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Abstract

In this paper, we consider denumerable state continuous time Markov decision processes
with (possibly unbounded) transition and cost rates under average criterion. We present a
set of conditions and prove the existence of both average cost optimal stationary policies and
a solution of the average optimality equation under the conditions. The results in this paper
are applied to an admission control queue model and controlled birth and death processes.

1. Introduction

Continuous time Markov decision processes (CTMDP) have received considerable
attention because many optimization models are based on processes involving con-
tinuous time. Both average and discounted criteria in CTMDP are often used to
determine optimal policies. In this paper, we consider denumerable state CTMDP
with (possibly unbounded) transition rates and (possibly unbounded) cost rates under
average criterion, which has only been discussed by Bather [2] as far as we know.

When the state space is finite, bounded solutions of the optimality equation (OE)
for minimizing average cost and methods computing optimal policies have been
investigated for CTMDP by Howard [10], Miller [13], Lembersky [12], and many
others. Since then, most work has focused on CTMDP with denumerable state space
[5,11,14,18]. Under the conditions of bounded reward rates and bounded transition
rates, Kakuman [11] showed that if there exists a constant and bounded function
satisfying the average reward OE, then any stationary policy determined by the OE is
average reward optimal. If the difference defined as ua(i) = Va(i) — Va(0), where
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Va(i) is the a-discounted optimal reward value function, is uniformly bounded in
state / with discounted rate factor a > 0, then the existence of such a constant and
bounded function was also proved in [11]. Dong [5] extended the results of Kakuman
[11] to the case of all possibly randomized Markov policies and countable action
space, and provided a value-iteration algorithm. This means that the average reward
optimal policies have the optimality property of obtaining the maximal average reward
relative to the class of all possibly randomized Markov policies. Song [18] further
extended the results of [5] to the case of non-uniformly bounded transition rates, but
his treatment is restricted to the case of bounded reward rates and uniformly bounded
difference «„(/). For the case of unbounded reward rates, Puterman [14] and Zheng
[21] proved the existence of both an average reward optimal stationary policy having
the optimality property and a solution to the OE, but their treatments are restricted
to the case of bounded transition rates. For the case of unbounded cost rates and
unbounded transition rates, to the best of our knowledge only Bather [2] addressed
this issue, and gave a set of sufficient conditions to guarantee the existence of an
average cost optimal stationary policy using unbounded solutions of the OE, but the
proof of existence of optimal policies in [2] is based on the assumption of existence of
unbounded solutions to the OE. In the same paper, Bather mentioned that it is not easy
to prescribe a general method for constructing solutions of the OE. The aim of this
paper is to prove the existence of solutions to the OE and optimal policies for the case
when both transition and cost rates are possibly unbounded. In the spirit of [2,14-16],
we present a set of conditions under which the existence of a solution of the OE and an
average cost optimal stationary policy are proved. Later, the results are illustrated by
two examples. One is an admission control queue model with unbounded cost rates
and bounded transition rates. The other is controlled birth and death processes with
unbounded transition rates and unbounded cost rates.

The rest of this paper is organized as follows. In Section 2, we briefly present
our model, notation and definitions. In Section 3 we deal with a-discounted cost
optimality. In Section 4 we provide a theorem giving the existence of a solution
of the OE and an average cost optimal stationary policy. The theory is illustrated
by considering an admission control queuing model and controlled birth and death
processes in Section 5.

2. Model, notation and definitions

The system under our consideration can be simply stated as follows: when the
system is at state /' of a denumerable state space 5, the decision maker chooses an
action a from a finite set A(i) of available actions. There are two consequences: (1)
the decision maker needs to pay the cost for implementing the action a at rate r(i, a);
(2) the system state moves to state j , j e S, which is governed by the transition
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rate q(j \ i, a). The goal of the decision maker is to choose a sequence of actions
which causes the system to perform optimally with respect to some predetermined
performance criterion V. So the model for this system can be denoted by a five-element
tuple {5, (A(j), i € 5), r, q, V) having the following characteristics:

(i) the state space 5 is denumerable;
(ii) every available action space A (i) is a finite subset of an action space A;

(iii) the cost rate r is a bounded below function on K := {(/, a) \ i e S, a e A(i));
(iv) the transition rate q satisfies q(j \ i, a) > 0, Vi'\ •£ j , a € A(i), i,j € S and

Y,JeSq(j I i, a) = 0 , ij €S,ae A ( i ) ;

(v) V is a discounted (or average) cost criterion which will be defined later.

For the average cost criterion defined with 'liminf, it is not easy to extend the
optimality property to the unbounded. So the treatment of Bather [2] is restricted to
the class of all stationary policies F, that is, F = [f | / : / i->- / (i) G A(i), Vi e 5}.
As in [2], we limit ourselves to the same class of policies F.

For a n y / e F, let qu(f) := q(j | i,f(i)), i,j € 5, r(i,f) := r ( i , / ( / ) ) ,
i 6 5, and Q(f) := (qyif)). The minimum transition matrix with respect to the
(2-matrix Q(f) is denoted by P™n(t,f) = {pf(.t,f)), t > 0. In order to determine
a unique standard transition matrix with respect to Q(f), and discuss a-discounted
cost optimality, we make the following assumptions which are also essential to the
coming discussion on average cost optimality.

ASSUMPTION 1. There exist k non-negative functions wn, n = l , . . . , k, such that

(i) for alii € Sanda G A(i), n=l, ...,k-\, ^j<iSq(j I i,a)wn(j) < ion+i(/);
(ii) for all i € Sanda e A(i), E ; e S ^ 0 ' I '. a)wk(j) < 0.

ASSUMPTION 2. W := (u;, H + wk) > 1, and for all i e 5, t > 0, / e F,

foZjesPtn(u>f)<lj(f)wU)d« < oo. where qj(f) := -qjj(f),j € 5 and every
wn conies from Assumption 1.

ASSUMPTION A. (i) Assumptions I and 2 hold;
(ii) k(«\ a)\ < MW(i), i e S, a € A(i), for some M > 0.

For the case of polynomial reward, Hou [8] presented the following condition which
we denote (H-C).

H-C: There exist a function w > 1 on 5, positive constants b and M, an integer
fc > 0, such that

(0 k(i, a) | < Mw(i)*a, a e A(/), i € 5;
(») £,/,- 90' I i, a)i«0')" < -qii I «. a)[w{i) + bf, for n = 1 , . . . , * .
Obviously, H-C is different from Assumption A. However, comparing Assump-

tion A with H-C, we can obtain the following conclusions.
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PROPOSITION 1. (i) IfsupaeMi)ieS(-q(i \ i,a)) := \\q\\ < oo, then H-C im-
plies Assumption 1;

(ii) / / H-C holds and £ y € j q(j | i, a) Q(j) < 0, a € A(i), i e 5, then Assump-
tion 1 holds, here Q(j) := supaeA(/>(-<?(/ I 7-a)) , ; e 5;

(iii) //H-C to/*, ||9|| < oo and tiZjesPfn(">f)<lj(f)™(J)kdu < «>. '"*«
Assumption A holds. Here, k and w come from H-C;

(iv) If Assumption A no/as and /n^re w an integer I < m < k such that wm+i (i) <
—q(i | i, a)b, \r(i, a)\ < M wm(i) for positive constants b and M, then H-C holds.

PROOF, (i) Under H-C, Assumption 1 is obviously valid for the case of k = 0. If
k > 1, then we can derive that for any 1 < n < k,

<J I i,a)w(jT < )
jeS \ m=l )

Let wn = (\\q\\ YZ,=i C™bm)n~Xwk-n+\ n = 1 , . . . , k + 1. Then we can derive that
Assumption 1 holds.

(ii) Under H-C, Assumption 1 is obviously valid if k = 0. Let k > 1, then we have
E,es<7(/ I i,a)w(j) <q-q(i \ i, a)b < Q(i)b,ae A(i), i € S. Letted") = u;(i),
u>2(i) = bQ(i), i e S. Then we can obtain that Assumption 1 holds.

(iii) By part (i) and w > 1, we can derive that part (iii) is valid.
(iv) Part (iv) obviously holds.

In fact, the main results and method presented in this paper have nothing in common
with those presented in [8].

Now we define the discounted and the average cost criteria and their optimal cost
value functions, respectively, as follows: For any f e F, i € S and a > 0,

Va(f, 0 := f e-a'Y^pf\t,f)r(jJ)dt, l£(i) := inf Va(f, i),
j

1 fT

V(f, i) := liminf- / ^PT&fM

A policy / * 6 F is called a-discounted cost optimal, if Va(f*, i) = V*(i), i e S.
Similarly, we can define average cost optimal policies.

REMARKS. 1. Under Assumptions 1 and 2, we know that the transition matrix
with respect to Q(f) is unique and honest, denoted by P(t,f). Hence we have
Pmin(t,f) = P(t,f), for any t > 0, / € F. Since the cost function r is bounded
below, by the above definitions, we may assume r > 0 without any loss.

2. Throughout this paper, we assume that every function on S is regarded as a
vector and that any kind of operator on matrices and vectors corresponds to them on
all components.
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3. Discounted optimality

In this section we will prove the existence of discounted cost optimal policies and
characterize the optimal discounted cost value V*, which is essential in the following
discussion on average cost optimality.

LEMMA 1. If Assumption 1 holds, then for any f € F andt > 0,

(i) Pmn(t,f)W< I i + t + ... + ——— J W;

f°° • (1 1 1 \
(ii) / e-°"Pmn(t,f)W< - + — + . . . + — )W.

Jo \a a2 ak)

PROOF. Similar to the proof of [19, Theorem 1], we can obtain these conclusions.

LEMMA 2. If one of the following conditions holds, then Assumption A holds:

(i) ||r|| == supie5iae/1(() r(i, a) < oo, \\q\\ < oo;
(ii) Assumption 1 holds, r < W and \\q\\ < oo;

(iii) for all i e S = ( 0 , l , . . . } , A ( i ) = {0, 1), q(i - 1 | i, 0) = \xi, q(i | i, 0) =
-(k + fi)i, q(i + 1 | i,0) = ki, i > 1, q(0 \ 0,0) = 0; q(i - 1 | i, 1) = fj,i,
q(i | i, 1) = -(A. + fi,)i + v, q(i + 1 | i, 1) = ki + v, i > 1( q(0 \ 0, 1) = -v,
q(l | 0, 1) = v, 0 < k < ix, v > 0. There are I positive numbers bn, n = 1 , . . . , / ,
such that r(i, a) < £ j , = 1 bni",forall a € A(i), i € 5.

PROOF. Obviously, (i) is valid. By adding 1 to wk in Assumption 1, from Lemma 1,
we obtain (ii). Part (iii) can be proved by applying Lemma 1. The calculation is
straightforward, but lengthy, and we shall omit the details.

With Assumption A we can define

B(S) := {u | cW(i) < u(i) < cW(i), Vi € S for some c > 0).

LEMMA 3. If Assumption A holds, then we have

(i) for any f 6 F, t > 0, i € 5, a > 0

(i) £,es/>,f('./) = i.
(2) Va*€B(S);

(ii) for any a > 0, the quantity V*(i) (/ € 5) is a unique solution of the following
OE within B(S):

a V;(0 = min /-(/, a) + T q(j \ i,a) Va*(j) , i e 5; (3.1)
aeMi) I Tts J
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(iii) for any a > 0, there must exist an a -discounted cost optimal policy f*;
(iv) a stationary policy f e F is optimal if and only if it realizes the minimum on

the right-hand side of (3.1).

PROOF. By [19, Theorems 2, 4 and 7], we can obtain these conclusions.

REMARK 3. Under Assumption A, Lemma 3 (i) means that the transition matrix
with respect to Q(f) is unique, standard and honest, for any / € F.

We take an arbitrary, but fixed, function m > 0 on S such that m(i) > (2(7), i 6 S.

LEMMA 4. Let Assumption A hold.

(i) If we let u0 := 0 and

[ r(i, a) m(i) ^ / q(j | i, a) \ )
aeMD [ m(i) + a m(i) + aj^\ m(i) ') J

i € S and n > 0, ffo/i limn_oo un(i) = V*(i),for i e 5.
(ii) 7M(i) = A, i € 5 := {0, 1,...}, for any a e A, a > 0, m(i)

r(i,a)/(m(i) + a) are increasing functions in i on S, and for any fixed k e S,
a e A, q(k \ i, a) := J^jik [q(j I i, a)/m(i) + Sy] is increasing in i on S, then V*(i)
is increasing in i on S for any a > 0.

PROOF, (i) For u e B(S), let

a

Then we have un+l = Tun, un = T"Q, un < un+l, n > 1. Based on Assumption A,
by induction, we can obtain that, for any n > 1,

un < \a a2 ak

Hence by the control convergence theorem and Lemma 3, and noting that every A(i)
is finite, we have u = Tu. Hence (i) is valid.

To prove (ii), by (i), we need to prove that, for i\, i2 € 5, J'I > i2, n > 0,

un(h) > un(i2). (3.2)
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By induction, when n = 0, (3.2) is obviously valid. Suppose (3.2) holds for n = N.
With the denotation uN(-\) = 0, for any a e A, it > i2, it, i2 e 5, we have

j=0

°° °° ( ' \ ' \
9 ' <2;a;

7 ^ ^ »i(i2)
Hence

Then «A/+I (»I) >; «/v+t('2)- That means (3.2) is valid for n = N + 1. Hence (ii) is also
valid.

COROLLARY 1. Let \\q\\ <oo and Assumption A hold. If for any i€S=[0, 1 , . . . } ,
A(i) = A, for any a e A, r(i, a) is increasing (or decreasing) in i on S and q(k \ i,a)
is increasing in i on S for any fixed k € S, then V*(i) is increasing (or decreasing).

PROOF. Let »i(/) — \\q\\ + I, i e S. Using a similar method to that used to prove
Lemma 4, we can obtain these conclusions.

4. Average criterion

In this section, we always assume that Assumption A holds. By Lemma 3, we let
/„* denote a discounted cost optimal stationary policy with respect to the discounted
rate factor a > 0.

By the Tychonoff theorem we have that F is a compact metric space. Hence
for any sequence [f*, n > 1} C F, there must exist a convergent subsequence of
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[f* ,n > 1}. This means that there must exist a limit point / * for any sequence
lfl>n>l}.

Let fc0 e 5 be a fixed state. For any a > 0 and i € 5, let ua(i) := Vo*(0 - V*(k0).
Now we present the conditions under which the existence of optimal policies and a
solution of the OE can be proved.

ASSUMPTION B. For some decreasing sequence [an] tending to zero and some
/to € S, there exist a non-negative function h and a constant N*, such that for all
n>\,ae A(i), i € 5

(i) N* < ua.(i) < Hi);
(») E;6s90' I i,a)h(j) < oo;

(iii) there are a non-negative and decreasing sequence {<f>j} and a positive integer
usuch that, for any aeA(j), r(j, a)>Q(j)h(j)(pj, whenever j>ii, and ^2jeS<pj=oo;

(iv) there exist positive integers v ,w, constants C > 0, /? € (0, 1) such that, for
any j € S, a € A(j), q(k \ j , a)h(k) < j}kC, whenever j > v, k > w +j.

ASSUMPTION C. One of the following conditions holds:
(i) lim^oo minae/t(l) r(i, a) = oo;

(») £ , e S n u ( f ) = l,ieS,f e F, here (nu(f)):= l i m ^ ^ P(t, f ) .

To verify Assumption C, we have the following lemma.

LEMMA 5. If one of the following conditions holds,

(i) there is a function G such that lim,.^ G(i) = oo and r(i, a) > G(i), i € 5,
a e A(i);

(ii) for any f eF, there exists a function X(f)>0 such that lim.-xx, X(f) (i)=oo
andQ(f)X(f)<0;

(iii) for any f e F, the process (Py (/,/)) is irreducible and recurrent positive,

then Assumption C holds.

PROOF. Obviously, the conclusion is valid under Condition (i). By [1, Propo-
sitions 5.1.7 and 5.4.8 and Theorem 5.1.6], we then obtain this conclusion under
Conditions (ii) or (iii).

LEMMA 6. For any f € F, i € S, we have

0) ifEjesX'jV) < 1. lim*-°o r(k,f(k)) = oo, then V(f, i) = oo;
(») £ , ^ v (/)<7(* ly./0")) < nlk(f)qk(f);

(Hi) V(f, i) > Zj€s*v(f)r<j,f(j));
if there exist a function u bounded below and a constant g satisfying the equation

g = r(i,/(i)) + YjlV I './('))«(/). i e 5,
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then V(f, i) < g.

PROOF. Conditions (i) and (ii) are from [2, Lemmas 2.2.2 and 2.2.1], respectively.
Condition (iv) is from [2, Theorem 2.1.3]. Since r > 0, by the Fatou lemma, we can
prove (iii).

THEOREM 1. If Assumptions A, B and C hold, then

(i) there exist a stationary policy / *, a constant g*, a function u* on S and a
decreasing sequence [ak] tending to zero, such that for i e 5,

(a) g* = lim ctkv:t(i), «*(/) = lim uat(i);

(b)
g* = r ( i , / ' ( I ) ) +

yeS

= min I r(i, a) + Y) q(j | i, a)u*{j) ; (4.1)aeMi) I U \
(ii) / * is an average cost optimal and satisfies V(f *, i) = g*, i € 5;
(iii) any f realizing the minimum on the right-hand side of (4.1) is average cost

optimal.
PROOF, (i) For any n > 1, i e S and a e A(i), by Lemma 3, we have

«. va* (o = r(i,/
yes

= nun r(i, a) + JZ ^0" I «, a) Kn U

= min j r(i, a) + £ ] 90" I '. a)««.0

Hence

yeS

= min j r(i, a) + ^ ?0' I «". «)««. 0")! • (4.3)
I yes J

Since / * is a limit point of {/„*}, there must exist a subsequence {an-} of {an} such
that linin'-Kx,/„*,(/) = /*(i) , for i € 5. By Assumption B (ii) and (4.2), to take any
a 6 A(ko), we have

q(j | fc0, a)h(j)-2q(k0 \ h, a)(h(ko) + \N*\) < oo.
yeS
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So \otn' V*,(kc)\ is bounded for any ri > 1. Hence there must exist a subsequence
[am>] of [an>} such that g* = linv.+ooa,,. V0m,(*o). By Assumption B (i) and the
Tychonoff theorem, we also have that [UOIII,} is a sequence of the compact met-
ric space n.est^*' ^ (»')]• So there must exist a subsequence {a*} of {am,} such
that lim^oo uak (i) := u*(i), i € 5. By Assumption B, we have lim^ooa* = 0.
Hence lim^oo a*uat(i) = 0, for i e 5. Now we derive that lim^ooockV*k(/) =
limt_oo a* V*t(ko) = g*, for i € 5. From the above discussion, we get, for i 6 5,

g* = lim ak Vo* (i); lim uttt(i) := «•(/); lim / ; (i) = / * ( / ) . (4.4)

From (4.3), for k > 1, we have

+ 7T7- + Uai(l)
m(i)

/]«..(/•)
. \r(i,a)

= nun I
aeA(i) I |fi(|)

For any i 6 5., since A(i) is finite, there must exist an integer N(i) > 0 and an action
a*(j) e A(i) such that, for k > N(i),

/ ; , ( ' )= /* (o (4.6)

andmaxfl€A(,){]^;y.e590" I '.«)/«(/)} =E; € s90" I i,a*(i))h(j) < oo. Hence we
have

By the control convergence theorem, (4.4)-(4-6) and noting that A(i) is finite, for
i e 5, we have

8* . ...,_.x r(' '>

" • V ^ ^ " ' ^ ^ ^ ^ ' c

= nun { —77^ +

Thus

* = min I r(i, a) + £ ] 9 ( / I «, «)«*(/) • (4-7)
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By (4.4) and (4.7), we have that (i) is valid.
(ii) First, we assume that £ y e J ni},(f) = 1, i s 5, / e F. We prove

S*. (4-8)

Obviously,weonlyneedtoconsider^jeJ7ry(/*)r(/,/*0)) < °°- Si
«./*(')) = 0, and u* is bounded below, the components of u* may be increased by
adding any constant without affecting the proof. So we may assume u* > 0. From
(4.1) and Lemma 6 (ii), we have that, for a large N > 0,

/

' /*0)KW - qj(f*)u*(j)

J

_k>N

k>N k<N

k<N

Choosing N > v and using Assumption B (iv), we can obtain

7=0+1
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k>N

N+w

>=5+l

AT+iL

[k=N+l

k=N+\j=v+l

k=N+l+w

k=N+l+w

By Assumption B (ii), we can obtain £t£S<7(& I j,f*(j))u*(k) < oo. So the first
and last terms on the right-hand side of the above formula tend to zero as N -> oo.
Since $^,6S

 nij(f*) = 1. we have that

N+w

k=N+\

To prove that lim infA,...,*, £"=
+W+I Xik(f*)u*(k)qk(f*) = 0, it is enough to show that,

given € > 0, there exist infinitely many values of N for which

N+w

k=N+l

Suppose, for contradiction, that we can find an integer / > u such that

N+w

k=N + \

for TV = lib, (I + l)w,.... Then Assumption B (iii) shows that

N+w N+w

nik(f*)Q(k)h(k)4>k

1

N+w
k=N+\

k=N+]

for TV = lib, (/ + l)w, . . . . It follows that
Since {</>,} is a decreasing sequence and £

tf *)r(k, f*(k)) > € £°°=l+i <Pjw-

= oo, we have Yi'jLi+i <Pjw = °°-
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Hence £/tes7ri*(/*)r(£,/*(£)) = oo. This contradiction shows that

N+w

liminf YJ nnc(f*)qk(f*)u*(k) = O.
k=N+\

So we have proved that ^2j€SJtij(f*)r(j,f*(j)) - £*• By Lemma 6, we have
V(f,i)>g\

Forany/ e F, i € 5, by (4.1), we have g* < r(i,f(i))+Y,jeSq(j | I , / ( I ) )M*O') -

Similarly, we can prove g* < V(f, i),f G F.
Second, if for some i e 5 , / e F,Y^u Xtjif) < 1, by Assumption C and Lemma 6,

we have V(f, i) = oo > g*. Hence we have

V(f, i)>g*, f e F, i e 5. (4.9)

On the other hand, since g* = r(i,/*(i)) + T,jes9(J I i,/*(0)«*0"). « e 5, by
Lemma 6, we can have

T . ' ) < * * , / €5 .

By (4.8) and (4.9), we have

V(f*,i) = g*<V(f,i), ieS,feF.

This means that (ii) is valid. Similarly, we can prove (iii).

5. Examples

In this section we will apply the results of previous sections to demonstrate the
existence of optimal policies in two examples. One is an admission control queue
model with unbounded cost and bounded transition rates. The other is controlled birth
and death processes with unbounded cost and unbounded transition rates.

EXAMPLE 1. We observe continuously an admission control model for a queuing
system. The system behaves as a single-server queuing system Mx/M/l. Let
pk, k = 0, 1 , . . . , K < oo, denote the arrival probability of k tasks, pk > 0 and
12k=o Pt = 1 • The arrival rate of the system is X. Let /x denote the exponential service
rate of the system. At any arrival time, the controller decides whether to admit the
arrival tasks. Rejected tasks are lost. Each accepted task generates a reward R. A
non-decreasing function r(i) denotes the cost rate for serving i tasks. Let p > 0
denote the cost rate of serving a single task. Hence we have r(i) = pi.
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We formulate this model as continuous time Markov decision processes. The
system state i denotes the number of tasks available for service in the system at any time
(that is, the queue length). So 5 = {0, 1,2,...}. For each i e 5, i > 0, A(i) = {0, 1}
with action 0 corresponding to rejecting and action 1 corresponding to accepting arrival
tasks. The cost rate function r satisfies r(i, 0) = r(i), r(i, 1) = r(i) — RX. By the
definition of average criterion, the cost function r(i, a) may be increased by adding any
constant without affecting the discussion of the average optimality. So we may take
that r(i, 0) = r(i) + RX, r(i, 1) = r(i). The transition rates satisfy: q(0 | 0, 0) = 0,
q(i - 1 | i, 0) = fi, q(i | i, 0) = -n, i > 0; q(k | 0, 1) = Xpk, k = 1 , . . . , K,
q(0 | 0, 1) = -(A./?! + • • • + XpK); q(i - 1 | i, 1) = n, q(i + k | i, 1) = Xpk,
k - l,...,K, q(i | i, 1) = -(n + Xpx -\ 1- XpK), i > 0. This model has the
following properties:

(1) Assumption A holds. In fact, we let wi (i)=pi + 1 + RX, ui2(i)=pX(%2k=\
/ e 5. By Lemma 2, we can verify Assumption A.
(2) Assumption B holds. In fact, by Lemma 3 (iii), we have, for any a > 0,

a V;(0 = min r(i, a) + T q(J I i, a) Va*(j)
0 6 / 1 ( 0 1 Tts ]

< r(/, o) + ti v:a -1) - n v;o>, i > o.

So we have

l, - „ <Kl „

Hence we may take k0 = 0 and thus ua(i) < pi(i+ l)/(2/x) + iRX/fj, = /i(i),
i € 5, a > 0. To take m{i) = X + fi, i e S, by Lemma 4, we have that V*
is an increasing function on 5. Hence we have «„(/) > 0, for i e S, a > 0.
So Assumptions B (i) and B (ii) hold. To verify Assumption B (iii), let u = 1,
g ( 0 5= ix + X, i e S; thus «/>, = pn/((n + X)(p + RX)(i + 1)), i e S and thus we
can obtain that Assumption B (iii) holds. Letting C = 0, v = 0, w = K, we can
verify Assumption B (iv). Obviously Assumption C holds. Hence by Theorem 1, we
have the following conclusion:

For this admission control queue model, there must exist an average cost optimal
stationary policy.

EXAMPLE 2. We consider controlled birth and death processes as follows: Let
S = {0, 1,2, . . .}, A(i) s {0, 1}, i e 5, <7(0 | 0,0) = 0, q(i - 1 | i, 0) = ni,
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q(i | i, 0) = -fxi, i > 0; q(0 | 0, 1) = -w, q{\ I 0, 1) = u, 9(1 - 1 | 1, 1) = fii,
q(i I i, 1) = -(k + n)i - v, q(i + 1 | i, 1) = A.i! + v, n > A. > 0. Let /•(», 0) =
ali

2+a2i+c, r(i, 1) = bli
2+b2i,i € 5, (c-2ai)(X+/x) < u(3a!+a2), c, «i, bx > 0,

a2, fe2 > 0.
Both cost and transition rates in this model are unbounded. Moreover, we can

derive that:
(1) Assumption A holds. We shall now verify this conclusion. Letu>i(i) = (
i e S. Then we have Eyes^O' I '. 0)10,0) < 0, i e 5; and

'>!• (5-1)

Let iu2(i) = ((«! + ^!)(/x + A. + 3v) + (a2 + b2))(i + 1), i 6 S, then we have

0' I i,a)wi(j) < 102(1) and ^ g 0 ' I ».0)u>2(/) < 0, / 6 5, a € {0, 1};
;eS yes

and

] , i = 0;

= ixiw2(i — 1) — ixiw2{i) — \iw2(i) + kiw2(i + 1) + vu>2(i + 1) — vw2(i)

= ((fli + &i)0* + A. + 3w) + (a2

(a2

1 > 1. (5.2)

Let IO3(J) = u((a, + fe,)(/i. + k + 3v) + (a2 + fe2)) + c + 1, / € 5, then we have

U I '. a)w2{j) < u;3(i), i € 5, a € (0, 1} (5.3)
jeS

and

^0' I i, a)u>3(j) < 0, 1 € S, a € {0, 1}.
jeS

Hence from (5.1), (5.2) and (5.3), Assumption 1 holds.
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Similarly, we can verify that the function QR on 5 satisfies Assumption 1. Here
R = wi + w2 + w3. By Lemma 2, we can obtain that Assumption 2 holds. Obviously,
R > 1 and r < R.

Combining the above conclusions, we have that Assumption A holds. Here, we
take m(0) = 2(A + \x + v), m(i) = 2((X + /x+)i + v), i > 1.
(2) The functions m(i), r(i, a)/(m(i) + a) and q(k \ i, a) are all increasing in i on S,
for any a > 0, a € {0, 1}. In fact, obviously, m is an increasing function on 5. By the
condition (c — 2fli)(A. + n) < v(3ai + a2), we can verify that r(i, a)/(m(i) + a) is
increasing in i on S, for any a > 0, a € (0, 1}. By the definition of q{k \ i, a), we can
also verify that q{k \ i, a) is increasing in i on 5, for any a > 0, a e {0, 1}, k e S.
(3) The difference ua(i) > 0, here &0 = 0- In fact, by Lemma 4 and (2), we have that
V*(i) is increasing in i on 5. Hence ua(i) > 0.
(4) Let h(i) = (a2 + c)i/fi + a^ii + l)/(2/x), i € 5. Then we have ua(i) < h(i),
i € S, a > 0. By Lemma 3, we have 0 < a Va*(0) < r(0, 0) = c, and, for i > 1,

a V:(i) < r(i, 0) + inV^i - 1) - i> VB*(i).

Hence

Also 11,(1) = V;(i) - V;(0) < i(a2 + C)/M + a,I(I +
(5) Assumption B holds. By (3) and (4), we only need to verify Assumptions B (iii)
and B (iv). Let u = 1, v = 0, w = 2,

(m + a2 + c)(k + (i + v)(i + I)

Then we have that Assumptions B (iii) and B (iv) are valid.
(6) Assumption C holds. In fact, this is obvious.

Hence by (1), (5), (6) and Theorem 1, we have the following conclusion:
For these controlled birth and death processes, there must exist an average cost

optimal stationary policy.
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