X\ are in p(7%), ®5, = €. This
completes the proof.
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CoROLLARY. Let T have the properties assumed in the statement of the theorem.
Thenif T € My(), X is finite dimensional.

Forif T'€ M,(w), ®(T) = G. By (4), this implies that X is finite dimen-

sional.

5. An extension of the operational calculus. The operational calculus
for closed linear operators with non-empty resolvent set which we have used so
far is defined as follows:

We define 9, (T) to be the class of functions which are analytic on some
neighbourhood of ¢(7") and on some neighbourhood of A = . If two such
functions take equal values on some open set containing ¢(7") and A\ = o, we
consider them to be in the same equivalence class; the family of such equi-
valence classes is denoted by (7). The operational calculus as described
in (6, pp. 287-296) defines an algebraic homomorphism f— f(T) of the
algebra A (T") into B(X) by the formula

D) =)+ 55 fOR(TIN

However, this mapping has some unfortunate features:
(1) We begin with possibly unbounded 7" and obtain f(7°) € B(X).
(i1) A, (T) is so restrictive that no non-constant entire function is included.

(iii) For our purposes, we wish to take 7T from (0, ) and obtain
f(T) € M0, ). As in (1), this will necessitate f(0) = 0. But if f € A, (T)
and ¢ (7") has point of accumulation at A = o, then ¢[f(7")] is found to have
point of accumulation at f( ).

A simple step removes these disadvantages. We shall write A,®(T) to
denote the class obtained by applying the above equivalence relation to the
family of functions, analytic on some neighbourhood of ¢(7°) but allowing
a pole at A = . For f € A, P (T), we shall write #(f) to denote the order of
the pole at infinity. Since, by assumption, there exists Ao in p(7"), we observe
that fo(\) € A, (T") where

o
f0(>\) ()\ _ )\0)n<f)+1 .
We define
8) F(I) = fo(T) (T — No)"PH,

where fo(T) is defined by the operational calculus already described. We shall
show that (8) defines an algebraic homomorphism from the algebra A ® (T
into the class of closed linear operators. To begin with, we show that f(7T") is
a closed linear operator with domain D(7™"+), It is easy to prove from the
fact that 7" is closed that 7' — A, is also closed. Moreover, so is (1" — \o)® for
each positive integer s. If we assume that we have shown that (T" — \y)* ! is
closed, then we consider a sequence {x;} in D(7*) such that x; — x and
(" — No)*xx — y. Now by assumption, 7" — Ao has a bounded inverse defined
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on X. Hence (T — \o)*x; — (' — \o)~y and by the inductive hypothesis,
we conclude thatx € D(T* ) and (T — No)*x = (T — No)~ly,i.e.x € D(T?)
and (" — N\o)*x = y. Hence, in particular, (T° — X\¢)®"+! is closed. Finally,
suppose {x;} is a sequence in D(T™9+1) such that x; — x and f(T)x; — 9.
Then fo(T)x; — fo(T)x and (T — No)"PH1fy(T)xy—y as k— . Thus
fo(T)x € D(T™N*) and (T — N)™ P+ fo(T)x = y. But since fo(7T") commutes
with 7, this means that f(7)x = y. Hence f(T") is a closed linear operator.

We observe next that f(T'), defined by (8), is independent of \¢. For suppose
M € p(T) and that we write & = n(f) 4 1; then

® 556 O @ o -y

2mi S 4m0 (A = M)
o5 5 G20 merm e
-5, 5 mma]
<[ 558, G2 meon Jr -

Now

_>\0
(10) I+5ﬁ§w®(k_x)Runﬁ

a;ggs
2mi §+B(D) p (s) ()\ N R\(T)dx

k s, R)\(T)
=7 +Z=‘,0 < ) (A1 — o) 2m oy O M) M)*‘D‘

, R

+SZ; ( > (A1 = Ao)’ [2m §+B(D>xﬁxi(%d"}s
i ( > (A1 — Ao)'[Rn (1)) using (6, Theorem 5.6-G)

=
I

lI
w
=1
-,
Le.;

= (T = 2)'[Rn (D))
Substituting (10) into (9) , we get

[L § ) RX(T)dk:l(T — W)

27r1, +B(D) ()\ —_ >\1)
[21” § —M*R)(T)d)\](T )Y,

and thereby show that our definition of f(T") is independent of the choice of \,.
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We next observe that if f(\) is analytic at A = =, then f(7') given by our
method agrees with that given by the conventional operational calculus for
both unbounded and bounded operators. Moreover, by (6, Theorem 5.6-G3),
if f is a polynomial,

say f(\) = i as \°, then f(T) = }I; as T°.

We next show in routine fashion that the map f— f(7") is an algebraic
homomorphism of the algebra of equivalence classes of A ,® into the class of
closed linear operators with domain and range in X.

Consider f, g € A, ® and suppose that n(f) > n(g). Then it is apparent
that both f(I') 4+ ¢g(7) and (f + g)(7) have the same domain, namely
D(T™O+1), Moreover,

(1) f(T) + g(T) = QMSQM(D)[JCO\)(H>MH

+ (x)( i)nw)“][{x(if)d)\

=+ (D) +2 [<7 _>\>n<g>+1
(f 2) " i in
B 2 i < >"(g)+1Rx(T)d)\
" [ﬁ $ +B@) gm(f = ij)"(”“fmdq
[Zm o R;(){Rn—nm dx](r L a0,

Now

1 Ry(T)

— _ ~\ 1%
271 J sz (N — Ao)k‘”‘ = [Rn(DF,

as we saw in deriving (10) from (9).

This fact, in conjunction with (11), gives the result.

Next, it is quite obvious that (af)(7") = of (T'). Finally, we consider the
operators f(1)g(1") and (fg)T; clearly the latter has domain D (77" +0+1) It
is not difficult to show that f(7)g(7") is also defined on this domain; for if
x € D(TmD+mn+1) - then (T — N\)"9*x € D(T™). We now make use of
(6, Lemma 5.6-E), observing that g(\)/{(A\ — X\)"?} € A_(T). Hence
g(T)x € D(T™N+1) and f(T)g(T)x is well defined. Thus

D(f(1)g(T)) D D(IT™N+ua+1),
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It is not exactly clear that these two domains coincide, but this does not cause
any problems. We show, in fact, that, for x € D (T™)+u@+1)

(12) [(fe) T)(x) = f(De(D)x.
Now -
F()g(T)x = _%ﬂ D) (—)\jf%\);—))ﬁ(—f)—ﬂ Rx(T)d)\:I(T — A"
X _5% o) Z)\—_—gg\—)\o—;—n(—g)ij RX(T)d)\](T — o)
_[L R\(T) ]
T L2md sy A — o X

1 FO)g(N) . ] R P ST
X\ 5. by (8 = Ry Ri(T)ax (T — o) x

Ry, (1) (fg) (T — No)x = (fg) (T)x.

It should be observed that, for any z € A, #(T") commutes with 7" and hence
the above rearrangements are valid.

6; We now apply the operational calculus defined in §5 to operators in
classes considered in §1. By virtue of Theorem 1, we may confine our attention
to the classes M (=) and M ,(= ). For, if T" € M (0, «), then using the notation
of Theorem 1, we have, if we write & = n(f) + 1,

1 _f) L I o
f052[29§wwmx—me“nMx+2ﬂ 2o (n — hgyt (L)

_ 1 _2@)_]
oyl SIS vowas wil Ll (RO

Now 71 € M so that the first integral is f(7"1). The properties of f(7T;) were
studied in (1). The third integral is evidently a scalar. Hence we can write

AT) = f(T) + [(T2) — (AT — No)*
where
_ 1 2f(\)
«(f) =5 AN — No)
Therefore only the nature of f(7";) requires elucidation.
THEOREM 4. Let T € M(w) and f € AP — A,. Then f(I') € M(»). If

o 15 @ non-zero point in the spectrum of f(T') and E, is the corresponding spectral
projection, then

Z d\.

E0=ZEn

nes

where E, is the spectral projection associated with N\, € o(T) and T and

S = {nf()\n) = #0}'

https://doi.org/10.4153/CJM-1967-067-2 Published online by Cambridge University Press


file:///_2wi
file:///_2wiJ
https://doi.org/10.4153/CJM-1967-067-2

746 S. R. CARADUS

Proof. If g, is the order of the pole of R\(T) at A = \,, then by (7), it is
possible to develop Ry (T') in a Mittag-Leffler expansion similar to that obtained
when T was in . Without loss of generality, let us assume that \¢ = 0 so that
T-1 € B(X). Then we can find integers {p,}, operator-valued polynomials
P,®(\), and operators Q, € B(X) such that

(13) R(T) = 3 15,00 — (”">(x>1+n2';on \"

n=1

where

@ (T — )"
S:(\) = ; N E
and

ﬂ . .
P,2°(\) = =Y, T'A"E,
i=1

It is shown in (7) that by suitable choice of {p,} we can obtain uniform
convergence of (13) for N € B(D). Proceeding as in (1, Theorem 6), we write

(14)  R.((T)) = [e — FOOI7" Ra(T)dN

27T’L B(D)

=S_: [Zﬂlnk(T'— >\n)k— E, +Z I 1T_kﬂ:|

+2 0L
defining
_ _1_ _ —k _ —k
In,k - 271_1 P [IJ’ f()\)] (7\ )\n) d)\)
_ 1 _ —1.\%
L =5—= 5o (v — F)]T N ah.

As shown in (1), I,,; is analytic except for a pole of order not greater than
k at p = f(\). On the other hand, N/(up — f(\)) is analytic in D except
possibly at A = .

If A = o is not a singularity of A*/(u — f(\)), then I, = 0. If, however,
f(\) has a pole of order p at A\ = «, we can write, for large |A],

) —S< > +;at :

where s(\) is an entire function. Hence

y4
p—=fQ\) = _S<%> +u _;atkt-
Now
1
21I"l: +B(D)

[w —fON]” IAFIN = — ——§ e — FQ1/0)] I
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when we make the substitution A\ = 1/¢ and write F for the image of +B(D).
Now

§k+2[.“ —fQA/0l = —§‘k+2s(§‘) + (b — ao)g-k“ _ tz::lalg_k—zw

will have a zero at { = 0 if 2 + 2 > p. Hence [u — f(1/¢)]7¢*2 will have
a pole of order & + 2 — p at ¢ = 0. Therefore

1

s p—— D [[u — f(A/] ¢ om0

I,

writing D = d/d¢.

If we write ® = {?[u — f(1/¢)] and © = &1, then we can easily calculate
I, by using the determinantal expression obtained in the proof of (1, Theorem
6) and, in so doing, we find that I is a polynomial in u. Hence when we now
examine (14), we can conclude that R,[f(T)] has poles at f(\,). If o(T) is
finite, then o[f(7")] consists of a finite number of poles; if ¢(7") is infinite,
. — o and by choice of f, f(\,) — . Hence in either case f(7") € M ().

The remaining assertions of the theorem can now be proved exactly as in
(1) since only the I, enter into the argument and the definitions of I, are
the same in both cases. This concludes the proof.

COROLLARY. If T € M, () and f € AP — Uy, then f(T) € M;().

Proof. Every E, has finite-dimensional range, so since S is obviously a
finite set for each wo € o[f(T)], the spectral projection E, associated with uo
and f(T) has finite-dimensional range. Since N(uo — f(7)) C R(E,), the
conclusion follows.

CoROLLARY. Let T € M () (M;()). Then, for each X € p(T), Ru(T) € M
N). In particular if 0 € p(T), T-1 € M (RN).

Proof.

1 1
R)‘(T) B 27['1 +B(D) A — M

R, (T)dp.

By the spectral mapping theorem, (6, p. 302),
o[RA(T)] = {1/ (N — p): u € ae(T)}.
The result now follows.

Remark. The above corollary shows that the class I (=) includes operators
with compact resolvent.
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