COMPACT SETS IN $C_p(X)$ AND CALIBERS

N. D. KALAMIDAS AND G. D. SPILIOPOULOS

ABSTRACT. This presentation concerns the relation of chain conditions on a space X, with the weights of compact sets in $C_p(X)$, generalizing up to the class of $d\sigma$ -bounded spaces, or stable spaces. In the last case, stronger results are obtained for Corson compact subsets of $C_p(X)$.

1. **Introduction.** All the spaces under consideration are assumed to be Tychonoff. Notations, terminology and cardinal inequalities left unexplained, could be found in [1] and [6]. If X is a space, then $C_p(X)$ is the space of all continuous real-valued functions with the topology of pointwise convergence and $C_p^*(X) = \{f \in C_p(X) : f \text{ is bounded}\}$. It is clear, that the family of sets $V(x; G) = \{f \in C_p(X) : f(x) \in G\}$ where G is open in \mathbb{R} , is an open subbase of $C_p(X)$.

For any cardinal function φ we put $h\varphi = \sup{\varphi(Y) : Y \text{ is a subspace of } X}$ and $h\varphi$ is called the *hereditary version* of φ .

Let *A* be an index set and \mathbb{R}^A the usual product of |A| real lines. We set $\Sigma_*(|A|) = \{f \in \mathbb{R}^A : \{a \in A : |f(a)| \ge \varepsilon\}$ is finite for every $\varepsilon > 0\}$ and $\Sigma(|A|) = \{f \in \mathbb{R}^A : |\{a \in A : f(a) \ne 0\}| \le \omega\}$.

A compact space X is *Eberlein (Corson) compact* if and only if X is homeomorphic to a compact subspace of $\Sigma_*(|A|) (\Sigma(|A|))$. It is apparent, that every Eberlein compact space is Corson compact.

A supersequence is the one-point compactification of any infinite discrete space. We put $\alpha(X) = \sup\{\tau : \text{there is a supersequence } Y \text{ in } X$, such that $|Y| = \tau\}$. It is known (see [5]) that $\Sigma_*(\tau)$ is homeomorphic to $C_p(A)$ for every supersequence A, $|A| = \tau$, where $\Sigma_*(\tau) = \Sigma_*(|A|)$.

The cardinal min{ $\tau : \tau^+$ is a caliber of X} is denoted by sh(X) and the point finite cellularity of X, by p(X).

A space X is σ -pseudocompact (σ -bounded), if X is the union of countably many pseudocompact (bounded) subsets.

It is well known the fact proved by Arkhangel'skii (see [3]), that the Suslin number of any compact space X is the least upper bound of the weights of compact sets lying in $C_p(X)$. But when F is a compact subset of $C_p(X)$, where X is pseudocompact, F can be considered, using arguments of [3], as a subset of $C_p(\beta X)$ where $c(X) = c(\beta X)$, obtaining this way the following:

Received by the editors August 14, 1990; revised May 5, 1992.

AMS subject classification: 54C40, 54A25, 54C35.

Key words and phrases: caliber, point finite cellularity, supersequence, stability, monolithicity, Corson compact, pseudocompact, Banach space, Šhanin number, spread, tightness.

[©] Canadian Mathematical Society 1992.

PROPOSITION 1. For every pseudocompact space X, $c(X) = \sup\{w(F) : F \text{ is compact set in } C_p(X)\}$.

REMARK 1. Let X be a non-metrizable Eberlein compact space. Then, after Proposition 7.1 of [3], $C_p(X)$ contains a dense and obviously with countable cellularity σ -compact subspace Y. Since X embeds in $C_p(Y)$, if the above proposition was valid for σ -compact spaces, the space X would be metrizable contradicting the hypothesis. Below, other "stronger" cardinal functions appear as upper bounds for the weights of compact sets in $C_p(X)$, when X is $d\sigma$ -pseudocompact ($d\sigma$ -bounded), *i.e.* contains a dense σ -pseudocompact (σ -bounded) subspace.

REMARK 2. We cannot extend Proposition 1 to pseudocompact subsets of $C_p(X)$. Indeed, let X be a Šakhmatov space (X is infinite), *i.e.* a pseudocompact space where all countable subspaces are closed and C^* -embedded. Then $C_p(X, I)$ is pseudocompact, where I is the closed unit interval of the real line, has a countable cellularity and does not have a G_{δ} diagonal ([8]). In view of the fact that X is embedded in $C_pC_p(X, I)$, if $w(X) \leq c(C_p(X, I))$, then X would be compact and metrizable. But, if X is (infinite) compact and metrizable, then X cannot be a Šakhmatov space.

COROLLARY 1.1. For every pseudocompact space X, p(X) = c(X).

PROOF. It is known ([2]) that for every space X, $p(X) = \alpha(C_p(X))$. Let now $p(X) = \tau$. It is immediate from Proposition 1, that $c(X) \ge \tau$. The reverse inequality is obvious.

COROLLARY 1.2. Consider the pseudocompact spaces X, Y and a continuous, 1-1, function θ from $C_p(X)$ into $C_p(Y)$. If Y satisfies τ . c. c, where $\tau > \omega$, then so does X.

We may return now, to the promise given in Remark 1. Let $s(Y) = \sup\{|Z| : Z \text{ is a discrete subspace of } Y\}$, the "spread" of the space Y. It is known (see [7]), that for every space Y, $c(Y) \le s(Y)$. Then, the following is valid.

PROPOSITION 2. Let X be a $d\sigma$ -pseudocompact space. Then, $s(X) \ge \sup\{w(F) : F \text{ is } a \text{ compact subset of } C_p(X)\}.$

PROOF. The statement in question, trivially reduces to the case when $X = \bigoplus \{D_n : n \in \omega\}$ with each D_n pseudocompact. As $C_p(X) = \prod \{C_p(D_n) : n \in \omega\}$ it is immediate that $\sup\{w(F) : F \subset C_p(X) \text{ and } F \text{ is compact}\} = \sup_{n < \omega} \sup\{w(F) : F \subset C_p(D_n) \text{ and } F$ is compact} and this finishes the proof.

NOTE. We wish to thank the referee who suggested the above proof.

Let F be a subset of $C_p(X)$. Obviously the induced function e_F from X to $C_p(F)$, such that for every x in X and f in F, $e_F(x)(f) = f(x)$, is continuous. If F separates the points of X, then e_F is also 1-1.

The next lemma is easy to prove. The basic idea comes from [9].

LEMMA 3. Let X be a space. If $A \subset C_p(X)$ separates points in X then the algebra generated by A is dense in $C_p(X)$.

PROPOSITION 3.1. Let X be a space such that there exists a set $F \subset C_p(X)$ with $t(C_p(F)) = \omega$ and $d(C_p(F)) = \tau$ where $cf\tau > \omega$. Then X has no $cf\tau$ caliber.

PROOF. Consider $\{\mu_j : j < \tau\}$, a dense subset of $C_p(F)$. Lemma 3 implies that for every $i < \tau$, there are $f_i, g_i \in F, f_i \neq g_i$, such that $\mu_j(f_i) = \mu_j(g_i)$ for all j < i. Thus, for every $i < \tau$ there exist $r_i \in Q, \delta_i > 0$, such that

$$f_i^{-1}(-\infty, r_i) \cap g_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset, \text{ or } g_i^{-1}(-\infty, r_i) \cap f_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset.$$

Since $cf\tau > \omega$, we may suppose without loss of generality, that there are $A \subset \tau$, $|A| = \tau$, and $r \in Q$, $\delta > 0$ such that

$$V_i = f_i^{-1}(-\infty, r) \cap g_i^{-1}(r + \delta, +\infty) \neq \emptyset$$
, for every $i \in A$.

Let $\{i_n : n < cf\tau\} \subset A$ where $i_n < i_{n'}$, if $n < n' < cf\tau$ and $\sup_{n < cf\tau} i_n = \tau$.

Suppose that X has $cf\tau$ caliber. Then, there is a cofinal set $B \subset \{i_n : n < cf\tau\}$ with $|B| = cf\tau$, such that $\bigcap\{V_i : i \in B\} \neq \emptyset$. Let $x \in \bigcap\{V_i : i \in B\}$. Since $t(C_p(F)) = \omega$ there exist $i_0 \in B$ such that $e_F(x) \in \overline{\{\mu_i : i < i_0\}}$. Choose $i_1 < i_0$ such that $|f_{i_0}(x) - \mu_{i_1}(f_{i_0})| < \delta/4$ and $|g_{i_0}(x) - \mu_{i_1}(g_{i_0})| < \delta/4$. We have $\mu_{i_1}(f_{i_0}) = \mu_{i_1}(g_{i_0})$ and therefore $|f_{i_0}(x) - g_{i_0}(x)| < \delta/2$ contradicting the fact that $i_0 \in B$.

COROLLARY 3.2 ([2]). Let X be a compact space and $w(X) = \tau$. If $\lambda = cf\tau > \omega$, then λ is not a caliber of $C_p(X)$.

COROLLARY 3.3 ([2]). Suppose that $2^{\omega_1} = \omega_2$. Then the following are valid:

- (a) If X has ω_1 and ω_2 calibers, then every compact subset of $C_p(X)$ is metrizable.
- (b) Every compact space X such that ω_1 and ω_2 are calibers of $C_p(X)$ is metrizable.

COROLLARY 3.4 (GCH). If B is a Banach space such that (B, w) has ω_1 and ω_2 calibers, then B is separable.

PROOF. It is well known that (S_{B^*}, w^*) , the unit ball of B^* with the w^* -topology, is contained homeomorphically into $C_p(B, w)$. Since B is contained isometrically into $C(S_{B^*}, w^*)$, the proof is completed using Corollary 3.3.

Recall that a space X is τ -monolithic if $nw(A) \le \tau$ for every $A \subset X$ with $|A| \le \tau$. X is called *monolithic* when it is τ -monolithic, for every cardinal τ .

We can avoid the set theoretic assumptions in Corollary 3.3 enriching X or F properly. Indeed if X is stable, meaning that iw(Y) = nw(Y) for each continuous image Y of X, keeping also in mind that this happens if and only if $C_p(X)$ is monolithic ([1]), we obtain the following results. PROPOSITION 4. For every space X, $sh(X) \ge \sup\{w(F) : F \text{ is a monolithic compact} subset of <math>C_pX\}$.

PROOF. Let F be a compact subset of $C_p(X)$. If $d(F) > \tau$, where $\tau = \operatorname{sh}(X)$ then there is a left separated subset A of F, such that $|A| = \tau^+$. But $w(A) = d(C_p(A)) = \tau^+$ contradicting the hypothesis since Proposition 3.1 is valid. Hence $d(F) = w(F) \le \tau$.

COROLLARY 4.1. Let X be a $d\sigma$ -bounded space. Then, $\operatorname{sh}(X) \ge \sup\{w(F) : F \text{ is a compact subset of } C_p(X)\}$.

PROOF. Let *F* be a compact subset of $C_p(X)$. Then, according to Theorem 9.23 of [3], *F* is Eberlein compact and the proof is completed.

PROPOSITION 4.2. For every stable space X, $sh(X) \ge sup\{w(F) : F \text{ is a compact subset of } C_p(X)\}.$

LEMMA 4.3. For every compact space X, $w(X) = \sup\{w(F) : F \text{ is a compact subset } of C_pC_p(X)\}.$

PROOF. It is known (see [1]) that $w(X) = d(C_p(X)) = iw(C_pC_p(X))$. But $iw(F) = w(F) \le iw(C_pC_p(X))$ for every compact subset F of $C_pC_p(X)$. Since X embeds in $C_pC_p(X)$, the proof is completed.

COROLLARY 4.4. If X is a monolithic compact space, then $sh(C_p(X)) = w(X)$.

PROOF. Since $C_p(X)$ is stable, it is immediate from Lemma 4.3 and Proposition 4 that $sh(C_p(X)) \ge w(X)$. The reverse inequality comes true since $w(X) = d(C_p(X))$.

COROLLARY 4.5. For every monolithic compact space X, the cardinal τ^+ , where $\tau \ge t(X)$, is a caliber of X if and only if it is a caliber of $C_p(X)$.

PROOF. In view of Corollary 4.4 sufficiency is obvious. However, Šapirovskii has proved (see [7]) that for every compact space *X* the condition: (*) τ^+ caliber and $\tau \ge t(X)$ means that $\pi w(X) < \tau^+$ and the necessity comes true.

Baturov has proved (see [1]), that l(Y) = e(Y) for $Y \subset C_p(X)$, where $e(Y) = \sup\{|A| : A \text{ is a closed discrete subspace of } Y\}$. Therefore, $s(Y) \ge l(Y)$. Hence, $s(C_p(X)) \ge hl(C_p(X))$. But, $d(X) \le hl(C_p(X))$ (see [1]). Since X is monolithic compact, $w(X) \le hl(C_p(X))$. Keeping in mind that $w(X) = nw(X) = nw(C_p(X)) \ge s(C_p(X))$ the following is valid.

PROPOSITION 5. If X is a monolithic compact space, then a) $w(X) = s(C_p(X))$ and b) $sh(C_p(X)) = s(C_p(X))$.

Arkhangel'skii proves in [4] that for a space X, $C_p(X)$ is $2^{l(X)}$ monolithic where l(X) is the Lindelöf degree of X. Hence, under GCH we can state the following.

PROPOSITION 6 (GCH). Let X be a space such that $l(X) = \tau$. If τ^+ is a caliber of X, then $w(F) \leq \tau$ for every compact subset F of $C_p(X)$.

LEMMA 7. Let F be a compact set in $C_p(X)$. Then $d(e_F(X)) = w(F)$.

PROOF. Since $e_F(X)$ separates the points of F, the induced function e^* from F to $C_p(e_F(X))$ such that for every f in F and g in $e_F(X)$, $e^*(f)(g) = g(f)$, is a homeomorphic embedding. Thus, $w(F) = nw(F) \le nw(C_p(e_F(X))) = nw(e_F(X))$, provided that for every space Y the equality $nw(Y) = nw(C_p(Y))$ is valid (see [1]. Theorem 1, p. 14). But $e_F(X)$ is monolithic ([3]). Hence, $d(e_F(X)) = nw(e_F(X)) \le nw(C_p(F)) = nw(F) = w(F)$.

PROPOSITION 7.1. Let X be stable. Then $p(X) = \sup\{w(F) : F \text{ is a Corson compact subset of } C_p(X)\}.$

PROOF. Since every supersequence is a Corson compact space, $p(X) \leq \sup\{w(F) : F$ is a Corson compact subset of $C_p(X)\}$. Now, let F be a Corson compact subset of $C_p(X)$, such that $w(F) = \lambda$. Then, there is a function θ from $C_p(F)$ to a $\Sigma_*(\tau)$ continuous, linear and 1-1, ([5]). Thus, there is a supersequence A in $C_pC_p(F)$ which separates the points of $C_p(F)$ ([2], Proposition 2.9). Therefore, A separates the points of $Y = e_F(X)$. Hence $B = \pi_Y(A)$, where π_Y is the natural projection from $C_pC_p(F)$ to $C_p(Y)$ such that $\pi_Y(g) = g|Y$, is a supersequence in $C_p(Y)$ separating the points of Y. Thus, $nw(Y) \geq nw(B) = w(B)$ and $iw(Y) \leq w(C_p(B)) = |B| = w(B)$, since e_B from Y to $C_p(B)$ is continuous and 1-1. From the stability of Y, we get that nw(Y) = w(B). But, Lemma 4.3 implies that nw(Y) = w(F). Hence, $w(B) = |B| = \lambda$, meaning that Y and accordingly X, has no (λ, ω) caliber.

COROLLARY 7.2. If X is a Corson compact space, then (a) $w(X) = p(C_p(X))$ and (b) $sh(C_p(X)) = p(C_p(X)) = s(C_p(X))$.

PROOF. (a) Since X is monolithic, then $C_p(X)$ is stable. Thus $w(X) \le p(C_p(X))$. However, in view of Proposition 7.1, Lemma 4.3 gives $w(X) \ge p(C_p(X))$.

REFERENCES

- 1. A. V. Arkhangel'skii, A survey on Cp-theory, Q and A in General Topology, 5(1987), Special Issue.
- **2.** A. V. Arkhangel'skii and V. V. Tkachuk, *Calibers and point finite cellularity of the space* $C_p(X)$ and some questions of S. Gul'ko and M. Husek, Topology and its applications **23**(1986), 63–73.
- 3. A. V. Arkhangel'skii, Function spaces in the topology of pointwise convergence, and compact sets, Russian Math. Surveys (5) 39(1984), 9–56.
- **4.** _____, *Topological properties of function spaces: Duality theorems*, Soviet Math. Dokl. (2) **27**(1983), 470–473.
- 5. S. P. Gul'ko, On the structure of spaces of continuous functions and their complete paracompactness, Russian Math. Surveys (6) 34(1979), 36–44.
- 6. W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge University Press, 1982.
- 7. I. Juhasz, Cardinal functions in Topology-Ten years later, Math. Centrum, Amsterdam, 1980.

- **8.** V. V. Tkachuk, *Calibers of spaces of functions and the metrization problem for compact subsets of* $C_p(X)$, Vestnik Moskovskogo Universiteta Matematika (3) **43**(1988), 21–24.
- **9.** _____, The smallest subring of the ring $C_p(C_p(X))$ containing $X \cup \{1\}$ is everywhere dense in $C_p(C_p(X))$, Vestnik Moskovskogo Universiteta Matematika (1) **42**(1987), 20–23.

Department of Mathematics University of Athens GR-15781 Panepistimiopolis Athens, Greece

502