THE ORDERING OF SPEC R

WILLIAM J. LEWIS AND JACK OHM

Introduction. Let Spec R denote the set of prime ideals of a commutative ring with identity R, ordered by inclusion; and call a partially ordered set spectral if it is order isomorphic to Spec R for some R. What are some conditions, necessary or sufficient, for a partially ordered set X to be spectral? The most desirable answer would be the type of result that would allow one to stare at the diagram of a given X and then be able to say whether or not X is spectral. For example, it is known that finite partially ordered sets are spectral (see [2] or [5]). However, even in the 1-dimensional case a complete characterization of spectral sets still seems very far off. On the other hand, the corresponding topological question was completely answered by Hochster in his remarkable thesis [2], and most of our work here uses Hochster's topological characterization as an intermediate step.

We begin in $\S 2$ with two examples. The first shows that the previously known necessary conditions for a partially ordered set to be spectral are not sufficient and thus, in a sense, yields a new necessary condition. The second example shows that the property "all finitely generated flat R-modules are projective" is not determined by the ordering of Spec R (even though it is determined by the Zariski topology of Spec $R[\mathbf{4}]$). This example involves defining two suitably distinct order compatible spectral topologies (see § 1 for terminology) on the same partially ordered set.

In § 3 we enlarge on the construction of the second example to prove that a partially ordered set X is spectral if it contains an element m such that any $x \in X$ having infinitely many elements below (resp. above) x necessarily lies above (resp. below) m. Additional, less superficial, sufficient conditions for a partially ordered set to be spectral are given in $\S 5$, where the basic situation is related to the first example of $\S 2$. This involves an X which is decomposed into an upper part X_{1} and a lower part X_{2}, e.g. a 1-dimensional X which is written as the union of its maximal elements and its minimal elements that are not maximal.

In § 4 we prove that the ordered disjoint union of spectral sets is spectral, a result which is used later in one of the constructions of § 5 .

Finally, $\S 6$ is devoted to describing all the spectral topologies on the simplest kind of 1 -dimensional X, namely a countable, 1 -dimensional X with unique minimal element.

[^0]1. Terminology. A set X may come equipped with a partial ordering \mathscr{O} or a a topology \mathscr{T}. Given (X, \mathcal{O}) and $x \in X$, let $G_{X, \mathcal{O}}(x)=\{y \in X \mid y \leqq x\}$ (the generization of x in X), and let $S_{X, 0}(x)=\{y \in X \mid y \geqq x\}$ (the specialization of x in $X)$. More generally, if V is a subset of $X, G_{X, 0}(V)=\{y \in X \mid y \leqq v$ for some $v \in V\}$ and $S_{X, 0}(V)=\{y \in X \mid y \geqq v$ for some $v \in V\}$. Given (X, \mathscr{T}), we write $\mathrm{cl}_{X, \mathscr{F}}\{x\}$ for the \mathscr{T}-closure of $\{x\}$ in X. When our notation is clear from the context, we shall drop the subscripts.

Let X have a topology \mathscr{T} and a partial ordering \mathscr{O}. We say that \mathscr{T} is compatible with \mathscr{O} if $\operatorname{cl}\{x\}=S(x)$ for all $x \in X$. Note that \mathscr{T} is compatible with \mathscr{O} if and only if
i) $S(x)$ is closed for all $x \in X$, and
ii) closed sets are closed under \geqq.

Recall that if R is a ring, the Zariski topology for $\operatorname{Spec} R$ is defined by letting $C \subseteq \operatorname{Spec} R$ be closed if and only if there exists an ideal \mathfrak{H} of R such that $C=\{p \in \operatorname{Spec} R \mid p \supseteq \mathfrak{A}\}$. Spec R with Zariski topology and inclusion ordering is an example where the topology and ordering are compatible. We will always consider Spec R as a topological space with Zariski topology and as an ordered set with inclusion ordering.

If $Y \subseteq X,\left(Y,\left.\mathscr{O}\right|_{Y}\right)$ will denote Y with the induced ordering and $\left(Y,\left.\mathscr{T}\right|_{Y}\right)$ will denote Y with the subspace topology. If \mathscr{T} and \mathscr{O} are compatible, then so are $\left.\mathscr{T}\right|_{Y}$ and $\left.\mathscr{O}\right|_{Y}$.

Let (X, \mathscr{T}) be a T_{0} space. Then X has a partial ordering, $O(\mathscr{T})$, induced by \mathscr{T} by defining $x \leqq y$ if and only if $y \in \operatorname{cl}\{x\}$. Conversely, let (X, \mathscr{O}) be a partially ordered set. The ordering induces a topology, $T(\mathcal{O})$, by defining a subbasis for the closed sets of $T(\mathscr{O})$ to be $\{S(x) \mid x \in X\}$. We shall call this topology the closures of points (COP) topology. The COP topology is T_{0} and is compatible with \mathscr{O}. Another topology is \mathscr{O}-compatible if and only if it is finer than the $C O P$ topology and has its closed sets closed under \geqq. (Recall that \mathscr{T} is finer than \mathscr{T}^{\prime} if every \mathscr{T}^{\prime}-open set is also \mathscr{T}-open.) Clearly, \mathscr{T} is compatible with \mathscr{O} if and only if $O(\mathscr{T})=\mathscr{O}$. Thus, it is possible to recover the ordering from a given order compatible topology. Also, if $(X, \mathscr{T}) \cong\left(X^{\prime}, \mathscr{T}^{\prime}\right)$, then $(X, O(\mathscr{T})) \cong\left(X^{\prime}, O\left(\mathscr{T}^{\prime}\right)\right)$. The converse, however, is false; so the ordering contains less information than the topology. (We use \cong to denote homeomorphism when topological spaces are involved and order isomorphism when partially ordered sets are involved.)

We define

$$
\operatorname{dim}(X, \mathscr{O})=\sup \left\{n \mid \text { there is a chain } x_{0}<x_{1}<\ldots<x_{n} ; x_{i} \in X\right\} .
$$

Similarly, if $x \in X$,

$$
\operatorname{ht}(x)=\sup \left\{n \mid \text { there is a chain } x_{0}<x_{1}<\ldots<x_{n}=x ; x_{i} \in X\right\}
$$

In [2], a space (X, \mathscr{T}) is called spectral if it has the following properties:
i) X is T_{0}.
ii) X is quasi-compact.
iii) The quasi-compact open subsets are closed under finite intersections and form an open basis.
iv) Every non-empty closed subspace which is irreducible (i.e. not the union of two proper closed subsets) is the closure of one of its points (i.e. has a generic point).
Spec R is well known to be spectral. Conversely, in [2] Hochster proves that any spectral space is homeomorphic to Spec R for some ring R. We shall also need the fact that a closed subset of a spectral space is spectral in the induced topology. We have previously defined a partially ordered set to be spectral if it is order isomorphic to Spec R for some R. Obviously, (X, \mathscr{O}) is spectral if and only if there exists an order compatible spectral topology.

A 0-dimensional partially ordered set is easily seen to be spectral. (X, \mathscr{T}) is spectral and \mathscr{T} is compatible with a 0 -dimensional ordering of X if and only if (X, \mathscr{T}) is a totally disconnected, compact (i.e. quasi-compact, Hausdorff) space. These spaces are called Boolean spaces and the one-point compactification of an infinite discrete space is an easy example. If X is countable, (X, \mathscr{T}) is a Boolean space if and only if it is homeomorphic to the space of ordinals less than or equal to some countable ordinal with interval topology (see [7]).

2. Two examples.

(2.1) Example. We know of three conditions on a partially ordered set X that are necessary for X to be order isomorphic to the spectrum of some ring:
(K1) Every totally ordered subset of X has a supremum and an infimum in X.
(K2) Between any two distinct related elements there are two immediately adjacent elements (i.e. if $x, y \in X$ and $x<y$, then there exist elements $x_{1}, y_{1} \in X$ such that $x \leqq x_{1}<y_{1} \leqq y$ and there does not exist $z \in X$ such that $x_{1}<z<y_{1}$).
(H) Let $\mathscr{S}=\{S(x) \mid x \in X\}, \mathscr{G}=\{G(x) \mid x \in X\}$. If \mathscr{F} is a collection of subsets of X such that $\mathscr{F} \subseteq \mathscr{S}$ or $\mathscr{F} \subseteq \mathscr{G}$, then $\cap\{F \mid F \in \mathscr{F}\}=\emptyset$ implies there is a finite collection of sets from \mathscr{F} whose intersection is empty.

In addition, Hochster [2] has proved that, given a ring R, there is a ring whose prime ideals have exactly the reverse order of the primes of R. Thus one also knows that any necessary condition should also be symmetric with respect to reversing the order.

Properties (K1) and (K2) were discussed by Kaplansky [3], while property [H] derives from an example of Hochster given in [5]. Property (H) reflects the fact that $\operatorname{Spec} R$ is quasi-compact in the Zariski topology and that the sets in \mathscr{S} are necessarily closed sets of Spec R.

We shall now give an example of a partially ordered set which satisfies (K1),
(K2), and (H) but is not spectral, thus showing that these conditions are not sufficient for a partially ordered set to be spectral.

Let Y be a compact (Hausdorff) space which is not spectral; for example, the closed unit interval will do. Because Y is compact, there does not exist a properly finer compact topology for Y. Let $Z=\left\{x_{C}\right\} C \subseteq Y$ and C is closed in $Y\}$, let $X=Y \cup Z$, and order X by specifying that if $y \in Y, y \geqq x_{C}$ if and only if $y \in C$. Thus, for each closed set $C \subseteq Y$ we create an element x_{C} and "place" it below each element of C. The set X is one-dimensional, Y being the set of maximal elements and Z the set of minimal elements. Let \mathscr{T} be any order compatible topology for X. Choose C_{1}, C_{2} proper closed subsets of Y such that $Y=C_{1} \cup C_{2}$. Now $Y=S\left(x_{Y}\right) \cap\left(S\left(x_{C_{1}}\right) \cup S\left(x_{C_{2}}\right)\right)$, so Y is closed in \mathscr{T}. Similarly, if C is any closed subset of Y, then $C=Y \cap S\left(x_{C}\right)$ is also \mathscr{T}-closed. If \mathscr{T} were a spectral topology, then the topology $\left.\mathscr{T}\right|_{Y}$ would also be spectral and would be finer than the original topology for Y. Our choice for Y makes this impossible, so X is not spectral.

It remains to show X satisfies ($K 1$), ($K 2$), and (H). Because X is onedimensional, (K1) and (K2) are satisfied trivially. Let \mathscr{F} be a collection of subsets of X such that $\cap\{F \mid F \in \mathscr{F}\}=\emptyset$. If $\mathscr{F} \subseteq \mathscr{S}$, note that for $x \neq y \in X$, $S(x) \cap S(y) \subseteq Y$. Since each $F \cap Y$ is closed in Y and $\cap\{F \cap Y \mid F \in \mathscr{F}\}=\emptyset$ the compactness of Y allows the choice of a finite set of F 's whose intersection is empty. If $\mathscr{F} \subseteq \mathscr{G}$, we note that $x_{Y} \in G(y)$ for each $y \in Y$, so there must be an $F \in \mathscr{F}$ and a $z \in Z$ such that $F=G(z)=\{z\}$. Choose any $F^{\prime} \in \mathscr{F}$ such that $z \notin F^{\prime}$ and we have $F \cap F^{\prime}=\emptyset$.
(2.2) Example. The second example involves the property "all finitely generated flat R-modules are projective." Let us say that a ring R is $A(0)$ if it has this property (the terminology stems from [1]). D. Lazard [4] has shown that whether or not R is $A(0)$ depends only on the Zariski topology of Spec R. We shall give here an example of a partially ordered set having two spectral topologies, one of which yields an $A(0)$ ring and the other does not. This shows that the partial ordering of $\operatorname{Spec} R$ is not sufficient by itself to determine whether or not R is $A(0)$.

First let us review some facts from Lazard's paper. Let X be a partially ordered set. The D-component of an element $x \in X$ is defined to be the intersection of all sets containing x that are closed under \geqq and \leqq. Thus y is in the D-component of x if and only if there exist elements $x_{1}, \ldots, x_{n} \in X$ such that $x \leqq x_{1} \geqq x_{2} \leqq x_{3} \geqq \ldots \leqq x_{n} \geqq y$. Moreover, if \mathscr{T} is an order compatible topology for X, a subset of X is defined to be D-closed if it is closed in \mathscr{T} and is a union of D-components. Lazard has proved that a ring R has the $A(0)$ property if and only if the D-closed sets of Spec R are open. Since the D-components partition Spec R, it follows that R is $A(0)$ whenever Spec R has only finitely many D-components each of which is closed. In particular, if R has only finitely many minimal primes, then R is $A(0)$. It is also true, but for a different reason, that if R has only finitely many maximal ideals, then R is $A(0)$. In any
case, it often suffices to merely glance at the ordering of the prime ideals of R in order to conclude that R is $A(0)$. The following example, however, shows that the $A(0)$ property cannot be characterized in terms of the ordering of $\operatorname{Spec} R$ alone.

Let $X=\left\{m_{i} \mid i=0,1,2, \ldots, \infty\right\} \cup\left\{p_{j} \mid j=1,2, \ldots, \infty\right\}$, and order X by defining $p_{j} \leqq m_{j-1}, m_{j}$ if $j<\infty$ and $p_{\infty} \leqq m_{\infty}$ (see Figure 1 below).

Figure 1
X has exactly two D-components, namely $D_{\infty}=\left\{m_{\infty}, p_{\infty}\right\}$ and $X \backslash D_{\infty}$.
For any $m \in X$, let $C(m)$ be the topology for X having closed sets
i) finite sets closed under \geqq; and
ii) sets containing m and closed under \geqq.

It is immediate that $C(m)$ is a T_{0}, order compatible, quasi-compact topology for which closed irreducible sets have generic points. Moreover, the cofinite (i.e. finite complement) sets containing m and closed under \leqq, together with the finite sets not containing m and closed under \leqq, form a basis of quasi-compact open sets which is closed under finite intersections. Thus, $(X, C(m))$ is a spectral space.

The D-component D_{∞} is closed in the $C(m)$ topology for any choice of m, and hence $(X, C(m))$ has the property that D-closed sets are open if and only if D_{∞} is open. But D_{∞} is open if and only if $m \in D_{0}$. Thus, by choosing rings with Spec isomorphic to $\left(X, C\left(m_{0}\right)\right)$ and $\left(X, C\left(m_{\infty}\right)\right)$, we get one ring which has the $A(0)$ property and another which does not, yet both rings have Spec order isomorphic to X.

The example above is the simplest available in that it is one-dimensional and has only two D-components, for a 0 -dimensional spectral space is $A(0)$, i.e. has the property that D-closed sets are open, if and only if the space is finite.
3. The $C(m)$ topology. In this section we generalize the topology given in Example 2.2 to an arbitrary partially ordered set. Given a partially ordered set X we choose an element $m \in X$. We define a topology, called the $C(m)$ topology, by choosing the following collection of sets as a basis for the closed sets of the topology:
i) finite sets not containing m and closed under \geqq (including \emptyset), and
ii) cofinite sets containing m and closed under \geqq (including X).
(3.1) Lemma. Let X be a partially ordered set and let $m \in X$. The $C(m)$ topology is compatible with the order of X if and only if the following conditions hold:
a) if $x \in X$ and $\{y \mid y \geqq x\}$ is infinite, then $x \leqq m$; and
b) if $x \in X$ and $\{y \mid y \leqq x\}$ is infinite, then $x \geqq m$.

Proof. For all $x \neq m, \operatorname{cl}\{x\}=\{y \mid y \geqq x\}$ if and only if condition a) holds. Similarly, for all $x \leqq m, \operatorname{cl}\{x\}=\{y \mid y \geqq x\}$ if and only if condition b) holds.
(3.2) Theorem. Let X be a partially ordered set with the $C(m)$ topology for some $m \in X$. If the topology is compatible with the order of X, then X with the $C(m)$ topology is a spectral space.

Proof. Since the topology is compatible with the order, X is $T_{0} . X$ is quasicompact since any open set containing m is cofinite. Corresponding to the closed basis for the topology, we have the following open basis:
i) cofinite sets containing m and closed under \leqq; and
ii) finite sets not containing m and closed under \leqq.

Clearly these sets must be quasi-compact, and they are closed under finite intersections. Now let V be a closed irreducible set in X. If every element of V is $\geqq m$, then either $V=\operatorname{cl}\{m\}$, or V is finite and a generic point is easy to find; so we may assume V contains an $x \not \equiv m$. Since $\{y \mid y \leqq x\}$ is finite, we may choose x to be a minimal element of V. Then $\operatorname{cl}\{x\}$ and $X \backslash\{y \mid y \leqq x\}$ are closed sets whose union contains V. Since $x \in V$ and V is irreducible, we get $V=\operatorname{cl}\{x\}$.

As a special case of Theorem 3.2 we have the following generalization of the fact that any finite partially ordered set is spectral.
(3.3) Corollary. If X is a partially ordered set with the property that $S(x) \cup G(x)$ is finite for all $x \in X$, then X is spectral.
4. Ordered disjoint unions. If a partially ordered set X is the disjoint union of partially ordered sets $\left\{X_{\alpha}\right\}$, we shall say that X is the ordered disjoint union of the X_{α} 's if
$x \leqq{ }_{x} y$ if and only if there is an α such that $x, y \in X_{\alpha}$ and $x \leqq_{x_{\alpha} y} y$.
Let Λ be an indexing set containing an element o, and let $\Lambda^{\prime}=\Lambda \backslash o$. Suppose we are given a collection of rings $\left\{R_{\lambda} \mid \lambda \in \Lambda\right\}$ such that each $R_{\lambda}, \lambda \in \Lambda^{\prime}$, is an R_{o}-algebra via a homomorphism $\phi_{\lambda}: R_{o} \rightarrow R_{\lambda}$; and let R be the subring of $\prod_{\lambda \in \Lambda} R_{\lambda}$ defined by
$\left(r_{\lambda}\right) \in R$ if and only if $\phi_{\lambda}\left(r_{o}\right)=r_{\lambda}$ for all but a finite number of $\lambda \in \Lambda^{\prime}$.
Let us now examine Spec R. For each $\alpha \in \Lambda$ let $A_{\alpha}=\left\{\left(a_{\lambda}\right) \in R \mid a_{\alpha}=0\right\}$. The A_{α} are ideals of R; and if $\alpha, \beta \in \Lambda$ with $\alpha \neq \beta$ and $\alpha \neq o$, then $\left(0,0, \ldots, 0,1_{\alpha}, 0, \ldots\right) \in A_{\beta}$ and $\left(1,1, \ldots, 1,0_{\alpha}, 1, \ldots\right) \in A_{\alpha}$. It follows that $A_{\beta}+A_{\alpha}=R$. Let P be any prime ideal of R such that $P \nsupseteq A_{0}$. Choose $z=\left(a_{\lambda}\right) \in A_{o} \backslash P$. Then $a_{\lambda}=0$ for all but a finite number of $\lambda \in \Lambda^{\prime}$, say $\alpha_{1}, \ldots, \alpha_{n}$. Thus $z A_{\alpha_{1}} \cdot \ldots \cdot A_{\alpha_{n}}=0$. As $z \notin P$, it follows that $A_{\alpha_{i}} \subseteq P$ for some α_{i}. Next note that $R / A_{\alpha} \cong R_{\alpha}, \alpha \in \Lambda$, since A_{α} is the kernel of the projection homomorphism onto R_{α}. Thus, if $X_{\alpha}=\left\{P \in \operatorname{Spec} R \mid P \supseteq A_{\alpha}\right\}$, then X_{α} is order isomorphic to $\operatorname{Spec} R_{\alpha}$. It follows that $\operatorname{Spec} R$ is the ordered disjoint union of the sets $X_{\alpha}, \alpha \in \Lambda$, where X_{α} is order isomorphic to Spec R_{α}.

Applications.

(4.1) Theorem. Let $\left\{X_{\lambda} \mid \lambda \in \Lambda\right\}$ be a collection of spectral particlly ordered sets. Let X be the ordered disjoint union of the X_{λ}. Then there is a ring R such that $\operatorname{Spec} R \cong X$.

Proof. Choose one element $o \in \Lambda$, and let $\Lambda^{\prime}=\Lambda \backslash o$. Use [2, Theorem 6] to choose a ring R_{o} such that $\operatorname{Spec} R_{o} \cong X_{o}$. Let \mathscr{M} be a maximal ideal of R_{o} and $k=R_{o} / \mathscr{M}$. Again using $[\mathbf{2}]$, for each $\lambda \in \Lambda^{\prime}$ we can choose a ring R_{λ} such that Spec $R_{\lambda} \cong X_{\lambda}$ and R_{λ} is a k-algebra. Thus, we have composite ring homomorphisms $\phi_{\lambda}: R_{o} \rightarrow k \rightarrow R_{\lambda}, \lambda \in \Lambda^{\prime}$. The theorem now follows from the above remarks.

We can also use the above construction to improve a theorem of Lewis [5], who proved that any tree X satisfying (K1) and (K2) and having a unique minimal element is of the form $\operatorname{Spec} R$, where R is a Bezout domain. (Here a partially ordered set X is a tree if for each $x \in X, G(x)$ is totally ordered; and a ring is called Bezout if every finitely generated ideal is principal.)
(4.2) Theorem. A partially ordered set X is a tree satisfying (K1) and (K2) (if and) only if $X \cong \operatorname{Spec} R$ for some Bezout ring R.

Proof. For any Bezout ring R, Spec R is well known to be a tree; so let us assume X is a tree satisfying (K1) and (K2). If x, y are two distinct minimal elements of X, then $S(x) \cap S(y)=\emptyset$. Thus, X can be written as the ordered disjoint union of trees $X_{\lambda}, \lambda \in \Lambda$, where each X_{λ} has a unique minimal element. As X satisfies (K1) and (K2), so does each X_{λ}. Pick an element $o \in \Lambda$, let $\Lambda^{\prime}=\Lambda \backslash o$, and use [5, Theorem 3.1] to choose a Bezout domain R_{o} such that Spec $R_{o} \cong X_{o}$. Now let K be the quotient field of R_{o}. Again use Theorem 3.1 of [5] as well as Ohm's proof of Jaffard's theorem [6, page 589] to choose R_{λ} for each $\lambda \in \Lambda^{\prime}$ such that Spec $R_{\lambda} \cong X_{\lambda}$ and $K \subseteq R_{\lambda}$. Thus, for $\lambda \in \Lambda^{\prime}$, we have composite ring homomorphisms $\phi_{\lambda}: R_{o} \rightarrow K \rightarrow R_{\lambda}$. The construction at the start of this section provides a ring R such that $\operatorname{Spec} R \cong X$.

It remains to show that R is Bezout. Let $z^{1}=\left(a_{\lambda}^{1}\right), \ldots, z^{n}=\left(a_{\lambda}{ }^{n}\right) \in R$. Then, since R_{o} is Bezout, there is a $y_{0} \in R_{o}$ such that $y_{0} R_{o}=\left(a_{0}{ }^{1}, \ldots, a_{0}{ }^{n}\right) R_{o}$. For all but a finite number of $\lambda \in \Lambda^{\prime}, \phi_{\lambda}\left(a_{o}{ }^{i}\right)=a_{\lambda}{ }^{i}$ for all $i=1,2, \ldots, n$. At each of the non-exceptional coordinates let $y_{\lambda}=\phi\left(y_{o}\right)$, and note that the equations expressing the equality $y_{o} R_{o}=\left(a_{o}{ }^{1}, \ldots, a_{o}{ }^{n}\right) R_{o}$ hold for each such λ when ϕ_{λ} is applied. Let $\lambda_{1}, \ldots, \lambda_{t} \in \Lambda^{\prime}$ be the coordinates for which y_{λ} has not been chosen. Now choose $y_{\lambda_{1}}, \ldots, y_{\lambda_{t}}$ so that $y_{\lambda_{i}} R_{\lambda_{i}}=\left(c_{\lambda_{i}}{ }^{1}, \ldots,\left(d_{\lambda_{i}}{ }^{n}\right) R_{\lambda_{i}}\right.$ for $i=1, \ldots, t$. If $y=\left(y_{t}\right)$, then clearly $y \in R$ and $y R=\left(z^{1}, \ldots, z^{n}\right) R$.
(4.3) Remarks on the topology of $\operatorname{Spec} R$. Let us now go back and examine the topology of Spec R, where R is the ring constructed at the beginning of this section. We have seen that $\operatorname{Spec} R=\cup X_{\alpha}$, where $X_{\alpha}=\left\{P \in \operatorname{Spec} R \mid P \supseteq A_{\alpha}\right\}$. Thus the X_{α} are closed disjoint subspaces of $\operatorname{Spec} R$; so it follows that any closed
set C of $\operatorname{Spec} R$ is a disjoint union of closed sets, $C=\bigcup C_{\alpha}$, where $C_{\alpha}=C \cap X_{\alpha}$. Conversely, what sets of the form $\cup C_{\alpha}$ are closed in Spec R ?

This question seems difficult to answer in general; so let us answer it in the situation used in proving Theorem 4.1 above, namely, the homomorphisms $\phi_{\lambda}, \lambda \in \Lambda^{\prime}$, are of the type $\phi_{\lambda}: R_{o} \rightarrow R_{o} / \mathscr{M} \rightarrow R_{\lambda}$, where \mathscr{M} is a fixed maximal ideal of R_{0}. We claim that if C is closed in $\operatorname{Spec} R$, then either
i) $\mathscr{M} \in C_{o}$, (the $C_{\alpha}, \alpha \in \Lambda^{\prime}$, may be arbitrary closed subsets of the X_{α}), or
ii) $\mathscr{M} \notin C_{o}$ and $C_{\alpha}=\emptyset$ for all but a finite number of $\alpha \in \Lambda^{\prime}$.

To see this, we shall use the fact that the sets of the form

$$
V(z)=\{P \in \operatorname{Spec} R \mid z \in P\}
$$

for $z=\left(a_{\lambda}\right) \in R$ are a basis for the closed sets of Spec R. We first describe the possible $V(z)$.
i) If $z=\left(a_{\lambda}\right)$ and $a_{o} \in \mathscr{M}$, then $C_{o}=V_{R_{o}}\left(a_{o}\right)$ is a closed subset of X_{o} containing \mathscr{M}. Moreover, $\phi_{\lambda}\left(a_{o}\right)=a_{\lambda}=0$ for all but a finite number of $\lambda \in \Lambda^{\prime}$, so $C_{\lambda}=X_{\lambda}$ for these λ. For at most a finite number of $\lambda \in \Lambda^{\prime}$, $a_{\lambda} \neq \phi_{\lambda}\left(a_{o}\right)$, so for these coordinates $C_{\lambda}=V_{R_{\lambda}}\left(a_{\lambda}\right)$.
ii) If $a_{o} \notin \mathscr{M}$, then $\mathscr{M} \notin C_{o}$; and since $a_{\lambda}=\phi_{\lambda}\left(a_{o}\right)$ is a unit for all but a finite number of $\lambda \in \Lambda^{\prime}, C_{\lambda}=\emptyset$ for all but a finite number of $\lambda \in \Lambda^{\prime}$. By intersecting sets of the above type, one thus verifies the claim.

Note that there is a similarity between this topology on Spec R and the topology described in § 3 .

In connection with (4.1) we would like to raise the following:
(4.4) Question. If X is the ordered disjoint union of partially ordered sets $X_{\lambda}, \lambda \in \Lambda$, and if X is spectral, then are the X_{λ} also spectral?
5. Constructing spectral topologies. Let X be a partially ordered set that is the disjoint union of two proper subsets X_{1} and X_{2}, where X_{1} is closed under \geqq in X. Let X_{1} and X_{2} be given the induced order from X. Note that here, in contrast with the ordered disjoint union in § 4, we can have an element of X_{2} less than an element of X_{1}. Suppose that for $i=1,2, X_{i}$ has an order compatible topology \mathscr{T}_{i} which is also compatible with the order of X in the sense that $S_{X}(x) \cap X_{i}$ is closed in X_{i}, for all $x \in X$. (This places an additional restriction on X_{1}, but not on X_{2}.) With these assumptions, we define a topology \mathscr{T} for X by:
$C \subseteq X$ is \mathscr{T}-closed if and only if
a) $C=C_{1} \cup C_{2}, C_{i}$ closed in X_{i}, and
b) C is closed under \geqq in X.

For the remainder of this section, any reference to X, X_{1}, and X_{2} assumes the situation described above. Once topologies \mathscr{T}_{1} and \mathscr{T}_{2} are defined, or assumed to exist, the topology \mathscr{T} is defined in the manner above.
(5.1) Observations.
a) \mathscr{T} induces the topology \mathscr{T}_{i} on $X_{i}, i=1,2$, and X_{1} is closed in \mathscr{T}. Also, \mathscr{T} is order compatible and hence T_{0}.
b) If X_{i} is quasi-compact in the \mathscr{T}_{i} topology, $i=1,2$, then X is quasicompact.

Proof. Suppose $\cap C_{\alpha}=\emptyset$ where $C_{\alpha}=C_{\alpha}{ }^{1} \cup C_{\alpha}{ }^{2}, C_{\alpha}{ }^{i}$ closed in X_{i}. Then $\emptyset=\cap\left(C_{\alpha}{ }^{1} \cup C_{\alpha}{ }^{2}\right) \supseteq\left(\cap C_{\alpha}{ }^{1}\right) \cup\left(\cap C_{\alpha}{ }^{2}\right)$ implies $\cap C_{\alpha}{ }^{1}=\emptyset$ and $\cap C_{\alpha}{ }^{2}=\emptyset$. As each X_{i} is quasi-compact, there exist $\alpha_{1}, \ldots, \alpha_{t}$ such that $C_{\alpha_{1}}{ }^{i} \cap \ldots \cap$ $C_{\alpha t}{ }^{i}=\emptyset$ for $i=1,2$. Obviously, $C_{\alpha_{1}} \cap \ldots \cap C_{\alpha t}=\emptyset$.
b^{\prime}) If S_{1} is a quasi-compact subset of $\left(X_{1}, \mathscr{T}_{1}\right)$, then $G_{X}\left(S_{1}\right)$ is quasicompact in (X, \mathscr{T}).

Proof. Begin with an open cover of $G_{X}\left(S_{1}\right)$ and choose a finite subset that covers S_{1}. Because \mathscr{T}-open sets are closed under \leqq, this finite subset covers $G_{X}\left(S_{1}\right)$.
c) If $C \subseteq X$ is an irreducible closed set, then $C \cap X_{2}$ is either the empty set or it is an irreducible closed subset of X_{2}.

Proof. Let $C=C_{1} \cup C_{2}, C_{i}$ closed in X_{i}, and suppose $C_{2} \neq \emptyset$. If C_{2} is not irreducible in X_{2}, then write $C_{2}=A \cup B$, where A, B are proper closed subsets of X_{2}. It follows that $C=\left(C_{1} \cup A\right) \cup\left(C_{1} \cup B\right)$ with $\left(C_{1} \cup A\right),\left(C_{1} \cup B\right)$ closed in X. This contradicts the fact that C is irreducible in X.
d) If every irreducible closed set of $\left(X_{i}, \mathscr{T}_{i}\right), i=1,2$, has a generic point, then every irreducible closed set of (X, \mathscr{T}) does also.

Proof. Let C be an irreducible closed set of X. If $C \cap X_{2}=\emptyset$, then C is an irreducible closed set of X_{1}; and then the generic point for C in X_{1} is also a generic point for C in X. On the other hand, if $C \cap X_{2} \neq \emptyset$, then by c), $C \cap X_{2}$ is an irreducible closed set in X_{2} and hence has a generic point x in X_{2}. But then $C=\left(C \cap X_{1}\right) \cup S_{X}(x)$ implies $C=S_{X}(x)$ by the irreducibility of C in X. Thus, x is a generic point for C in X.
e) If \mathscr{B}_{i} is an open basis for $\mathscr{T}_{i}, i=1,2$, then let $\mathscr{B}=\left\{G_{X}\left(U_{1}\right) \cup\right.$ $U_{2} \mid U_{i} \in \mathscr{B}_{i}$ and $G_{X}\left(U_{1}\right) \cup U_{2}$ is \mathscr{T}-open $\}$. If for each non-empty $U_{1} \in \mathscr{B}_{1}$ and for each \mathscr{T}_{2}-open set W_{2} such that $W_{2} \supseteq G_{X}\left(U_{1}\right) \cap X_{2}$, there is a $U_{2} \in \mathscr{B}_{2}$ such that $U_{2} \subseteq W_{2}$ and $U_{2} \cup\left(G_{X}\left(U_{1}\right) \cap X_{2}\right)$ is \mathscr{T}_{2}-open, then \mathscr{B} is an open basis for \mathscr{T}.

Proof. Any open set in X is of the form $W=W_{1} \cup W_{2}$ where W_{i} is \mathscr{T}_{i}-open, $i=1,2$. If $y \in W_{1}$, choose $U_{1} \in \mathscr{B}_{1}$ such that $y \in U_{1} \subseteq W_{1} . W$ is closed under \leqq, so $G_{X}\left(U_{1}\right) \cap X_{2} \subseteq W_{2}$. Our assumption in e) provides a $U_{2} \in \mathscr{B}_{2}$ such that $U_{2} \subseteq W_{2}$ and $\left(G_{X}\left(U_{1}\right) \cap X_{2}\right) \cup U_{2}$ is open in X_{2}. Thus $y \in G_{X}\left(U_{1}\right)$ $\cup U_{2} \subseteq W$ and $G_{X}\left(U_{1}\right) \cup U_{2} \in \mathscr{B}$. For $y \in W_{2}$, choose $U_{2} \in \mathscr{B}_{2}$ such that $y \in U_{2} \subseteq W_{2}$. Now the choice $U_{1}=\emptyset$ gives $U_{2} \in \mathscr{B}$.

We shall use 5.1 (e) in three places. In the proof of Theorem 5.2 , if $W=$ $W_{1} \cup W_{2}$ and $W_{1} \neq \emptyset$, we will have $W_{2}=X_{2}$. In the proof of Theorem 5.3, if $W_{1} \neq \emptyset$, we will be able to say $W_{2} \in \mathscr{B}_{2}$; and in the proof of Theorem 5.8 every $G_{X}\left(U_{1}\right)$ will be open in X.

We shall now prove some theorems which give sufficient conditions for the topology \mathscr{T} to be spectral.
(5.2) Theorem. Suppose $\left(X_{1}, \mathscr{T}_{1}\right)$ is spectral, and suppose $\left(X_{2}, \mathscr{T}_{2}\right)$ satisfies the axioms for a spectral space, with the exception that X_{2} need not be quasi-compact. If there is $a \mathfrak{p} \in X_{1}$ such that $x_{2}<\mathfrak{p} \leqq x_{1}$ for all $x_{i} \in X_{i}, i=1,2$, then (X, \mathscr{T}) is spectral.

Proof In view of $5.1(\mathrm{a}), 5.1\left(\mathrm{~b}^{\prime}\right)$, and $5.1(\mathrm{~d})$, we need only verify that \mathscr{T} has a basis of quasi-compact open sets which is closed under finite intersections. For \mathscr{B}_{1} and \mathscr{B}_{2} we choose the quasi-compact open sets of \mathscr{T}_{1} and \mathscr{T}_{2}. If $U_{1} \neq \emptyset$ is quasi-compact open in X_{1}, then $X_{2} \subseteq G_{X}\left(U_{1}\right)$. Thus the basis \mathscr{B} defined in $5.1(\mathrm{e})$ is an open basis. By $5.1\left(\mathrm{~b}^{\prime}\right), G_{X}\left(U_{1}\right)$ is quasi-compact if U_{1} is quasi-compact. Thus the sets in \mathscr{B} are quasi-compact. That \mathscr{B} is closed under finite intersections follows from the fact that sets in \mathscr{B} are either of the form U_{2}, where $U_{2} \in \mathscr{B}_{2}$, or $U_{1} \cup X_{2}$, where $U_{1} \in \mathscr{B}_{1}$ and $\mathfrak{p} \in U_{1}$.
(5.3) Theorem. Suppose $\left(X_{1}, \mathscr{T}_{1}\right)$ is spectral and that there is an $m \in X_{2}$ such that
a) $m \leqq y$ for all $y \in X_{1}$, and
b) if $y \in X_{2}$ has infinitely many elements of X_{2} below (resp. above) y, then $y \geqq m(r e s p . y \leqq m)$.
Then X is spectral.
Proof. Let \mathscr{T}_{2} be the $C(m)$-topology for X_{2}. We proved in Theorem 3.2 that $\left(X_{2}, \mathscr{F}_{2}\right)$ is spectral. The definition of the $C(m)$-topology also shows that any open set of \mathscr{T}_{2} which contains m is quasi-compact. Again, let \mathscr{B}_{1} and \mathscr{B}_{2} be the quasi-compact open sets of \mathscr{T}_{1} and \mathscr{T}_{2}. Using 5.1 (a), (b), (d), and (e), we have X is spectral if the basis \mathscr{B} is closed under finite intersections. In this situation \mathscr{B} can also be described as $\left\{U_{1} \cup U_{2} \mid U_{i}\right.$ is quasi-compact open in \mathscr{T}_{i} and $U_{1} \cup U_{2}$ is closed under $\left.\leqq\right\}$. It follows that \mathscr{B} is closed under finite intersections.
(5.4) Applications.
a) In terms of a 1 -dimensional partially ordered set X, one can apply Theorem 5.3 as follows. Write $X=X_{1} \cup X_{2}$, where $X_{1}=\{$ ht 1 elements of $X\}$ and $X_{2}=\{$ ht 0 elements of $X\}$. Theorem 5.3 asserts that if there is a spectral topology for X_{1} which includes all sets of the form $S_{X}(x) \cap X_{1}, x \in X$, among its closed sets, and if there is an $m \in X_{2}$ such that m lies below every element of X_{1}, then X is spectral. In Example 2.1, we constructed a set of this type which was not spectral precisely because no spectral topology for X_{1} could include the sets $\mathrm{S}_{X}(x) \cap X_{1}$ as closed sets.
b) Begin with a partially ordered set X_{1} and a collection \mathscr{C} of non-empty subsets of X_{1} such that $X_{1} \in \mathscr{C}$. Define a set $X_{2}=\left\{x_{C} \mid C \in \mathscr{C}\right\}$. Form a larger set $X=\mathscr{C}\left(X_{1}\right)=X_{1} \cup X_{2}$ and order X by specifying that if $y \in X_{1}, y \geqq x_{C}$ if and only if $y \in C$. In addition, we preserve any order relations that may exist in X_{1}.

Theorem. Let \mathscr{T}_{1} be an order compatible topology for the partially ordered set X_{1}. Then $\left(X_{1}, \mathscr{T}_{1}\right)$ is spectral and every set in \mathscr{C} is \mathscr{T}_{1}-closed if and only if there exists an order compatible spectral topology \mathscr{T} for $X=\mathscr{C}\left(X_{1}\right)$ such that $\left.\mathscr{T}\right|_{X_{1}}=\mathscr{T}_{1}$ and X_{1} is \mathscr{T}-closed.

Proof. (\Rightarrow) Apply Theorem 5.3.
$(\Leftarrow) X_{1}$ is closed and $(\mathrm{X}, \mathscr{T})$ is spectral; hence $\mathscr{T}_{1}=\left.\mathscr{T}\right|_{X_{1}}$ is spectral. The rest of the assertion is immediate.
(5.5) Example. The \Rightarrow direction of the above theorem is false without the initial assumption that $X_{1} \in \mathscr{C}$. For, let $X_{1}=\left\{y_{1}, y_{2}, \ldots\right\}, X_{2}=\left\{x_{1}, x_{2}, \ldots\right\}$ and $X=X_{1} \cup X_{2}$, with the order on X defined by
$x_{j}<y_{i}$ if and only if $j \geqq i$.
Then $X=\mathscr{C}\left(X_{1}\right)$ where $\mathscr{C}=\left\{\left\{y_{1}\right\},\left\{y_{1}, y_{2}\right\},\left\{y_{1}, y_{2}, y_{3}\right\}, \ldots\right\}$. (See Figure 2.)

Figure 2
This is just the example of Hochster given in [5] with the order reversed. Since $\bigcap_{i} G\left(y_{i}\right)=\emptyset$, property (H) fails and X is not spectral. However, X_{1} is spectral, and in fact, the $C\left(y_{1}\right)$-topology (see $\S 3$) is spectral and contains every set in \mathscr{C} among the closed sets.
(5.6) Example. The above example leads to another that shows how the ordering of a spectral set can influence an algebraic property of any corresponding ring. Let X be the set defined above and define an ordering on $X^{\prime}=X \cup\{m\}$ by requiring that, in addition to the ordering of $X, m<x$ for all $x \in X$. It is easily verified that the COP topology for X^{\prime} is spectral, since in this topology all closed sets $\neq X^{\prime}$ are finite.

Since X^{\prime} is spectral and has a unique minimal element, there exists a domain D such that Spec $D \cong X^{\prime}$. However, X itself is not spectral and thus cannot be a closed subset of X^{\prime}; so it follows that the intersection of the non-zero primes of Spec D must be (0). Thus, in this case the ordering of Spec D implies a very concrete algebraic property of D.

To carry this a bit further, consider what happens when the ordering of X^{\prime} is reversed. Then any ring R such that $\operatorname{Spec} R$ is this new X^{\prime} has a unique
maximal prime \mathscr{M} such that \mathscr{M} is the union of the non-maximal primes, because the set of non-maximal primes cannot be spectral.
(5.7) We shall now describe a second set of conditions which enable us to define topologies \mathscr{T}_{1} and \mathscr{T}_{2} in such a way that (X, \mathscr{T}) will be spectral. Define an equivalence relation on X_{1} as follows:

For $x, x^{\prime} \in X_{1}, x \sim x^{\prime}$ if and only if $G_{X}(x) \cap X_{2}=G_{X}\left(x^{\prime}\right) \cap X_{2}$ (i.e. the elements in X_{2} below x coincide with the elements in X_{2} below x^{\prime}). Similarly, define an equivalence relation on X_{2} by:

For $x, x^{\prime} \in X_{2}, x \sim x^{\prime}$ if and only if $S_{X}(x) \cap X_{1}=S_{X}\left(x^{\prime}\right) \cap X_{1}$.
We will denote the equivalence class of $x \in X$ by $[x]$.
Consider the following conditions on the order of X :
i) For $i=1,2$, if $x, x^{\prime} \in X_{i}$ and $x<x^{\prime}$, then $x \sim x^{\prime}$, and
ii) For each $x \in X_{2}$, there exist $y_{1}, \ldots, y_{t} \in X_{1}$ such that $S_{X}(x) \cap X_{1}=$ $\cup_{j=1}^{t}\left[y_{j}\right]$; and similarly, for each $x \in X_{1}$, there exist $y_{1}, \ldots, y_{t} \in X_{2}$ such that $G_{X}(x) \cap X_{2}=\bigcup_{j=1}^{t}\left\lceil y_{j}\right]$.
Note that (5.7.i) implies that for $i=1,2, X_{i}$ is the ordered disjoint union of the equivalence classes in X_{i}. For each $x \in X$, we give $[x]$ the order induced from X.
(5.8) Theorem. If $X=X_{1} \cup X_{2}$ satisfies (5.7(i) and (ii)) and for each $x \in X$, $[x]$ is spectral, then X is spectral.

Proof. Let us assume that we begin with a spectral topology for each $[x]$, $x \in X$. We can define an order compatible spectral topology \mathscr{T}_{1} for X_{1} in the manner of (4.3). Fix an element $m \in X_{1}$, and define a set $C \subseteq X_{1}$ to be \mathscr{T}_{1-} closed if and only if $C \cap[x]$ is closed in $[x]$ for all $x \in X_{1}$, and either
i) $m \in C$, or
ii) $m \notin C$ and $C \cap[x]=\emptyset$ for all but a finite number of equivalence classes in X_{1}.
If m is maximal, this is the spectral topology described in $\S 4$. It is easy to check that for any m this gives a spectral topology for X_{1}. Now if $x \in X_{2}$, then $S_{X}(x) \cap X_{1}$ is a finite union of equivalence classes and is therefore \mathscr{T}_{1}-closed. Thus \mathscr{T}_{1} is compatible with the order of X in the sense described at the start of $\S 5$.

Now define an order compatible topology (usually not spectral) \mathscr{T}_{2} on X_{2} by $C \subseteq X_{2}$ is \mathscr{T}_{2}-closed if and only if $C \cap[x]$ is closed in $[x]$, for all $x \in X_{2}$.
The topology on each $[x] \subseteq X_{2}$ is spectral; so we can choose a quasi-compact open basis for \mathscr{T}_{2} using finite unions of sets each of which is a quasi-compact open subset of some $[x]$. This basis is closed under finite intersections. Note that an irreducible closed subset of X_{2} must be contained in some $[x]$, and thus has a generic point.

Let \mathscr{T} be the topology for X defined as before. By (5.1.a), \mathscr{T} is T_{0}, and by (5.1.d), \mathscr{T} has the generic point property. If each $x \in X_{2}$ is less than some
element of X_{1}, then we use (5.1.b') to show X is quasi-compact. On the other hand, if there is an $x \in X_{2}$ such that $S_{X}(x) \cap X_{1}=\emptyset$, then $X=G_{X}\left(X_{1}\right) \cup[x]$. Since $[x]$ is closed in X, it is quasi-compact in X by the assumption that it is spectral. Since $G_{X}\left(X_{1}\right)$ is also quasi-compact, by (5.1.b'), it follows that X is quasi-compact.

It remains to verify that \mathscr{T} has a basis of quasi-compact open sets which is closed under finite intersections. Let \mathscr{B} be all sets of the form $G_{X}\left(U_{1}\right) \cup U_{2}$, where U_{i} is a quasi-compact open set in X_{i}. First note that if $x \in G_{X}\left(U_{1}\right) \cap X_{2}$, then $[x] \subseteq G_{X}\left(U_{1}\right)$. It follows that $G_{X}\left(U_{1}\right)$ is \mathscr{T}-open, because $G_{X}\left(U_{1}\right) \cap X_{2}$ is a union of equivalence classes of X_{2} and hence is open in X_{2}. Any \mathscr{T}-open cover for U_{1} covers $G_{X}\left(U_{1}\right)$, so U_{1} quasi-compact implies $G_{X}\left(U_{1}\right)$ is quasi-compact. If U_{2} is a quasi-compact open set in X_{2}, then it is also a quasi-compact \mathscr{T}-open set. Thus, \mathscr{B} consists of quasi-compact open sets. By 5.1.e, \mathscr{B} is then a quasicompact open basis for \mathscr{T}.

Now \mathscr{B} is closed under finite unions; so to show it is closed under finite intersections, it suffices to show that an intersection of two elements of \mathscr{B} is a finite union of elements of \mathscr{B}. Let $G_{X}\left(U_{1}\right) \cup U_{2}$ and $G_{X}\left(U_{1}{ }^{\prime}\right) \cup U_{2}{ }^{\prime}$ be two elements of \mathscr{B}.

First consider $U_{2} \cap U_{2}{ }^{\prime}$. As $U_{2}, U_{2}{ }^{\prime}$ are quasi-compact open in \mathscr{T}_{2} as well as \mathscr{T}, so is their intersection. Next consider $G_{X}\left(U_{1}\right) \cap U_{2}{ }^{\prime}\left(G_{X}\left(U_{1}{ }^{\prime}\right) \cap U_{2}\right.$ is, of course, similar). To be quasi-compact in the \mathscr{T}_{2} topology, $U_{2}{ }^{\prime}$ must be contained in a finite union of equivalence classes. Let us say $U_{2}{ }^{\prime}=W_{1} \cup \ldots \cup W_{t}$, W_{j} quasi-compact open and $W_{j} \subseteq\left[x_{j}\right]$ for some $x_{j} \in X_{2}$. If $W_{j} \cap G_{X}\left(U_{1}\right) \neq \emptyset$, then $W_{j} \subseteq\left[x_{j}\right] \subseteq G_{X}\left(U_{1}\right)$. Thus, $G_{X}\left(U_{1}\right) \cap U_{2}{ }^{\prime}=\bigcup\left\{W_{j} \mid W_{j} \subseteq G_{X}\left(U_{1}\right)\right\} \in \mathscr{B}$.

Finally, consider $G_{X}\left(U_{1}\right) \cap G_{X}\left(U_{1}{ }^{\prime}\right)$. Note that $G_{X}\left(U_{1}\right) \cap G_{X}\left(U_{1}{ }^{\prime}\right)=$ $G_{X}\left(U_{1} \cap U_{1}{ }^{\prime}\right) \cup\left(\cup_{\alpha}\left\{\left[y_{\alpha}\right] \mid y_{\alpha} \in X_{2}\right.\right.$, and $\left[y_{\alpha}\right] \subseteq\left(G_{X}\left(U_{1}\right) \cap G_{X}\left(U_{1}{ }^{\prime}\right)\right) \backslash$ $\left.G_{X}\left(U_{1} \cap U_{1}^{\prime}\right)\right\}$. It will suffice to show that this collection of [y_{α}]'s is finite, since then their union is a quasi-compact open set in the \mathscr{T}_{2} topology. Consider, therefore, two cases:
i) $m \notin U_{1} \cap U_{1}{ }^{\prime}$ (where m is the defining point for the \mathscr{T}_{1} topology). We assume $m \notin U_{1}$; so U_{1} quasi-compact implies U_{1} is covered by a finite number of equivalence classes, say $\left[x_{1}\right], \ldots,\left[x_{t}\right]$, where $x_{i} \in X_{1}$. Thus, $G_{X}\left(U_{1}\right) \cap$ $X_{2} \subseteq \cup_{i=1}^{t}\left(G_{X}\left(x_{i}\right) \cap X_{2}\right)$. But each $G_{X}\left(x_{i}\right) \cap X_{2}$ is a finite union of equivalence classes. Thus the $\left[y_{\alpha}\right]$'s are chosen from a finite set.
ii) $m \in U_{1} \cap U_{1}{ }^{\prime}$. From the definition of \mathscr{T}_{1} we see that all but a finite number of equivalence classes of X_{1} are contained in $U_{1} \cap U_{1}{ }^{\prime}$. Thus, as in i) above, the $\left[y_{\alpha}\right]$'s will be chosen from a finite set of equivalence classes.

Our main object in proving the above theorem is to obtain the following corollary. However, we feel that the generality of the setting makes the pieces of the proof fit better than would be the case if we merely proved the corollary directly.
(5.9) Corollary. Let X be a 1-dimensional partially ordered set, let X_{1} be the ht 1 elements and X_{2} be the ht 0 elements. If for every $x \in X_{2}, S_{X}(x) \cap X_{1}$ is a
finite union of equivalence classes and for every $x \in X_{1}, G_{X}(x) \cap X_{2}$ is a finite union of equivalence classes, then X is spectral.

Proof. We have assumed (5.7.ii), and (5.7.i) is trivially satisfied. Moreover, each $[x]$ is 0 -dimensional; and as we noted in $\S 1$, such sets are spectral.

A special case of the above corollary that deserves emphasis is the following:
(5.10) Corollary. Let X be a 1-dimensional partially ordered set, let X_{1} be the ht 1 elements and X_{2} be the ht 0 elements. If for all $x \in X_{2}, S_{X}(x) \cap S_{X}(y)=\emptyset$ for all but finitely many $y \in X_{2}$, and for all $x \in X_{1}, G_{X}(x) \cap G_{X}(y)=\emptyset$ for all but finitely many $y \in X_{1}$, then X is spectral.

In pushing this kind of investigation further, one might try next the following question: If X is a 1 -dimensional partially ordered set such that for all $x \neq y \in X, S(x) \cap S(y)$ and $G(x) \cap G(y)$ are finite, is X spectral?
6. The spectral topologies on a countable 1 -dimensional partially ordered set with unique minimal element. For some partially ordered sets there is only one order compatible spectral topology. For example, a finite partially ordered set is always spectral, and the COP topology is the only possible order compatible spectral topology. A totally ordered set is spectral if and only if it has properties $(K 1)$ and (K2) [5, Theorem 3.1], and since every closed set is irreducible, the COP topology is again the only order compatible spectral topology. On the other hand, an order compatible topology for a 0 -dimensional set is spectral if and only if it is Boolean. As we said in § 1, for countable sets these topologies have been characterized by Pierce in [7].

Let Y be a 0 -dimensional set and let $X=Y \cup\{\theta\}$, where $\theta \leqq y$ for all $y \in Y$. We assume that Y is infinite, since the COP topology is the only order compatible spectral topology if Y is finite. With the additional assumption that Y is countable, we will be able to describe all order compatible spectral topologies for X (using, of course, Pierce's description of countable Boolean spaces); but for the moment, we can avoid assuming Y is countable. There are two cases to consider, depending on whether Y is or is not a closed subset of X in a given spectral topology. Consider first the spectral topologies for X for which Y is closed.
(6.1) Theorem. There is a one to one correspondence between Boolean topologies on Y and order compatible spectral topologies on X for which Y is a closed subset.

Proof. If Y is closed in a spectral topology for X, then Y is spectral, hence Boolean, when given the induced topology. Conversely, if Y has a Boolean topology, define $C \subseteq X$ to be closed if and only if $C=X$ or C is a closed subset of Y. Obviously, this is a spectral topology.

We now want to consider spectral topologies for X where Y is not a closed subset of X. Suppose Y is written as the ordered disjoint union of subsets
$Y_{\lambda}, \lambda \in \Lambda$, where Λ is an infinite set. For each Y_{λ}, choose a T_{1} topology \mathscr{T}_{λ}. An order compatible topology for Y is obtained by defining
a) $C \subseteq Y$ is closed if and only if $C=Y$ or $C=C_{\lambda_{1}} \cup \ldots \cup C_{\lambda_{t}}, \quad C_{\lambda_{i}}$ a closed subset of $Y_{\lambda_{i}}$,
and an order compatible topology for X is obtained by defining
b) $C \subseteq X$ is closed if and only if $C=X$ or C is a proper closed subset of Y. Thus, Y is not a closed subset of X, and one can easily verify that X is spectral if each Y_{α} is spectral (Boolean). In this situation, Y satisfies all the necessary properties for being spectral, except that Y is irreducible but does not have a generic point.

Now let Y be countable, and let \mathscr{T} be an order compatible spectral topology for X for which Y is not a closed set. We will show that \mathscr{T} arises in the manner above. Obviously, \mathscr{T} arises from $\left.\mathscr{T}\right|_{Y}$ by way of b) above. Also, any proper closed subset of Y is Boolean.

It remains to see that Y can be written as a disjoint union of closed subsets $Y_{\lambda}, \lambda \in \Lambda$, such that the topology of Y can be built from the induced topologies on the Y_{λ} using a). Note that Y is T_{1}, quasi-compact, irreducible, and has a basis of quasi-compact open sets which is closed under finite intersections. Our task is completed by the following two lemmas.
(6.2) Lemma. Suppose Y is T_{1}, quasi-compact, irreducible, and has a quasicompact open basis. Then $Y=\cup_{i=1}^{\infty} Y_{i}$, where this is a disjoint union and $Y \backslash Y_{i}$ is quasi-compact open for all i.

Proof. Order Y (i.e., let $Y=\left\{y_{1}, y_{2}, \ldots\right\}$). Choose a quasi-compact open set U_{1} such that $y_{2} \in U_{1}, y_{1} \notin U_{1}$. Let $Y_{1}=Y \backslash U_{1}$. We have $y_{1} \in Y_{1}$ and $Y \backslash Y_{1}=U_{1} . Y_{1}$ is closed, so it is quasi-compact. Cover Y_{1} with quasi-compact open sets that miss y_{2}, and take a finite subcover. Since a finite union of quasicompact open sets is quasi-compact open, we can choose a quasi-compact open set U_{2} such that $Y_{1} \subseteq U_{2}$, and $y_{2} \notin U_{2}$. Let $Y_{2}=Y \backslash U_{2}$. We have $y_{2} \in Y_{2}$, $Y \backslash Y_{2}=U_{2}$, and $Y_{1} \cap Y_{2}=\emptyset$. Note that $Y \neq Y_{1} \cup Y_{2}$ since Y is irreducible. Let $y_{i 3}$ be the first $y_{i} \notin Y_{1} \cup Y_{2}$. As $Y_{1} \cup Y_{2}$ is closed, we can choose a quasicompact open set U_{3} such that $Y_{1} \cup Y_{2} \subseteq U_{3}$, and $y_{i_{3}} \notin U_{3}$. Let $Y_{3}=Y \backslash U_{3}$, and we have $y_{i_{3}} \in Y_{3}, Y \backslash Y_{3}=U_{3}$, and Y_{1}, Y_{2}, Y_{3} are pairwise disjoint. Y irreducible now gives $Y \neq Y_{1} \cup Y_{2} \cup Y_{3}$. Repeating this process, we inductively define the Y_{i}.
(6.3) Lemma. Suppose $Y=\bigcup_{i=1}^{\infty} Y_{i}$, where this is a disjoint union and $Y \backslash Y_{i}$ is quasi-compact open for all i, and that every proper closed subset of Y is Boolean. Then a) is satisfied.

Proof. Since every Y_{i} is closed in Y, the implication \Leftarrow is immediate. Suppose then $C \neq Y$ is closed in Y. Then $C=\cup C_{i}$, where $C_{i}=C \cap Y_{i}$ is closed in Y_{i}. We must show $C_{i}=\emptyset$ for all but a finite number of i. Now $Y \backslash Y_{i}$ is quasi-compact open in Y, so $C \cap\left(Y \backslash Y_{i}\right)$ is quasi-compact open in the
relative topology for C. But C is a Boolean space; hence $C \cap\left(Y \backslash Y_{i}\right)$ must also be closed in C. Since this set is the complement of C_{i} in C, C_{i} is open in C. Thus $\left\{C_{i}\right\}$ is an open cover of C by pairwise disjoint sets. As C is quasi-compact, $C_{i}=\emptyset$ for all but a finite number of i.

Remark. Different partitions for Y can still yield the same spectral space X.

References

1. S. H. Cox and R. L. Pendleton, Rings for which certain flat modules are projective, Trans. Amer. Math. Soc. 150 (1970), 139-156.
2. M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60.
3. I. Kaplansky, Commutative rings (Allyn and Bacon, Boston, 1970).
4. D. Lazard, Disconnexités des spectres d'anneaux et des préschémas, Bull. Soc. Math. France 95 (1967), 95-108.
5. W. J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra 25 (1973), 419-434.
6. J. Ohm, Semi-valuations and groups of divisibility, Can. J. Math. 21 (1969), 576-591.
7. R. S. Pierce, Notes on Boolean algebras, unpublished notes.

University of Nebraska, Lincoln, Nebraska;
Louisiana State University, Baton Rouge, Louisiana

[^0]: Received November 21, 1975. The research of the first author was supported by a Senior Faculty Fellowship at the University of Nebraska and that of the second author by a grant from the National Science Foundation.

