
ON MEROMORPHIC OPERATORS, II 

S. R. CARADUS 

1. This paper forms a continuation of (1), extending the concept of a 
meromorphic operator to not necessarily bounded, closed linear operators in 
complex Banach space. Let T denote such an operator with range and domain 
in Banach space X. We shall s tudy the class of such operators T where X = 0 
and X = oo are the only allowable points of accumulat ion of a(T) and every 
isolated point of a(T) is a pole of R\(T). We shall write 93?(0, oo ) to represent 
the class of such operators. If X = 0 (X = ° ° ) i s the only allowable point of 
accumulation of o (T), we shall write 2)1(0) (9W(o° )) to denote the correspond
ing class of operators. 

If the non-zero points of <r{T) are eigenvalues of finite multiplicities, then 
we shall use the subscript " / " to denote the corresponding classes, e.g. 9W/(0, oo ), 
etc. We clearly have the inclusions 

sj)?(0, oo) 3 g)f!(0) 3 9#, 5K(0, oo) 3 gR(~) 2 g » / » ) , 

9M(0) 3 2»/(0) 3 9Î, 

where 9)? was defined in (1) and 9i in (2). 
For any operator T, we define n(T) as the dimension of N(T) and d(T) as 

the codimension of R(T). We note tha t , since we are discussing poles of the 
resolvent, there is no ambigui ty in speaking of * 'finite mult ipl ici ty ." For if Xo 
is such a pole, it is cus tomary to define n(\0 — T) as the algebraic multiplicity 
and, if £ 0 is the spectral projection associated with the single point X0, then the 
dimension of R(E0) is called the spectral multiplicity of Xo. By (3, Theorem 
5.8-A), R(E0) = N[(\o - T)m] where m = a(X0), where a(X0) = a(\0 - T), 
the ascent of X0 — T. Clearly 

n(X0 - T) < d i m i ? ( £ 0 ) 
and by (3, Lemma 1) 

dimi?(£0) <a(\o)n(\0 - T). 
Hence if one of the multiplicities is finite, so is the other. 

2. E x a m p l e . T h e s tudy of certain differential operators gives rise to elements 
of §D?(co). The following result is typical ; for the proof, see (7). 

Let X = Lp[a, b], 1 < p < <*, let a, /3 be fixed complex numbers , let 
q(t) e C[a, b]. Define 

D(T) = {% Ç X : %' is absolutely continuous and 

x" G X; %{a) cos a + xf sin a = x(b) cos /3 + x'(b) sin 13 = 0}, 

Tx = — x" + a(t)x. 

T h e n T G 2»(oo). 
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738 S. R. CARADUS 

3. Decomposition of 2ft(0, °°). 

THEOREM 1. Every operator T in 9ft (0, » ) can be written as T = T\ + T2, 
Ti T2 = T2 Ti = 0, wftere Ti 6 9ft, r 2 G 3ft(oo ) w such a way that 

(1) -Rx(r) = -Rx(ro + i?x(^) - 2//x. 
r/^e a&<W£ assertion is also true if we replace 9ft (0, °o ), 9ft, and 9ft (°° ) respectively 
6y 9K/(0, œ ), JR, a ^ 9 f t / ( œ ) . 

Proo/. Choose r > 0 such that if C = {X: |X| = r}, then CC\<i(T) = 0. 
Define 

en = {X: |X| < r) H o - ( r ) , 
<r2 = [{X: |X| > r} H ( 7 ( r ) ] U { o o } . 

Then ci and o-2 are spectral sets of T. If E\ and E2 are, respectively, the associ
ated spectral projections, then it is clear that E± + £ 2 = 7, E\ E2 = E2 Ei = 0. 

Define Tt = ZJE*, i = 1, 2. Then certainly T — T\ + T2 and 

Tx T2 = T2 Ti = 0. 

Now since <n does not contain °o , it is known from (6, Theorem 5.7-B), that 
R(Ei) C D(T), so that 7\ is defined on all of X. I t is simple to verify that T\ 
is a closed operator so that, by the closed-graph theorem, it must be a member 
of B(X). 

We now apply the operational calculus for unbounded operators, as discussed 
in (6, pp. 287-296), to deduce the remaining assertions of the theorem. Let 
P , Di, and D2 be Cauchy domains such that D 3 (r(T), Dt 2 <ru i = 1, 2, 
S i H Z>2 = 0, and A U D 2 = £>. Let/<(\) be defined to equal 1 when X G S* 
and to equal zero elsewhere. We shall write B (D) to denote the boundary of any 
Cauchy domain D and +B(D) for the positively oriented boundary. 

Then, for any /x $ Di, we can write, using the above-mentioned operational 
calculus, 

(2) 2 ^ ) = iUTO = ̂  + ± §+B(D) — ^ y *(D<*X 

H Z-Kl J +B(Di) M — A ^ÎTÎ J +B(D2) M 

/x Zwl J +B(D) M — X 

L.Zi7TÎ J \X \_Z1TI J +B(D) 

+ E1R,(T). 

+B(D) H — \ 
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Similarly 

(3) R„(T2) = R»(TEi) 

JirtJ + B y » fi — A/2 (A J 

= —. S -R>(T)d\ + iy--£ - ~ R x ( T ) d \ 

= — + v~A -J-T/2(x)i?x(r)^x 
H Am J +S(D) (j. — X 

M L^TTt J +B(D) M — A 
•/2(r) 

= ^ + E2R,(T). 

Adding (2) and (3) and rearranging, we get (1). 
Finally, suppose that every non-zero point of <r(T) is an eigenvalue of finite 

multiplicity for T. Now, it is not difficult to show that 

(4) a(Tt) = c7,U{0} ( i = 1,2). 

For consider Xo G c(T)> Ao ^ 0. Then, if we write E0 for the corresponding 
spectral projection, 

For EiEo = fi(T)fo(T), where we define /o(X) to be 1 near X0 and zero on the 
remaining points of a(T). Now fi(T)f0(T) = (ftfo)(T) and the result follows 
from the definition of ft. 

It is clear from (2) and (3) that the only possible points in cr(7\) are X = 0 
or points of CT(JT). Also, if we consider R\(T) near Xo, then R\(T) has principal 
part 

a(Xo) T> 

E T^T^ w i t h B n = (T- Xo)B-1£o. 
n=l VA — A o ; 

See (6, p. 306). From this, in conjunction with (2), (3), and (5), it follows 
that (4) is valid and that the principal part of R\(T^) equals that of R\(T) 
at any X 6 <r(7\), X ̂  0. In particular, if every non-zero point of <r(T) is an 
eigenvalue of finite multiplicity for R\(T), the same must be true for Tt. This 
concludes the proof. 

COROLLARY. Every operator in 2)1(0) (2)1/(0)) can be written as the sum of an 
operator in Wl (9Î) and an operator whose spectrum has no non-zero points. 

Proof. Let T G 2)?(0). Since <r(T) is bounded, we can choose r so that 
0-2 = { °°}. Our assertion then follows. Similarly for 2)t/(0). 
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THEOREM 2. If T G 9JÎ(0, a>), £/zen JAgre a w l Banach spaces Xi,X2 which 
completely reduce T in the sense that 

(i) rcD(r)nx,)çx„ 
(ii) I = I i © X2, 

(iii) if Ei is the projection of X onto Xu then Et is continuous and 

EtD(T) QD(T) 
for i = 1,2. 

Moreover, it is possible to choose Xt so that if we write the restriction of T to Xt 

as T(i), then T{1) G 2ft and T{2) G ïft(oo ) and if x = Xi + x2 is the decomposition 
of x with xt G X^ then 

Rx(T)x = Rx(T^)x1 + Rx(T^)x2. 

Proof. We define Xt = R(Et) where Et is denned in the proof of Theorem 1, 
so that certainly Xi and X2 completely reduce T as (6, p. 299) shows. By the 
restriction of T to X t, we mean, of course, that D{T{i)) = XtC\ D(T) and 
T^x = Tx for x G D(T™), i = 1, 2. 

Again, from (6, p. 299), we see that X\ Ç D(T) since ci does not contain 
X = oo. Hence D(T{1)) = Xu and since this subspace Xi is closed, we can 
deduce from the closed-graph theorem that T(1) G B(Xy). Also a(T{i)) = cr^ 
so that we must now show that each point of <j(T{i)) is a pole of R\(l^(i)). Now 
RK(TW) G B(Xi), and it is not difficult to show that R\(T^) is the restriction 
of RX(T) to Xt. For if *< G Xt and X G p(T) C P ( r ^ ) ) 

[(x - r)-1 - (x - r^) - 1 ]^ 
= (x - r)-![(x - r«>) - (x - r)](x - r ^ ) - 1 ^ 
= (x - D-^r - r«>](x - r^))-^, = o 

since (X - 7™)"1*, G D(T™). 
If we now take X0 G o-* with Xo ̂  0, and consider the principal part of R\(T) 

at X = X0, then it is clear that R\(T{i)) has principal part at X0 consisting of a 
finite number of terms. Hence T(1) G $ft and T(2) G 2ft (°°). Finally 

for X G p(ï") a n d x £ X. This concludes the proof. 

4. LEMMA 1. Le£ OL(T), d(T), and n(T) be finite and suppose that p = 5(7"). 
Then, if D(TP) has finite codimension in X, d(T) is finite. 

Proof. By (6, p. 273), we can write 

D(Tp) = [R(Tp) H D(P>)] 0 N(P>). 

Now n{T*) < ^w(r) according to (3, Lemma 1). Hence R{TP) Pi D(T») has 
finite codimension in D(TV) so that R{TV) has finite codimension in X. This 
implies that d(T) is finite, for d(T) < d(P>). 
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T H E O R E M 3. Let T be a closed linear operator with D(Tk) of finite codimension 
in X for each k = 1, 2, . . . . Let X be a space of infinite dimension and 
0 ^ <r(T) 9^ £ where 6 denotes the complex plane. Write $T to denote the 
Fredholm region of T; that is, $T is the set of complex numbers X such that 
n(\ — T) andai\ — T) are finite. Then T £ 9W/(0) if and only if $T = (S — {0}. 

Proof. Let T Ç 2W,(0); by definition, n(\ - T) is finite for all X ^ 0. 
Moreover, by (6, Theorem 5.8-A), a(\ — T) and <5(X — T) are finite for all 
X ^ 0 since such X are either in p(T) or are poles of R\(T). By Lemma 1, 
d(\ — T) is finite for all Â ^ O . Hence <$>T ~D S - {0}. But <$>T cannot be the 
entire complex plane; for it was shown in (4) t ha t this would entail t ha t X 
were finite dimensional. 

Conversely, if $T = (£ — {0}, then by (5, Theorem 3.3) n(\) has a constant 
value X o n $ T except a t certain isolated points a t which n(\) > K. Since by 
assumption p(T) 9e 0, it is clear t ha t $T P\ p(T) is an open set so t ha t K = 0. 
Moreover, by (5, Theorem 3.1), d(\) — n(\) is constant on <J>r. Hence we 
can deduce tha t n(\) = d(\) = 0 for all non-zero X except some isolated points. 
Hence the non-zero points of or (2") are isolated. Let X0 be such a point and E0 

be the corresponding spectral projection. Then it is known (5, p. 313) tha t 
X0 is a pole of R\(T) if R(E0) is finite dimensional. 

W e shall denote R(Eo) by X 0 and since £ 0 is continuous, X0 is closed and 
can therefore be considered as a Banach space. By (6, Theorem 5.7-B), 
X0 Ç D(T) since X0 is a finite point. Moreover, if T0 is the restriction of T to 
XQ, then R(T0) C X0 and so, by the closed-graph theorem, we can consider 
To as a member of B(X0) and cr(r0) = {X0}. We shall show tha t $To = (S. 
Then by (5, Theorem 3.2), we can deduce tha t X 0 is finite dimensional and 
so conclude the proof. 

Now we have X = XQ © N(E0) from which we can easily deduce tha t 

D(T) = X0® [N(E0)nD(T)] 
and 

(6) R(T - Xo) = (T - Xo)X0 0 (T - \0)[N(E„) H D(T)]. 

Now the restriction of T to N(EQ) has spectrum a(T) — {X0}, so tha t T — Xo 
maps N(E0) H D(T) onto N(E0). Thus (6) becomes 

(7) R(T - Xo) = R(T0 - Xo) © N(Eo). 

Suppose now tha t X0 = R(To — X0) © F. Then 

X = R(T0- Xo) © F © 7 V ( £ 0 ) , 

which, by (7), becomes X = R(T — X0) © F. Hence, since d ( T — X0) is 
finite, F is finite dimensional. Hence d(T0 — X0) is finite. Also n(T0 — X0) < 
n(T — Xo) so tha t X0 G $ro- Since all other X are in p(T 0 ) , $ T o

 = S. This 
completes the proof. 
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COROLLARY. Let T have the properties assumed in the statement of the theorem. 
Then ifT Ç 3K;(co) , I is finite dimensional. 

For if T G -M/(oo), $ ( r ) = (5. By (4), this implies that X is finite dimen
sional. 

5. An extension of the operational calculus. The operational calculus 
for closed linear operators with non-empty resolvent set which we have used so 
far is defined as follows: 

We define %œ{T) to be the class of functions which are analytic on some 
neighbourhood of a(T) and on some neighbourhood of X = <». If two such 
functions take equal values on some open set containing <r(T) and X = œ, we 
consider them to be in the same equivalence class; the family of such equi
valence classes is denoted by §Iœ(r). The operational calculus as described 
in (6, pp. 287-296) defines an algebraic homomorphism f—>f(T) of the 
algebra 2ïœ(T) into B(X) by the formula 

f(T) =f(°°)I+ -!-<£ f(\)Ri(T)d\. 
Lltl J +B(D) 

However, this mapping has some unfortunate features: 
(i) We begin with possibly unbounded T and obtain/(T) G B{X). 

(ii) %œ(T) is so restrictive that no non-constant entire function is included. 
(hi) For our purposes, we wish to take T from $D?(0, °° ) and obtain 

f(T) e 2K(0, œ). As in (1), this will necessitate / (0) = 0. But if / Ç 2Iœ(r) 
and a(T) has point of accumulation at X = °°, then cr[f(T)] is found to have 
point of accumulation a t / (°o ). 

A simple step removes these disadvantages. We shall write %œ
iP) (T) to 

denote the class obtained by applying the above equivalence relation to the 
family of functions, analytic on some neighbourhood of a(T) but allowing 
a pole at X = oo. For / Ç %çJ-v){T)y we shall write n(f) to denote the order of 
the pole at infinity. Since, by assumption, there exists X0 in p{T), we observe 
that/0(X) £ 2ïœ(r) where 

MV - (X _ Xo)n(/)+l . 

We define 

(8) f(T) =/o(r)(r-Xo)»^+1, 
where fo(T) is defined by the operational calculus already described. We shall 
show that (8) defines an algebraic homomorphism from the algebra ^m

(p)(T) 
into the class of closed linear operators. To begin with, we show tha t / (T ) is 
a closed linear operator with domain P(r w ( / ) + 1 ) . It is easy to prove from the 
fact that T is closed that T — X0 is also closed. Moreover, so is (T — X0)

s for 
each positive integer 5. If we assume that we have shown that (T — X0)

s_1 is 
closed, then we consider a sequence {xk} in D(TS) such that and 
(7" — \o)sxk —>y. Now by assumption, T — X0 has a bounded inverse defined 
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on X. Hence (T — Xo)s-1^—> (T — Xo)"1^ and by the inductive hypothesis, 
we conclude that a € D(Ts~l) and (T - Ao)5"1* = (T - Ao)""1?, i.e. x G D(TS) 
and (T — A0)

sx = y. Hence, in particular, (T — A0)n(/)+1 is closed. Finally, 
suppose {xk} is a sequence in D(rw ( / ) + 1) such that xk —» x and f(T)xk —» 3/. 
Then f0(T)xk^fo(T)x and ( r - A0)w(/)+1/o(7>* ->y as * - > « . Thus 
/ o ( 7 > G D( r^H- i ) and (T - A0)n ( / ) +Vo(7> = 3/. But s ince/ 0 ( r ) commutes 
with T, this means that f(T)x = y. Hence f{T) is a closed linear operator. 

We observe next that/(3n), defined by (8), is independent of \0. For suppose 
Ai 6 p(T) and that we write k = n(f) + 1; then 

(9) 

Now 

<10> / + 2s f w „(^)* R < W 

='+àf+,m§C)(^f)'*w 

= J + ± <£ Rx(T)d\ 

= È (*) Oi - Xo)5[i?Xx(r)]s using (6, Theorem 5.6-G) 

= (r-x0)*t^i(r)]*. 

Substituting (10) into (9) , we get 

and thereby show that our definition oîf(T) is independent of the choice of A0. 

https://doi.org/10.4153/CJM-1967-067-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-067-2


744 S. R. CARADUS 

We next observe that if/(X) is analytic at X = <», t h e n / ( r ) given by our 
method agrees with that given by the conventional operational calculus for 
both unbounded and bounded operators. Moreover, by (6, Theorem 5.6-G), 
if / is a polynomial, 

k k 

say /(X) = Ê a. Xs, then f(T) = £ as Ts. 
0 0 

We next show in routine fashion that the map f—>f(T) is an algebraic 
homomorphism of the algebra of equivalence classes of §lœ

(/,) into the class of 
closed linear operators with domain and range in X. 

Consider / , g G §l00
(2?) and suppose that n(f) > n(g). Then it is apparent 

that both f(T)+g(T) and (J+g)(T) have the same domain, namely 
£(7W)+i) . Moreover, 

(ID /m+*m = M U)(^)"w* 
+B(D) 

Rx(T)d\ 
X - X 

1 r (T — ^ V ( ? ) + 1 

= (f + e)(r) + s ~ ^ + i > œ ] £ < x ) ( ^ J «>(rMx 

( r - Xo)"(/)""(s). X L 2 « J (X - Xo)"^-"^ dX. 
Now 

-4 fx(T) -kd\= [Ru(T)T 
+B(D) VA — A 0 ; 

as we saw in deriving (10) from (9). 
This fact, in conjunction with (11), gives the result. 
Next, it is quite obvious that (otf)(T) = af(T). Finally, we consider the 

operators f(T)g(T) and (Jg)T; clearly the latter has domain £>(:p(/)+*<*)+i). It 
is not difficult to show tha t / ( !F)g( r ) is also defined on this domain; for if 
x e DiT»™**™*1), then (T - X0)^ )+1x G D(Tn^). We now make use of 
(6, Lemma 5.6-E), observing that g(\)/{ (X - \0)

n(g)} £ %œ(T). Hence 
g(T)x G D(Tn^+1) and f(T)g(T)x is well defined. Thus 

D(f(T)g(T)) D Z ^ r ^ - w t f + i ) . 
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I t is not exactly clear t ha t these two domains coincide, bu t this does not cause 
any problems. We show, in fact, tha t , for x 6 D{Tn^)+n^+1)1 

(12) l(fg)T](x) = f(T)g(T)x. 

Now 

f(T)g(T)x = h r 7 * T ^ T W F I MT)dX 
\_2wi J +B(D) (X — Xo) 

+B(D) (X — Xo) 

+B(Z>) X — Xo 

( r - x0)n(/)+1 

( r - Xo)B(!"+1 x 

\_2wiJ. 

Y [ l X /(X)g(x) / r w x l - r 
L ^ « J +B(D) (X — Xo) J 

Xo): w(/)+w(^)+2 
X 

+B(D) (X — Xo)"2 

= Ru(T)(fg)(T)(T - Xo)* = (fg)(T)x. 

I t should be observed that , for any h £ 3lœ, ^ (T ) commutes with T and hence 
the above rearrangements are valid. 

6 ; We now apply the operational calculus defined in §5 to operators in 
classes considered in §1. By vir tue of Theorem 1, we may confine our a t tent ion 
to the classes 9ft ( °o ) and 9ft/( °° ). For, if T £ 9ft (0, 00 ), then using the notat ion 
of Theorem 1, we have, if we write k = n(f) + 1, 

-4 
ITTI J . 

* & - , * 
+B(D) X(X — Xo) 

(T - \o)k. 

Now 7 \ £ 9}? so t ha t the first integral i s / ( 7 \ ) . The properties of / ( 7 \ ) were 
studied in (1). The third integral is evidently a scalar. Hence we can write 

f(T) =/(r1) +/(r2) - a(f)(T - Xo)4 

where 

^ = àf 2/(X) , x 

X ( X - X o ) ^ X -

Therefore only the nature of f(T2) requires elucidation. 

T H E O R E M 4. Let T £ 9 f t O ) a»d / £ 2UP ) - SI,,. Then f(T) £ 9 f t O ) . / / 
/xo w a non-zero point in the spectrum off(T) and E0 is the corresponding spectral 
projection, then 

EQ = 2-J En 

nes 

where En is the spectral projection associated with \n £ <r(T) and T and 

S = {n :f(\n) = Mo}. 
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Proof. If qn is the order of the pole of R\(T) at X = Xw, then by (7), it is 
possible to develop R\(T) in a Mittag-Leffler expansion similar to that obtained 
when T was in 9JJ. Without loss of generality, let us assume that X0 = 0 so that 
r - 1 6 B(X). Then we can find integers {pn}, opera tor-valued polynomials 
-Pn(p)00> and operators Qn 6 B(X) such that 

oo oo 

(13) R,(T) = E [5n(X) - Pn
(pn)(X)] + Z ft X" 

n—1 n=0 

where 

and 

Çn /rp x \k— 1 

yfc=l VA "~ A ? J 

^(p)(x) = - E ^ r * ^ 1 ^ . 

It is shown in (7) that by suitable choice of {pn} we can obtain uniform 
convergence of (13) for X £ B(D). Proceeding as in (1, Theorem 6), we write 

(14) RMT)) = YI f [M - /(x)r1 tfxTOx 
oo r Qn Pn ~| 

= E z-/ In,k(T — Xn)70 En + 22 Ik-i T~k En 
n=l L A;=l k=l J 

CO 

+ E & J.. 
defining 

[M-/(x)r4(x-xBr^x> 
+s(o) 

/. = A<f ^-/(x)]-^*^. 
As shown in (1), Intk is analytic except for a pole of order not greater than 

k at /x = /(Xn). On the other hand, X*/(M ~" /00 ) is analytic in D except 
possibly at X = o°. 

If X = oo is not a singularity of X*/(M ~~/U)) , then Jfc = 0. If, however, 
/(X) has a pole of order £ at X = oo , we can write, for large |X|, 

/(X) =s(£)+£at\\ 
where s(X) is an entire function. Hence 

M - / ( A ) = - s ( « ) + M - E a , X i . 

Now 

2T:% o +B(D) 
-•§ b- /(X)]-1 \"d\ = -j-.<& [M - /(i/r)r1 r*-**, 
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when we make the substitution X = 1/f and write F for the image of +B{D). 
Now 

r2[M-/d/r)] = -tk+2s(t) + o* - a„)r*+2-i>(r<+2 

will have a zero at f = 0 if k + 2 > £. Hence [M - / ( l / f ) ] " 1 ? - * " 2 will have 
a pole of order k -\- 2 — £ at f = 0. Therefore 

J* = ^ + 2 - pi Dk+1~v ^ - / (Vf) ] - 1 r j r -o , 

writing!) = d/df. 
If we write $ = Çv[ix — / (1/f)] and 0 = $ - 1 , then we can easily calculate 

J*; by using the determinantal expression obtained in the proof of (1, Theorem 
6) and, in so doing, we find that Ik is a polynomial in /x. Hence when we now 
examine (14), we can conclude that Rp[f(T)] has poles at/(Xw). If <T(T) is 
finite, then <r[f(T)] consists of a finite number of poles; if <r(T) is infinite, 
\n —> oo and by choice of / , f(\n) —> °°. Hence in either case/(T) Ç 2JÎ(°°)-

The remaining assertions of the theorem can now be proved exactly as in 
(1) since only the In,k enter into the argument and the definitions of Intk are 
the same in both cases. This concludes the proof. 

COROLLARY. If T G 2K/(») and f € «„<*> - »œ> then f{T) € 23U0 0). 

Proof. Every Era has finite-dimensional range, so since S is obviously a 
finite set for each /x0 6 o-[/(?")], the spectral projection E0 associated with /*o 
and / ( r ) has finite-dimensional range. Since N(no — f(T)) C R(E0), the 
conclusion follows. 

COROLLARY. Le* T 6 2K(o>) (2K,(«>)). Then, for each X 6 p ( r ) , i?x(r) ç 2)? 
(9Î). Jrc particular ifO€p(T), T'1 G 9K (5R). 

Proof. 

ZlTl J +£(£>) A — jJL 

By the spectral mapping theorem, (6, p. 302), 

a[Rx(T)] = { 1 / ( X - M ) : M 6 cr.(r)}. 

The result now follows. 

Remark. The above corollary shows that the class 93? ( °° ) includes operators 
with compact resolvent. 
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