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The Kerridge [(1961). Inaccuracy and inference. Journal of the Royal Statistical Society: Series B 23(1): 184-194]
inaccuracy measure is the mathematical expectation of the information content of the true distribution with respect
to an assumed distribution, reflecting the inaccuracy introduced when the assumed distribution is used. Analyzing
the dispersion of information around such measures helps us understand their consistency. The study of disper-
sion of information around the inaccuracy measure is termed varinaccuracy. Recently, Balakrishnan et al. [(2024).
Dispersion indices based on Kerridge inaccuracy measure and Kullback–Leibler divergence. Communications in
Statistics – Theory and Methods 53(15): 5574-5592] introduced varinaccuracy, to compare models where lower
variance indicates greater precision. As interval inaccuracy is crucial for analyzing the evolution of system reliabil-
ity over time, examining its variability strengthens the validity of the extracted information. This article introduces
the varinaccuracy measure for doubly truncated random variables and demonstrates its significance. The measure
has been studied under transformations, and bounds are also provided to broaden the applicability of the measure
where direct evaluation is challenging. Additionally, an estimator for the measure is proposed, and its consistency
is analyzed using simulated data through a kernel-smoothed nonparametric estimation technique. The estimator is
validated on real data sets of COVID-19 mortality rates for Mexico and Italy. Furthermore, the article illustrates the
practical value of the measure in selecting the best alternative to a given distribution within an interval, following
the minimum information discrimination principle, thereby highlighting the effectiveness of the study.

1. Introduction

The modern information theory largely deals with information quantification, handling, compression,
repossession and its storage. Numerous research studies have been carried out to avoid the information
losses or error in these processes but at times they are unexpectedly involved. For instance, when there
is insufficient information in the outcomes (e.g., lacking data) or the result contains erroneous informa-
tion (e.g., due to model mis-specification), error or information loss is incurred. Kerridge [9] inaccuracy
measure then plays a key role in understanding the resulted uncertainty and further describing reliability
more accurately than the well-known uncertainty measure given by Shannon [20]. Its primary signif-
icance lies in its ability to quantify the impact of inaccuracies in predicted probability distributions,
providing a practical tool for analyzing model performance in real-world conditions. Unlike traditional
measures like Kullback–Leibler (KL) divergence, which focus on the divergence between distributions,
inaccuracy measure emphasizes on the practical consequences of using inaccurate models. This makes
it highly relevant in fields such as economics, machine learning and risk assessment, where optimal
decision strategies in the presence of uncertainty are pivotal.
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Let the absolutely continuous and nonnegative random variables X and Y have probability density
functions (pdfs) f and g associated with distribution functions (dfs) F and G, respectively. Then, the
Kerridge inaccuracy measure between X and Y is given by

IK (X,Y) = Ef [− log g(X)] = −
∫ +∞

0
f (x) log g(x)dx. (1.1)

Precisely, it measures the expected difference when the outcomes of experiment suggest g as the pdf
while f is the actual pdf. Note that “− log g(X)” with natural logarithm in (1.1) is interpreted as the
information given by Y on suitability of X as a model. Eq. (1.1) provides a mathematical way to assess
how well an estimated distribution captures the true underlying distribution and its lower value indicate
that the estimated distribution is closer to the true distribution, while higher values indicate greater
discrepancy. Some properties and applications of the above measure may be seen in Nair et al. [16],
Kumar et al. [12], Smitha [23], Parzen [19], Kundu et al. [14] and Bueno and Balakrishnan [4]. When
f ≡ g in the above equation, we get the classical measure of uncertainty known as Shannon’s entropy
given by

H(X) = −
∫ +∞

0
f (x) log f (x)dx.

In recent times, studying doubly truncated data has indeed become an important aspect across various
fields, including survival studies, reliability theory, astronomy, forensic sciences and economics. The
concept involves observing event times within specific intervals or with information limited to those
intervals. Analyzing the doubly truncated data using mathematical and statistical tools is of particular
interest, as are related to uncertainty measures. Let the random variable Xt1,t2 = (X |t1 < X < t2) and
similarly, Yt1,t2 represent the lifetimes of systems failed in (t1, t2), where t1 and t2 are such that

(t1, t2) ∈ D = {(u, v) ∈ R2
+ : F (u) < F (v),G(u) < G(v)}. (1.2)

The df and pdf of the random variable Xt1,t2 can thus be obtained as

Ft1,t2 (x) =
F (x) − F (t1)
F (t2) − F (t1)

and ft1,t2 (x) =
f (x)

F (t2) − F (t1)
,

respectively, and similar is the df and pdf for Yt1,t2 . The interval inaccuracy measure for the random
variables Xt1,t2 and Yt1,t2 introduced by Kundu and Nanda [15] is given as

IK (Xt1,t2 ,Yt1,t2) = −
∫ t2

t1
ft1,t2 (x) log gt1,t2 (x)dx

= −
∫ t2

t1

f (x)
F (t2) − F (t1)

log
g(x)

G(t2) − G(t1)
dx. (1.3)

For a system survived to t1 but observed to be down at t2, (1.3) measures the overall uncertainty about
its failure time between t1 and t2 extracted from the distribution of Yt1,t2 in place of the distribution of
Xt1,t2 .

As the usual measures of information are not self-sufficient to extract all the relevant informa-
tion precisely, the focus has now been shifted toward the study of variance of information measures.
Varinaccuracy, recently introduced by Balakrishnan et al. [2], is defined as the dispersion of information
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around the inaccuracy measure. Mathematically,

VIK (X,Y) = Varf [− log g(X)]

=

∫ +∞

0
f (x) (log g(x))2dx − [IK (X,Y)]2. (1.4)

Intuitively, it describes the variability in the information given by g(·) about the outcomes of f (·) and
hence suggest how suitable the model is. The above measure is particularly useful when the inaccuracy
measure is not adequate to compare and determine the appropriateness of preferred distributions. When
X d
= Y , then (1.4) reduces to varentropy of the random variable X. Varentropy refers to the variance of

the information content − log f (·) around the differential entropy, which represents the expected infor-
mation content of an absolutely continuous random variable. As a critical concept in information theory,
varentropy measures the extent of dispersion of information content relative to entropy. Mathematically,
varentropy of X (cf. [24]) is defined as

V (X) =
∫ +∞

0
f (x) (log f (x))2dx − [H(X)]2 .

One may find Bobkov and Madiman [3], Arikan [1], Fradelizi et al. [6] and Goodarzi et al. [7] to be
useful for initial contributions on varentropy and further analyzing its relevance.

The second-order information measures have received increasing attention to study the variabil-
ity of information. Note that varentropy is used to measure variability when assessing uncertainty is
intrinsic to a single probability distribution. On the other hand, varinaccuracy extends this concept
to a two-distribution framework and addresses the stochastic behavior of model misspecification by
quantifying the variability around inaccuracy measure. This makes varinaccuracy especially suited for
applications where accounting for both the first-order measure (inaccuracy) and its variability results in
more informed model selection, improved assessment of model robustness and enhanced comparison of
competing models under uncertainty. Similarly, dispersion based on KL divergence (cf. [2]) measures
the variance of the log-likelihood ratio and captures the stability of the relative entropy between two
distributions. However, in contexts where relative likelihood ratios are either undefined or lack inter-
pretational clarity, varinaccuracy measure provides a more robust and interpretable alternative. Hence,
varinaccuracy is a distinct and robust tool for analyzing second-order information behavior involving
uncertainty about the underlying distribution.

Since the interval inaccuracy measure actively analyzes the reliability characteristics of system and
its components from the information provided by the experimental observations falling in some time
interval, analyzing the dispersion of this information is crucial. Moreover, the interval inaccuracy may
not always identify the most appropriate model, yet analyzing the variability in information can offer
additional insight. Furthermore, due to fixed values of t1 and t2, we anticipate better prediction of the
system’s lifetime from the experimental observations when the data are doubly truncated. Thus, the
study of interval varinaccuracy is significant and adds more reliance to the interval inaccuracy measure.
Furthermore, this measure would help assess how sensitive the inaccuracy measure (1.1) is to changes
in the truncation limits or underlying distributions, which is crucial for evaluating the robustness of sta-
tistical models. In fields such as reliability engineering, finance and astronomy, where doubly truncation
frequently occurs, understanding the scatterness around the inaccuracy measure is expected to optimize
estimation and prediction, refine model selection and support better decision-making. In particular,
for reliability engineering, studying the varinaccuracy measure for doubly truncated random variables
is particularly relevant when analyzing the lifespan of components tested within specific operational
thresholds. For instance, if failure times are only recorded between a minimum detectable threshold
and a maximum operational limit, understanding the dispersion around information inaccuracy helps
ensure accurate reliability assessments, robust model selection and precise prediction of failure prob-
abilities within the observed range. In finance, this analysis is expected to be valuable for modeling
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asset returns or risk metrics when data are constrained by lower and upper bounds, such as minimum
investment thresholds and regulatory caps. It would ensure robust risk assessments and strengthen deci-
sion processes under restricted data conditions. The investigation of varinaccuracy for doubly truncated
random variables is thus motivated, having applications in several domains related to reliability and
life-testing.

The next section introduces a new varinaccuracy measure with reference to the interval life known as
the interval (doubly truncated) varinaccuracy. Some examples have been presented following theoretical
investigations and its several properties are studied. It is also investigated under certain class of common
transformation and bounds have been obtained. In Section 3, we propose an estimator of the defined
measure using smooth kernel-based nonparametric estimates followed by a simulation study analyzing
the performance of the estimator in different intervals. The approach is further applied to two real data
sets to substantiate the observations of the simulation study. Finally, an application of the proposed
measure in the choice of parameter under proportional hazard rate model for the best alternative of any
given distribution is presented in Section 4.

2. Interval varinaccuracy

The interval inaccuracy given by (1.3) is functional to measure the expected discrepancy between two
probability distributions when restricted to some interval. To better analyze this uncertainty and have
precision in the extracted information, the study of dispersion properties about this measure is motivated
called as interval varinaccuracy. Additionally, the understanding of interval varinaccuracy would aid in
gauging how errors in interval inaccuracy would affect the overall model performance. Moreover, it
would assess the stability of the measure (1.3), crucial in determining robustness of the measure to
uncertainties in data or modeling errors.

Let ft1,t2 (·) and gt1,t2 (·) denote the pdfs of Xt1,t2 and Yt1,t2 , respectively, then the doubly truncated
varinaccuracy measure for random variables X and Y is defined as

VIK (Xt1,t2 ,Yt1,t2) = Varft1,t2 [− log gt1,t2 (Xt1,t2)]

=

∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

g(x)
G(t2) − G(t1)

)2
dx − [IK (Xt1,t2 ,Yt1,t2)]2. (2.5)

When X d
= Y , then the above reduces to the interval varentropy for random variable X introduced by

Sharma and Kundu [21] defined as

V (Xt1,t2) =
∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

f (x)
F (t2) − F (t1)

)2
dx − [H(Xt1,t2)]2,

where H(Xt1,t2) is the doubly truncated entropy (cf. [25]) given by

H(Xt1,t2) = −
∫ t2

t1

f (x)
F (t2) − F (t1)

log
f (x)

F (t2) − F (t1)
dx.

On evaluating (2.5) further, we have

VIK (Xt1,t2 ,Yt1,t2) =
∫ t2

t1

f (x)
F (t2) − F (t1)

(log g(x))2 dx − [ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)]2; (2.6)

where ΛY (t1, t2) = − log (G(t2) − G(t1)). Note that (2.5) reduces to the measures known as residual
varinaccuracy and past varinaccuracy studied by Sharma and Kundu [22] on substituting t2 → ∞ and
t1 → 0, respectively. We asses the above definition by evaluating interval varinaccuracy for some cases
considering significant distributions used in reliability and survival analysis.
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Example 2.1. (i) Let the random lifetimes X and Y be distributed exponentially with parameters _ and
[, respectively. Then, for (t1, t2) ∈ D, (1.3) and (2.5) results in

IK (Xt1,t2 ,Yt1,t2) =
[

_
+ log

e−[t1 − e−[t2

[
+ [

t1e−_t1 − t2e−_t2

e−_t1 − e−_t2
,

VIK (Xt1,t2 ,Yt1,t2) =
([
_

)2
+ [2

e−_t1 − e−_t2

[(
t21e−_t1 − t22e−_t2

)
− (t1e−_t1 − t2e−_t2)2

e−_t1 − e−_t2

]
.

Thus, the interval inaccuracy and varinaccuracy in this case is dependent on both time points t1 and t2. In
case of exponential distribution where the exact parameter is different from the experimental parameter,
the above formula may be used straightaway to obtain the expected inaccuracy and varinaccuracy for
different time intervals.

(ii) Let X be uniformly distributed and Y having power distribution with parameter U in common
support [0, 1]. Then, for t1, t2 ∈ [0, 1] such that (t1, t2) satisfies (1.2), the interval inaccuracy and
varinaccuracy is evaluated as

IK (Xt1,t2 ,Yt1,t2) = U − 1 − logU + log (tU2 − tU1 ) − (U − 1) t2 log t2 − t1 log t1
t2 − t1

,

VIK (Xt1,t2 ,Yt1,t2) = (U − 1)2 + (U − 1)2
t2 − t1

[
t2(log t2)2 − t1(log t1)2 −

(t2 log t2 − t1 log t1)2
t2 − t1

]
.

It is clear that interval inaccuracy and varinaccuracy in this case is dependent on the time points t1 and
t2 and the above formula may be used in practice where the interest is to evaluate the dispersion about
the expected inaccuracy between uniform and power distributions for some given time interval.

A prominent relation among the inaccuracy, entropy and the KL [10] divergence for Xt1,t2 and Yt1,t2 ,
where (t1, t2) ∈ D is given below

IK (Xt1,t2 ,Yt1,t2) = D(Xt1,t2 ,Yt1,t2) +H(Xt1,t2), (2.7)

where

D(Xt1,t2 ,Yt1,t2) =
∫ t2

t1

f (x)
F (t2) − F (t1)

log
f (x)/(F (t2) − F (t1))
g(x)/(G(t2) − G(t1))

dx, (2.8)

is the KL divergence for the given doubly truncated random variables. The above relation is useful to
understand the additional uncertainty incurred because of the choice of a similar distribution in place
of true distribution and quantifies the information in proportions. An analogous relation in terms of
their dispersion indices would be functional to comprehend their scatterness of information aspect. The
required correspondence is presented in the following theorem.

Theorem 2.1. Let Xt1,t2 and Yt1,t2 be two absolutely continuous and nonnegative random variables for
(t1, t2) given in (1.2). Then we have

VIK (Xt1,t2 ,Yt1,t2) = VD(Xt1,t2 ,Yt1,t2) + V (Xt1,t2)

− 2Covf

(
log

f (x)/(F (t2) − F (t1))
g(x)/(G(t2) − G(t1))

, log
f (x)

F (t2) − F (t1)

����t1 < X < t2
)
,

where

VD(Xt1,t2 ,Yt1,t2) =
∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

f (x)/(F (t2) − F (t1))
g(x)/(G(t2) − G(t1))

)2
dx − [D(Xt1,t2 ,Yt1,t2)]2,
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is the dispersion index based on Eq. (2.8).

Proof. The first term of (2.5) may be written as

∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

g(x)
G(t2) − G(t1)

)2
dx

=

∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

(
f (x)

F (t2) − F (t1)
· g(x)/(G(t2) − G(t1))

f (x)/(F (t2) − F (t1))

))2
dx.

On further expanding the squares, note that

−2
∫ t2

t1

f (x)
F (t2) − F (t1)

log
f (x)

F (t2) − F (t1)
· log f (x)/(F (t2) − F (t1))

g(x)/(G(t2) − G(t1))
dx

+2
∫ t2

t1

f (x)
F (t2) − F (t1)

log
f (x)

F (t2) − F (t1)
dx ·

∫ t2

t1

f (x)
F (t2) − F (t1)

log
f (x)/(F (t2) − F (t1))
g(x)/(G(t2) − G(t1))

dx

= −2Covf

(
log

f (x)/(F (t2) − F (t1))
g(x)/(G(t2) − G(t1))

, log
f (x)

F (t2) − F (t1)

����t1 < X < t2
)
.

Making use of the above and (2.7) in the expression of interval varinaccuracy given in Eq. (2.5), we
obtain the stated relation. �

2.1. Properties

In this part, we study some useful properties of the measure given in (2.5) based on monotonicty and
relationship under transformations.

2.1.1. Monotonicity properties

The following counterexample is given to conclude that the interval varinaccuracy measure may be
nonincreasing with respect to both t1 and t2, respectively, on keeping the other fixed.

Counter Example 2.1. Suppose X ∼ U (0, 2) and Y has df

G(x) =


exp
(
− 1

2 − 1
x

)
, for 0 ≤ x ≤ 1

exp
(
−2 + x2

2

)
, for 1 ≤ x ≤ 2.

Then, Figure 1 shows that doubly truncated varinaccuracy for this pair of distributions is not mono-
tone in t1 and t2, respectively, for fixed value of the other. The above example demonstrates that the
nature of interval varinaccuracy is influenced not only by the specific time points but also by the chosen
probability distributions.

Furthermore, we present compact expressions to evaluate the change in the doubly truncated vari-
naccuracy with respect to the truncation points t1 and t2, respectively. This may be useful to investigate
other properties of interest such as its constancy, relation with varinaccuracy measure and others. Before
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(a) (b)

Figure 1. Graph of interval varinaccuracy with respect to t1 and t2, respectively, on keeping the other
fixed (Counterexample 2.1).

that, we recall the generalized failure rate (GFR) functions of a doubly truncated random variable
(X |t1 < X < t2) (cf. [17]) are given as

hX
1 (t1, t2) =

f (t1)
F (t2) − F (t1)

and hX
2 (t1, t2) =

f (t2)
F (t2) − F (t1)

.

Similarly, hY
1 (t1, t2) and hY

2 (t1, t2) may be defined for the random variable (Y |t1 < Y < t2). Also, note
that (cf. [15])

mIK (Xt1,t2 ,Yt1,t2)
mt1

= hX
1 (t1, t2)

[
IK (Xt1,t2 ,Yt1,t2) + log hY

1 (t1, t2)
]
− hY

1 (t1, t2), (2.9)

mIK (Xt1,t2 ,Yt1,t2)
mt2

= −hX
2 (t1, t2)

[
IK (Xt1,t2 ,Yt1,t2) + log hY

2 (t1, t2)
]
+ hY

2 (t1, t2). (2.10)

Proposition 2.1. For the random variables Xt1,t2 and Yt1,t2 such that (t1, t2) ∈ D, the derivatives of the
doubly truncated varinaccuracy are

mVIK (Xt1,t2 ,Yt1,t2)
mt1

= hX
1 (t1, t2)

[
VIK (Xt1,t2 ,Yt1,t2) −

(
IK (Xt1,t2 ,Yt1,t2) + log hY

1 (t1, t2)
)2]

;

mVIK (Xt1,t2 ,Yt1,t2)
mt2

= −hX
2 (t1, t2)

[
VIK (Xt1,t2 ,Yt1,t2) −

(
IK (Xt1,t2 ,Yt1,t2) + log hY

2 (t1, t2)
)2]

.

Proof. On differentiating (2.6), we obtain

mVIK (Xt1,t2 ,Yt1,t2)
mt1

=
hX
1 (t1, t2)

F (t2) − F (t1)

∫ t2

t1
f (x) (log g(x))2dx − hX

1 (t1, t2) (log g(t1))2

− 2
(
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

) (
hY
1 (t1, t2) +

mIK (Xt1,t2 ,Yt1,t2)
mt1

)
,

mVIK (Xt1,t2 ,Yt1,t2)
mt2

=
−hX

2 (t1, t2)
F (t2) − F (t1)

∫ t2

t1
f (x) (log g(x))2dx + hX

2 (t1, t2) (log g(t2))2

− 2
(
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

) (
−hY

2 (t1, t2) +
mIK (Xt1,t2 ,Yt1,t2)

mt2

)
.
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The values of
mIK (Xt1,t2Yt1,t2)

mt1
and

mIK (Xt1,t2 ,Yt1,t2)
mt2

from (2.9) and (2.10), respectively, when substi-
tuted yield

mVIK (Xt1,t2 ,Yt1,t2)
mt1

= hX
1 (t1, t2) [VIK (Xt1,t2 ,Yt1,t2) +

(
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

)2
− (log g(t1))2 − 2

(
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

)
× (log hY

1 (t1, t2) + IK (Xt1,t2 ,Yt1,t2))],

mVIK (Xt1,t2 ,Yt1,t2)
mt2

= −hX
2 (t1, t2) [VIK (Xt1,t2 ,Yt1,t2) +

(
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

)2
− (log g(t2))2 − 2(ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2))
× (log hY

2 (t1, t2) + IK (Xt1,t2 ,Yt1,t2))] .

Following some arrangements, the required result is achieved. �

The above proposition may be used to evaluate the rate of change of varinaccuracy between two
given distributions at any specific time point t1 and t2 when the other is fixed providing understanding
of the system’s behavior to optimize it effectively and for other decision-making. A characterization of
uniform distribution in terms of interval varinaccuracy is given below.

Proposition 2.2. Let the random variables X and Y have same support (a, b). Then VIK (Xt1,t2 ,Yt1,t2) =
0, for all (t1, t2) ∈ D if and only if Y is uniformly distributed on (a, b).

Proof. The concept of interval varinaccuracy given in (2.5) is defined as a variance measure that
becomes zero only for degenerate distributions. Specifically, for x ∈ (a, b) such that (t1, t2) ∈ D,
log g(x)

G (t2 )−G (t1 ) must remain constant, implying g(·) must be a constant function and Y follows a uniform
distribution over (a, b). �

This property can be used in practice to test for uniformity, optimize systems requiring evenly dis-
tributed probabilities or analyze the inaccuracy and varinaccuracy in information theory applications
where uniformity is of interest in time intervals. To derive the conditions resulting to constant interval
varinaccuracy, we have the following theorem.

Theorem 2.2. (i) Let us assume the doubly truncated varinaccuracy VIK (Xt1,t2 ,Yt1,t2) to be constant,
that is, VIK (Xt1,t2 ,Yt1,t2) = v ≥ 0 for all (t1, t2) ∈ D. Then

|IK (Xt1,t2 ,Yt1,t2) + log hY
1 (t1, t2) | =

√
v

and |IK (Xt1,t2 ,Yt1,t2) + log hY
2 (t1, t2) | =

√
v,∀ (t1, t2) ∈ D.

(ii) Suppose that ∀(t1, t2) ∈ D and c ∈ R, any one of the following conditions holds

IK (Xt1,t2 ,Yt1,t2) + log hY
1 (t1, t2) = c, (2.11)

IK (Xt1,t2 ,Yt1,t2) + log hY
2 (t1, t2) = c (2.12)
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then

|VIK (Xt1,t2 ,Yt1,t2) − c2 | = |VIK (X,Y) − c2 |
F (t2) − F (t1)

. (2.13)

Proof. (i) The proof is straightforward following Proposition 2.1, on assuming interval varinaccuracy
to be constant v.

(ii) Proposition 2.1 with the assumption (2.11) gives

mVIK (Xt1,t2 ,Yt1,t2)
mt1

= hX
1 (t1, t2)

[
VIK (Xt1,t2 ,Yt1,t2) − c2

]
.

The above partial differential equation is solved to obtain

log |VIK (Xt1,t2 ,Yt1,t2) − c2 | = log
c1

F (t2) − F (t1)
.

On using the boundary condition

lim
t1→inf

D
u,t2→sup

D
v
VIK (Xt1,t2 ,Yt1,t2) = VIK (X,Y),

where inf
D

u = a and sup
D

v = b, say such that F (a) = 0 and F (b) = 1, the integration constant c1 is

log |VIK (X,Y) − c2 | = log c1,

or equivalently,

c1 = |VIK (X,Y) − c2 |.

Thus, Eq. (2.13) is attained on substituting the value of c1 in the solution. The same result is obtained
if we proceed as above with (2.12). �

The above theorem may be used to obtain interval varinaccuracy between two distributions effort-
lessly under the given condition. The example below is an application of the above theorem.

Example 2.2. Let X and Y have same support (a, b) and let Y be uniformly distributed therein. Then,
VIK (Xt1,t2 ,Yt1,t2) is constant (= 0), for all (t1, t2) ∈ D on following Proposition 2.2. We apply Theorem
2.2(i) and obtain

IK (Xt1,t2 ,Yt1,t2) + log hY
1 (t1, t2) = 0,

and IK (Xt1,t2 ,Yt1,t2) + log hY
2 (t1, t2) = 0.

On the other hand, assuming the above expressions to hold for all (t1, t2) ∈ D and applying Theorem
2.2(ii), we observe that the right hand side (RHS) of the given relation vanishes (∵ VIK (X,Y) = 0)
and so the interval varinaccuracy is 0.

Remark 2.1. If (2.11) and (2.12) hold simultaneously in theorem 2.2 then hY
1 (t1, t2) = hY

2 (t1, t2) which
implies g(t1) = g(t2), ∀(t1, t2) ∈ D. Hence, Y must be a uniformly distributed random variable for
which its corresponding interval varinaccuracy is constant. That is, the converse of Theorem 2.2(i)
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holds and results in the characterization of random variable Y as uniform distribution in the respective
domain.

The parametric form of the GFR function helps model varied failure patterns and improve reliability
predictions. Recall the parametric form of GFR functions proposed by Sharma and Kundu [21] for c ∈ R
as

hX
1,c (t1, t2) =

f (t1)
[F (t2) − F (t1)]1−c and hX

2,c (t1, t2) =
f (t2)

[F (t2) − F (t1)]1−c ,

and the concept of generalized proportional hazard rate (GPHR) model given by Kundu [13] for 0 <

\ ∈ R as

hY
i (t1, t2) = \hX

i (t1, t2), i = 1, 2;

for (t1, t2) ∈ D. The GPHR is vital for connecting failure rates, assuming that the fundamental failure
rate function of the true distribution is similar to that of the choice of reference distribution, leading to
improved predictions andmore consistent analysis of survival or failure behavior. The next theorem aims
to generalize the conditions of Theorem 2.2 under GPHR where the constancy of the parametric GFR
functions may simplify the modeling by assuming a stable risk over time, enabling reliable predictions
and consistent comparisons of survival or failure behaviors.

Theorem 2.3. Let (X |t1 < X < t2) and (Y |t1 < Y < t2) be the doubly truncated random variables
where (t1, t2) satisfies (1.2). The parametric GFR functions of X having parameter \ − c are constant,
that is,

\hX
1,\−c (t1, t2) = ec−IK (X,Y ) and \hX

2,\−c (t1, t2) = ec−IK (X,Y ) ,∀ (t1, t2) ∈ D,

if (2.11) and (2.12) hold, respectively.

Proof. Let us assume (2.11) hold. Then

mIK (Xt1,t2 ,Yt1,t2)
mt1

= hX
1 (t1, t2) [c − \] .

On partially integrating the above equation, we obtain

IK (Xt1,t2 ,Yt1,t2) = IK (X,Y) − log (F (t2) − F (t1))c−\ ,

which on using (2.11) again yields

c − log \ = IK (X,Y) + log
f (t1)

(F (t2) − F (t1))1−\+c .

Thus, we get the required expression. On proceeding as above with (2.12), the other part is obtained.�

2.1.2. Relationship under transformations

The expression of interval varinaccuracy in compact form through conventional method might be
challenging for some distributions. Transformations can sometimes simplify the evaluation of inter-
val varinaccuracy for certain distributions, particularly when the interval varinaccuracy of the parent
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distribution is already known. The study of transformations, therefore, serves as a crucial tool to com-
pute the interval varinaccuracy more efficiently and analyze all inherited relationships. We begin by
examining the doubly truncated varinaccuracy for affine transformations, followed by its extension to a
more general class of transformations, specifically those that are differentiable and strictly monotone.
Recall that

X̃ = aX + b and Ỹ = aY + b, a > 0, b ≥ 0;

the inaccuracy between the transformed random variables in interval (t1, t2) is given by

IK (X̃t1,t2 , Ỹt1,t2) = IK

(
X t1−b

a , t2−b
a
,Y t1−b

a , t2−b
a

)
+ log a. (2.14)

The relation for their doubly truncated varinaccuracy is given below.

Proposition 2.3. Let the random variables X̃ and Ỹ be the respective affine transformations of X and
Y. Then for all (t1, t2) ∈ D, we have

VIK (X̃t1,t2 , Ỹt1,t2) = VIK

(
X t1−b

a , t2−b
a
,Y t1−b

a , t2−b
a

)
, 0 ≤ b < t1 < t2.

Proof. Let X̃ and Ỹ have dfs F̃ (·) and G̃(·), respectively. Then

F̃ (t) = F
(
t − b

a

)
and G̃(t) = G

(
t − b

a

)
, ∀t ≥ b.

Substituting (2.14) in the expression of doubly truncated varinaccuracy gives

VIK (X̃t1,t2 , Ỹt1,t2) =
∫ t2−b

a

t1−b
a

f (x)
F ( t2−b

a ) − F ( t1−b
a )

(
log

g(x)
G( t2−b

a ) − G( t1−b
a )

− log a

)2
dx

−
[
IK

(
X t1−b

a , t2−b
a
,Y t1−b

a , t2−b
a

)
+ log a

]2
.

The result follows straightaway after solving the squares. �

An application of the above theorem is illustrated in the following example.

Example 2.3. LetX and Y be of Example 2.1(i). That is,X and Y have dfsF (t) = 1−e−_t andG(t) = 1−
e−[t where _, [ > 0 along with t > 0, respectively. It is well known that under the transformation q(x) =
x + 1, exponential distribution having parameter b > 0 reduces to the BenktanderWeibull distribution
with parameters (b, 1), df 1 − e−b (t−1) , t > 1. This distribution is useful to model heavy-tailed losses
found in non-life/casualty actuarial science. Therefore, X̃ and Ỹ follow the stated distribution for which
Proposition 2.3 may be directly applied. Thus,

VIK (X̃t1,t2 , Ỹt1,t2) = VIK
(
Xt1−1,t2−1,Yt1−1,t2−1

)
=

([
_

)2
+ [2

[
(t1 − 1)2e−_(t1−1) − (t2 − 1)2e−_(t2−1)

e−_(t1−1) − e−_(t2−1)

]
− [2

[
(t1 − 1)e−_(t1−1) − (t2 − 1)e−_(t2−1)

e−_(t1−1) − e−_(t2−1)

]2
,

obtained from the expression given in Example 2.1(i).
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Note that for a differentiable and strictly monotone function i(·), if X̃ = i(X) and Ỹ = i(Y) then
the relation between the pair of transformed random variables and the initial random variables in terms
of interval inaccuracy is given by

IK (X̃t1,t2 , Ỹt1,t2) =


IK (Xi−1 (t1 ) ,i−1 (t2 ) ,Yi−1 (t1 ) ,i−1 (t2 ) )
+Ef [log i′ (X) |i−1(t1) < X < i−1(t2)], for i increasing

IK (Xi−1 (t2 ) ,i−1 (t1 ) ,Yi−1 (t2 ) ,i−1 (t1 ) )
+Ef [log (−i′ (X)) |i−1(t2) < X < i−1(t1)], for i decreasing.

(2.15)

A relation for their interval varinaccuracy is given in the theorem below.

Theorem 2.4. Under the above assumption of i(·), the interval varinaccuracy between X̃ and Ỹ ,
(i) for strictly increasing i(·) is

VIK (X̃t1,t2 , Ỹt1,t2) = VIK

(
Xi−1 (t1 ) ,i−1 (t2 ) ,Yi−1 (t1 ) ,i−1 (t2 )

)
+ Varf [log i′ (X) |i−1(t1) < X < i−1(t2)]

− 2Covf

(
log

g(X)
G(i−1(t2)) − G(i−1(t1))

, log i′ (X)
����i−1(t1) < X < i−1(t2)

)
.

(ii) for strictly decreasing i(·) is

VIK (X̃t1,t2 , Ỹt1,t2) = VIK

(
Xi−1 (t2 ) ,i−1 (t1 ) ,Yi−1 (t2 ) ,i−1 (t1 )

)
+ Varf [log (−i′ (X)) |i−1(t2) < X < i−1(t1)]

− 2Covf

(
log

g(X)
G(i−1(t1)) − G(i−1(t2))

, log (−i′ (X))
����i−1(t2) < X < i−1 (t1)

)
.

Proof. (i) Let us assume i(·) to be strictly increasing. The dfs of X̃ and Ỹ denoted by F̃ and G̃,
respectively, are

F̃ (x) = F (i−1(x)) and G̃(x) = G(i−1(x)), x > 0.

Substituting the doubly truncated inaccuracy for this case from (2.15) in the expression for the doubly
truncated varinaccuracy between X̃ and Ỹ , we obtain

VIK (X̃t1,t2 , Ỹt1,t2) =
∫ i−1 (t2 )

i−1 (t1 )

f (x)
F (i−1(t2)) − F (i−1(t1))

[
log

g(x)/i′ (x)
G(i−1 (t2)) − G(i−1(t1))

]2
dx

−
(
IK (Xi−1 (t1 ) ,i−1 (t2 ) ,Yi−1 (t1 ) ,i−1 (t2 ) ) + Ef [log i′ (X) |i−1(t1) < X < i−1(t2)]

)2
.

After stretching the squares, one can see∫ i−1 (t2 )

i−1 (t1 )

f (x)
F (i−1(t1)) − F (i−1(t2))

[log i′ (x)]2 dx −
(
Ef [log i′ (X) |i−1(t1) < X < i−1 (t2)]

)2
= Varf [log i′ (X) |i−1(t1) < X < i−1(t2)],
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and

∫ i−1 (t2 )

i−1 (t1 )

f (x)
F (i−1(t2)) − F (i−1(t1))

log
g(x)

G(i−1(t2)) − G(i−1(t1))
log i′ (x)dx

+ IK (Xi−1 (t1 ) ,i−1 (t2 ) ,Yi−1 (t1 ) ,i−1 (t2 ) ) · Ef [log i′ (X) |i−1(t1) < X < i−1 (t2)]

= Covf

(
log

g(X)
G(i−1(t2)) − G(i−1(t1))

, log i′ (X)
����i−1(t1) < X < i−1(t2)

)
.

The required expression is attained following some arrangements.
(ii) Similar to the case above, note that F̃ (x) = F (i−1(x)) and G̃(x) = G(i−1(x)) when i(·) is

strictly decreasing. Thus, f̃ (x) = −(i′ (i−1(x)))−1f (i−1 (x)) and g̃(x) = −(i′ (i−1(x)))−1g(i−1(x)).
From Eqs. (2.5) and (2.15),

VIK (X̃t1,t2 , Ỹt1,t2) =
∫ i−1 (t1 )

i−1 (t2 )

f (x)
F (i−1(t1)) − F (i−1(t2))

[
log

g(x)/(−i′ (x))
G(i−1(t1)) − G(i−1(t2))

]2
dx

−
(
IK (Xi−1 (t2 ) ,i−1 (t1 ) ,Yi−1 (t2 ) ,i−1 (t1 ) ) + Ef [log (−i′ (X)) |i−1(t2) < X < i−1(t1)]

)2
.

The result follows on proceeding as part (i). �

2.2. Bounds

Bounds in probability (e.g., Markov’s inequality, Chebyshev’s inequality) provide limits on the like-
lihood of certain events occurring. These bounds are crucial for understanding the variability and
distribution of random variables. Moreover, they are valuable for approximating probabilities of infor-
mation measures like doubly truncated varinaccuracy, especially in cases where exact calculations are
complex or infeasible. This part proposes bounds for the doubly truncated varinaccuracy. We proceed
with determining a lower bound of it using Chebyshev inequality. Recall that for a random variable X,
the Chebyshev inequality is stated as

P( |X − E(X) | ≥ n) ≤ Var(X)
n2

, n > 0.

Proposition 2.4. Let the random variables Xt1,t2 and Yt1,t2 be defined for (t1, t2) as given in (1.2) and
let n > 0. Then, the doubly truncated varinaccuracy has the following lower bound

VIK (Xt1,t2 ,Yt1,t2) ≥ n2 [P
(
g(X) ≤ (G(t2) − G(t1))e−n −IK (Xt1,t2 ,Yt1,t2 )

)
+ P

(
g(X) ≥ (G(t2) − G(t1))en −IK (Xt1,t2 ,Yt1,t2 )

)
] .

Proof. Applying Chebyshev inequality using (1.3) and (2.5) yields

VIK (Xt1,t2 ,Yt1,t2) ≥ n2 · P
(����log g(X)

G(t2) − G(t1)
+ IK (Xt1,t2 ,Yt1,t2)

���� ≥ n

)
.
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The last term of the RHS can be further expanded to

P

(����log g(X)
G(t2) − G(t1)

+ IK (Xt1,t2 ,Yt1,t2)
���� ≥ n

)
= P

(
log

g(X)
G(t2) − G(t1)

+ IK (Xt1,t2 ,Yt1,t2) ≤ −n
)
+ P

(
log

g(X)
G(t2) − G(t1)

+ IK (Xt1,t2 ,Yt1,t2) ≥ n

)
= P

(
g(X) ≤ (G(t2) − G(t1))e−n −IK (Xt1,t2 ,Yt1,t2

)
+ P

(
g(X) ≥ (G(t2) − G(t1))en −IK (Xt1,t2 ,Yt1,t2

)
,

which completes the proof. �

The above result is further advanced to the cases where Y has strictly monotone pdf.

Corollary. Under the assumption of Proposition 2.4, the above lower bound of the interval varinaccu-
racy for strictly increasing and strictly decreasing g(·) may be represented as

VIK (Xt1,t2 ,Yt1,t2) ≥ n2 [F
(
g−1

(
(G(t2) − G(t1))e−n −IK (Xt1,t2 ,Yt1,t2 )

))
+ F

(
g−1

(
(G(t2) − G(t1))en −IK (Xt1,t2 ,Yt1,t2 )

))
]

and

VIK (Xt1,t2 ,Yt1,t2) ≥ n2 [F
(
g−1

(
(G(t2) − G(t1))e−n −IK (Xt1,t2 ,Yt1,t2 )

))
+ F

(
g−1

(
(G(t2) − G(t1))en −IK (Xt1,t2 ,Yt1,t2 )

))
],

respectively.

At times, the interval varinaccuracy may be estimated with the following lower bound to it, expressed
using the variance of Y in the interval (t1, t2) defined as

f2
Y (t1, t2) = Var(Y |t1 < Y < t2) =

∫ t2

t1
x2

g(x)
G(t2) − G(t1)

dx − [mY (t1, t2)]2,

where mY (t1, t2) = E(Y |t1 < Y < t2) is the doubly truncated mean of Y. The variance of a random
variable in the interval (t1, t2) measures the dispersion of the variable’s values within that specific range,
reflecting how much the values deviate from the mean (mY (t1, t2)) within the interval.

Theorem 2.5. Let mY (t1, t2) and f2
Y (t1, t2) be the mean and variance of Y in the interval (t1, t2) both

assumed to be finite on R. Then, for all (t1, t2) ∈ D,

VIK (Xt1,t2 ,Yt1,t2) ≥ f2
Y (t1, t2) ·

(
E

[
l′

Yt1,t2
(Yt1,t2)

] )2
,

where l′
Yt1,t2

(x) is the derivative of the function lYt1,t2
(x) which is defined by

f2
Y (t1, t2)lYt1,t2

(x)gt1,t2 (x) =
∫ x

0
[mY (t1, t2) − z]gt1,t2 (z)dz, x > 0.

Proof. In line with Theorem 2.3 of Sharma and Kundu [21], the proof follows. �
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The significance of this bound lies in its ability to be estimated using the doubly truncated mean
and variance of the random variable Y, based on its pdf. Notably, this bound is independent of the
df of X, making it a robust and versatile estimation method. This approach simplifies the purpose,
making it both time-efficient and practical for situations where exact expressions are difficult to derive.
Additionally, it reduces computational effort and enhances versatility, allowing its application to a wide
range of distributions and analytical cases. In cases where it is difficult to evaluate the doubly truncated
varinaccuracy, a suitable upper bound to it, given in the following theorem may be useful. Before it,
note that

Iw
K (Xt1,t2 ,Yt1,t2) = −

∫ t2

t1
x

f (x)
F (t2) − F (t1)

log
g(x)

G(t2) − G(t1)
dx

and

mX (t1, t2) = E [X |t1 < X < t2], (t1, t2) ∈ D;

where Iw
K (Xt1,t2 ,Yt1,t2) is the weighted doubly truncated inaccuracy measure (cf. [13]) and mX (t1, t2) is

the generalized conditional mean of X in (t1, t2), respectively.

Theorem 2.6. Let the pdf of the random variable Y fulfil

e−ax−b ≤ g(x) ≤ 1, ∀x ≥ 0, where a > 0, b ≥ 0. (2.16)

Then, ∀(t1, t2) ∈ D, we have

VIK (Xt1,t2 ,Yt1,t2) ≤ a
[
Iw

K (Xt1,t2 ,Yt1,t2) + mX (t1, t2) · ΛY (t1, t2)
]

+b
[
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

]
−

[
ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)

]2
.

Proof. Under the assumption (2.16), we write Eq. (2.6) as

VIK (Xt1,t2 ,Yt1,t2) ≤ −
∫ t2

t1
(ax + b) f (x)

F (t2) − F (t1)
log g(x)dx − [IK (Xt1,t2 ,Yt1,t2) +ΛY (t1, t2)]2. (2.17)

Further, we may write

−
∫ t2

t1
x

f (x)
F (t2) − F (t1)

log g(x)dx = [mX (t1, t2)ΛY (t1, t2) + Iw
K (Xt1,t2 ,Yt1,t2)] . (2.18)

Also, Eq. (1.3) can be written as

−
∫ t2

t1

f (x)
F (t2) − F (t1)

log g(x)dx = [ΛY (t1, t2) + IK (Xt1,t2 ,Yt1,t2)] . (2.19)

Eventually, the expression follows once we substitute (2.18) and (2.19) in (2.17). �

The key significance of this bound is that it relies solely on the doubly truncated mean of the random
variable X in time interval (t1, t2), along with the doubly truncated inaccuracy and its weighted form
evaluted for X and Y, for its evaluation. By identifying the upper bound on interval varinaccuracy, it
ensures that the measure remains within acceptable thresholds, offering stability and limitation of error.
We illustrate the above theorem in the example below.
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Example 2.4. Consider X and Y from Example 2.1(i), where [ = 1. Then one may evaluate

mX (t1, t2) =
1
_
+ t1e−_t1 − t2e−_t2

e−_t1 − e−_t2

and

Iw
K (Xt1,t2 ,Yt1,t2) =

t1e−_t1 − t2e−_t2

e−_t1 − e−_t2
log (e−t1 − e−t2) + log (e−t1 − e−t2)

_

+
(t21_

2 + 2_t1 + 2)e−_t1 − (t22_
2 + 2_t2 + 2)e−_t2

_2(e−_t1 − e−_t2)
.

Thus, applying Theorem 2.6 for a= 1 and b= 1, we have for _ > 0

VIK (Xt1,t2 ,Yt1,t2) ≤ 1
_

(
1
_
+ 1

)
+

t21e−_t1 − t22e−_t2

e−_t1 − e−_t2
−

(
t1e−_t1 − t2e−_t2

e−_t1 − e−_t2

)2
+ t1e−_t1 − t2e−_t2

e−_t1 − e−_t2
.

As a particular case, let _ = 1.5 and (t1, t2) ∈ D := [1, 10], then Figure 2 verifies the corresponding
doubly truncated varinaccuracy along with the above obtained bound with respect to both t1 and t2,
keeping the other fixed.

3. Simulation study and data analysis

This section introduces an estimator of the doubly truncated varinaccuracy taking into account the
nonparametric estimation of distributions to examine the effect of t1 and t2 on it. The performance of
the estimator have been evaluated. Moreover, the study is applied on two real data sets to validate our
observations of simulation.

3.1. Simulation analysis

In this part, we propose an estimator of the interval varinaccuracy. Since nonparametric estimation
are known to have the upper hand over parametric estimation in terms of robustness, flexibility from
the underlying distribution, fewer assumption needs and other factors, we consider our estimator for
nonparametric techniques used in statistical distribution theory. Furthermore, we demonstrate the per-
formance of the proposed estimator by carrying out a simulation analysis taking samples from two
different distributions and study the resulting variation in the similarity for different time points t1 and
t2. The analysis is further validated using real data sets. Given that the generalized exponential distri-
bution (GED) and Weibull distribution (WD) fit the data well, these distributions are selected for the
simulation. Let X has GED given by df F (x) = (1 − exp(−_x))U, where U and _ are the shape and
scale parameters, respectively and Y has WD with shape parameter k and scale parameter f given by
df G(x) = 1 − exp

(
− (x/f)k

)
. Recall that kernel-smoothed estimators provide flexibility by avoiding

parametric assumptions, deliver smooth and continuous estimates and adapt to local data variations.
They are robust to random fluctuations, handles distribution shape and visually interpretable, aiding in
understanding the behavior of the data distribution. Given the better performance of the smoothed esti-
mators in comparison to non-smoothed estimators, we use kernel-smoothed estimator F̂n(x) (cf. [18])
for the nonparametric estimation of the assumed distributions given as
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(a) (b)

Figure 2. Plot of bound and VIK (Xt1,t2 ,Yt1,t2) (Theorem 2.6).

F̂n(x) =
1
n

n∑
i=1

L
(
x − Xi

h

)
,

for a given random sample Xi, i = 1, 2, ..., n, provided df L(·) of the positive kernel K, that is, L(v) =∫ +∞
0 K (t)dt, along with bandwidth of parameter h. Note that the kernel function K (v) = 1√

2c
exp

(
− v2

2

)
known as Gaussian kernel function is used for the above estimation and the bandwidth h was determined
using the Sheather–Jones method for kernel density estimation. Let us assume X̂ and Ŷ to relate with
F̂n(·) and Ĝn(·), respectively. We now use the expression given in Eq. (2.5) to introduce the estimator
for the doubly truncated varinaccuracy measure expressed as

V̂IK (X̂t1,t2 , Ŷt1,t2) =
∫ t2

t1

f̂n(x)
F̂n (t2) − F̂n(t1)

(
log

ĝn(x)
Ĝn(t2) − Ĝn(t1)

)2
dx

−
[∫ t2

t1

f̂n(x)
F̂n(t2) − F̂n(t1)

log
ĝn(x)

Ĝn(t2) − Ĝn(t1)
dx

]2
, (3.20)

where f̂n(·) and ĝn(·) are the kernel-density estimates obtained from n samples of generalized exponen-
tial and WDs with corresponding dfs as F̂n(·) and Ĝn(·), respectively. For different time points t1 and
t2, the estimated values of V̂IK (X̂t1,t2 , Ŷt1,t2) may be computed from (3.20).

Using the above estimator, we perform a Monte-Carlo simulation study. The analysis begins by con-
sidering random samples Xi and Yi for i = 1, 2, ..., n, generated from GED with (U,_) = (4, 0.5) and
WD having (k,f) = (2, 6.5), respectively, using R-software. The estimated values of the interval vari-
naccuracy for different truncation limits (t1, t2) have been computed on performing 100 simulations
respectively, of size n (50, 100, 200, 500 and 1,000). The calculated average of these 100 values is
treated as the final estimated value of the interval varinaccuracy. To analyze the performance of the
proposed estimator, bias and mean squared error (MSE) are also computed. For each case, bias and
MSE are computed by comparing the estimator results to the true values using repeated simulations
and average value obtained is treated as its final value. In Table 1, the estimates along with the observed
value, bias and MSE are presented. In general, it is observed that the estimated values of the interval
varinaccuracy increase with increase in size of the interval (t1, t2). In other words, we may state that the
varinaccuracy decreases when the observation is confined to a shrinking interval. The outcomes of the
simulation study show decrease in the absolute values of bias and MSE as the sample size n increases,
which validate the performance and consistency of the proposed estimator. In conclusion, the estimates
are nearly unbiased on considering sufficiently large sample sizes. Following the insights gained from
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Table 1. Estimated values of V̂IK (X̂t1,t2 , Ŷt1,t2) with true value VIK (Xt1,t2 ,Yt1,t2) along with the Bias and MSE for different time intervals (t1, t2) obtained
for sample sizes n = 50, 100, 200, 500 and 1000.
(t1, t2) Estimated value of V̂IK (X̂t1,t2 , Ŷt1,t2 ) VIK (Xt1,t2 ,Yt1,t2 )

n= 50 n= 100 n= 200 n= 500 n= 1000

(0.1,0.5) 0.01436654 0.01504161 0.01605774 0.02070514 0.03084134 0.06643956
(0.1,1) 0.05422527 0.05190221 0.0561383 0.06058489 0.07095738 0.08055595
(0.1,2) 0.1141757 0.113577 0.1113751 0.1006561 0.09976648 0.09685643
(0.1,5) 0.1498934 0.1466281 0.1221059 0.1221758 0.1194652 0.1029433
(5,12) 0.1603983 0.1371061 0.1317794 0.1378509 0.1422935 0.1442343
(8,12) 0.1208032 0.1303843 0.1462496 0.1409871 0.1428356 0.1428206
(10,12) 0.03694586 0.06693795 0.05949791 0.05593278 0.05769121 0.05769121
(1,13) 0.1224692 0.1079945 0.1165848 0.09764853 0.09875043 0.1013125
(t1, t2) BIAS

n= 50 n= 100 n= 200 n= 500 n= 1000

(0.1,0.5) −0.05207302 −0.05139796 −0.05038182 −0.04573442 −0.03559822
(0.1,1) −0.02633068 −0.02865374 −0.02441765 −0.01997106 −0.009598574
(0.1,2) 0.01731924 0.01672058 0.01451866 0.003799677 0.00291005
(0.1,5) 0.04695001 0.04368471 0.01916252 0.01923242 0.0165219
(5,12) 0.01616401 −0.007128191 −0.01245492 −0.006383408 −0.001940813
(8,12) −0.02201736 −0.01243633 0.003429047 −0.001833474 1.50E-0.5
(10,12) −0.02074535 0.009246746 0.0018067 −0.001758426 0.001596662
(1,13) 0.02115676 0.006682087 0.01527233 −0.003663924 −0.002562021
(t1, t2) MSE

n= 50 n= 100 n= 200 n= 500 n= 1000

(0.1,0.5) 0.002883064 0.002902105 0.002589142 0.002123769 0.001292697
(0.1,1) 0.002524585 0.002503712 0.001135355 0.000705233 0.000393486

(Continued)
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Table 1. (Continued.)
(t1, t2) MSE

n= 50 n= 100 n= 200 n= 500 n= 1000

(0.1,2) 0.008880384 0.002528194 0.001706412 0.001286091 0.001259314
(0.1,5) 0.02820897 0.01362216 0.00415352 0.001556733 0.000896594
(5,12) 0.01833225 0.006928288 0.002993114 0.001363995 0.000986296
(8,12) 0.05886844 0.008629081 0.004870373 0.004004522 0.00141803
(10,12) 0.003923885 0.002914592 0.001564134 0.001209061 0.000787478
(1,13) 0.006655301 0.001767296 0.001685835 0.000428698 0.00027758
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Table 2. Results of the fitted distribution for Mexico data set.
D − lnL AIC BIC K–S p-Value

GED −266.1788 536.3576 541.7219 0.07052994 0.6558796
WD −268.9569 541.9138 547.2781 0.07356515 0.6028007

the simulation results, we now apply the estimator to the real data sets to assess its practical effectiveness
and verify its performance.

3.2. Real data sets

In this part, we apply the above methodology to two real data sets. The above simulation results served
as a preliminary test of the estimator’s performance to assess the estimator’s performance allowing us
to observe its behavior under controlled conditions, such as different distributions and time points. The
real data sets here are used to validate the findings from the simulation, ensuring the estimator’s practical
applicability and reliability in real-world scenarios. We choose the data sets of mortality rates due to
COVID-19 for Mexico and Italy reproduced from https://covid19.who.int/region/country and recorded
from 4 March to 20 July 2020 and 27 February to 27 April 2020, respectively, considering the peak of
the pandemic. These specific datasets are chosen because they align well with the assumptions made in
the simulations, providing a realistic test case for the estimator. The data sets have been given below.

Mexico: 8.826, 6.105, 10.383, 7.267, 13.220, 6.015, 10.855, 6.122, 10.685, 10.035, 5.242, 7.630,
14.604, 7.903, 6.327, 9.391, 14.962, 4.730, 3.215, 16.498, 11.665, 9.284, 12.878, 6.656, 3.440, 5.854,
8.813, 10.043, 7.260, 5.985, 4.424, 4.344, 5.143, 9.935, 7.840, 9.550, 6.968, 6.370, 3.537, 3.286,
10.158, 8.108, 6.697, 7.151, 6.560, 2.988, 3.336, 6.814, 8.325, 7.854, 8.551, 3.228, 3.499, 3.751, 7.486,
6.625, 6.140, 4.909, 4.661, 1.867, 2.838, 5.392, 12.042, 8.696, 6.412, 3.395, 1.815, 3.327, 5.406, 6.182,
4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120,
3.922, 3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 2.077, 3.778, 3.218, 2.926, 2.601,
2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506 and 1.923.

Italy: 4.571, 7.201, 3.606, 8.479, 11.410, 8.961, 10.919, 10.908, 6.503, 18.474, 11.010, 17.337,
16.561, 13.226, 15.137, 8.697, 15.787, 13.333, 11.822, 14.242, 11.273, 14.330, 16.046, 11.950, 10.282,
11.775, 10.138, 9.037, 12.396, 10.644, 8.646, 8.905, 8.906, 7.407, 7.445, 7.214, 6.194, 4.640, 5.452,
5.073, 4.416, 4.859, 4.408, 4.639, 3.148, 4.040, 4.253, 4.011, 3.564, 3.827, 3.134, 2.780, 2.881, 3.341,
2.686, 2.814, 2.508, 2.450 and 1.518.

We observe the fitting of following distributions (D) to the above data sets using R-software given in
order of better fit.

(i) The GED

f (x) = U_e−_x (1 − e−_x)U−1, U,_ > 0, x > 0;

for (U,_) = (3.996542, 0.3619396) and (U,_) = (3.488966, 0.2399844) to the data sets of Mexico
and Italy, respectively.

(ii) The WD

f (x) = (a/f) (x/f)a−1e−(x/f)a
; f, a > 0, x > 0;

with parameters (a,f) = (1.896812, 6.520891) and (a,f) = (1.9271, 9.232718) to the data sets of
Mexico and Italy, respectively.

The maximum log-likelihood (-lnL), Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Kolmogorov–Smirnov (K–S) distance and its associated p-value obtained for the data
sets of Mexico and Italy are listed in Tables 2 and 3, respectively.
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Table 3. Results of the fitted distribution for Italy data set.
D − lnL AIC BIC K-S p-Value

GED −164.0574 337.1149 341.27 0.1065885 0.4814
WD −167.701 339.402 343.5571 0.1227098 0.3108369

Table 4. V̂IK (X̂t1,t2 , Ŷt1,t2), VIK (Xt1,t2 ,Yt1,t2) with bias and MSE for Mexico data set.

(t1, t2) V̂IK (X̂t1,t2 , Ŷt1,t2 ) VIK (Xt1,t2 ,Yt1,t2 ) Bias MSE

(2, 10) 0.1582979 0.05237642 0.1059215 0.01121937
(2, 12) 0.22967 0.12955 0.10012 0.01002402
(2, 14) 0.3205476 0.2343773 0.08617035 0.007425329
(2, 16) 0.4086779 0.3491108 0.05956712 0.003548242

Table 5. V̂IK (X̂t1,t2 , Ŷt1,t2), VIK (Xt1,t2 ,Yt1,t2) with bias and MSE for Italy data set.

(t1, t2) V̂IK (X̂t1,t2 , Ŷt1,t2 ) VIK (Xt1,t2 ,Yt1,t2 ) Bias MSE

(3, 10) 0.213203 0.006967591 0.2062354 0.04253303
(3, 12) 0.06470478 0.01899807 0.04570671 0.002089104
(3, 15) 0.1205194 0.07507351 0.04544593 0.002065333
(3, 17) 0.1167863 0.1404215 −0.02363514 0.0005586199

Furthermore, we apply the above estimation process using (3.20) taking X̂ as the nonparametric
density estimate obtained from the complete data set and Ŷ to be density estimate from the samples
lying between different (t1, t2). MSE and bias have also been computed for the true value of the doubly
truncated varinaccuracy between the above fitted distributions evaluated in the corresponding interval
(t1, t2). The results obtained from the real data analysis are presented in the tables below, providing a
detailed comparison of the estimator’s performance in real data against the insights gained from the
simulation analysis. Tables 4 and 5 show the observed values and true values of the interval varinac-
curacy for different time points (t1, t2) along with the corresponding bias and MSE for the data sets of
Mexico and Italy, respectively. The bias values here indicate the extent to which the estimator system-
atically deviates from the true value, with smaller bias suggesting a more accurate estimator. The MSE
values, which combine both bias and variance, show the overall precision of the estimator; lower MSE
values indicate that the estimator is both consistent and efficient, thus validating its performance for
real data sets. It is clear from Tables 4 and 5 that as the number of sample points in (t1, t2) increases,
absolute values of bias and MSE decreases, that is, estimates are closer to the actual value. Specifically,
the table shows that as the sample size increases in the real data sets, the estimated values of interval
varinaccuracy approach those obtained from the fitted distributions within the respective intervals. A
similar trend was observed in the simulation analysis as well. However, interval varinaccuracy shows
different patterns across the two models. In the first model, it increases with a fixed t1 and increasing
t2, while the second model displays a non-monotonic behavior of the interval varinaccuracy. Regarding
performance comparison, as the sample size increases, both bias andMSE decrease for both the Mexico
and Italy data sets, indicating improved accuracy of the estimator in both the cases. This observation
suggests that the models become more reliable with larger sample sizes. Therefore, the results of the
simulation study are verified by the above real data sets.
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4. Interval varinaccuracy, proportional hazard and reversed hazard rate models (PHRM and
PRHRM) and applications

Kerridge’s inaccuracy measure plays a significant role in evaluating the performance of the PHRM
(PRHRM) in survival analysis. The interval inaccuracy measure under PHRM (PRHRM) examined by
Kundu and Nanda [15] is found to be useful in characterization of certain distributions. In other words,
the interval inaccuracy measure not only assesses how well the PHRM (PRHRM) fits the observed sur-
vival data but also identifies the underlying distribution of it in certain cases. It thus provides valuable
insights into the model fit and comparison to alternate models. We intend to evaluate the correspond-
ing interval varinaccuracy using (2.5) under PHRM (PRHRM), which may further enhance the study
of inaccuracy under it and may be useful to understand the behavior of the underlying distribution in
terms of dispersion around the inaccuracy. Studying both the PHRM and PRHRM together is crucial,
especially for interval lifetime data, as they offer complementary perspectives on reliability and sur-
vival analysis. The PHRM focuses on the future risk of failure, given survival up to a certain time,
making it ideal for predicting and assessing ongoing risks. In contrast, the PRHRM examines the like-
lihood of past failures, given survival at a specific time, providing insights into the tail behavior and
past reliability. For interval lifetime data, where exact failure times are unknown but fall within speci-
fied intervals, considering both models helps capture the forward and backward dynamics of the data.
This dual approach ensures a more comprehensive understanding of system behavior, enhances model
accuracy and supports better decision-making in maintenance planning, risk assessment and reliability
optimization. Recall that PHRM (cf. [5]) is given by

G(t) = [F (t)] \ , \ > 0;

where G(·) and F (·) are the sfs of X and Y, respectively. Under this model, the failure rate functions
_X (·) and _Y (·) of random variables X and Y, respectively, are related as

_Y (t) = \_X (t),

where _X (t) = f (t)/F (t) and _Y (t) = g(t)/G(t). The failure rate function describes the instantaneous
failure rate of a system subject to survival up to time t and is crucial in understanding the failure rates
of a system over time.

The PHRM in information theory is significant as it quantifies how the hazard rate changes over time
based on external factors. By modeling these hazards in terms of uncertainty, it allows for the measure-
ment of information gain over time, reducing uncertainty in predictions. This is especially useful for
understanding how the distribution of event times can bemore accurately predicted, enhancing decision-
making under uncertainty. Moreover, the hazard ratio \ is a valuable tool in reliability engineering for
understanding how various factors affect the lifetime and failure probability of systems, allowing for
more informed design and decisions. The interval inaccuracy under PHRM is calculated as

IK (Xt1,t2 ,Yt1,t2) = \ − log \ + log
(
F \ (t1) − F \ (t2)

)
+ \

F (t2) logF (t2) − F (t1) logF (t1)
F (t1) − F (t2)

−
∫ t2

t1

f (x)
F (t1) − F (t2)

log_X (x)dx. (4.21)

Similarly, PRHRM (cf. [8]) is a key framework in reliability and survival analysis, offering insights into
past failure likelihoods and tail behaviors of lifetimes. It enables comparative studies between popula-
tions or systems through a proportional structure, supporting diverse applications like risk modeling and
maintenance planning. In information theory, the PRHRM connects to uncertainty measure, making it
valuable for understanding reliability and information flow in complex systems. The PRHRM is given
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by

G(t) = [F (t)]V , V > 0;

where F (·) and G(·) are the dfs of X and Y, respectively. The proportionality constant V in the PRHRM
quantifies the relative tail behaviors of two distributions, making it a useful tool for comparing sys-
tems or populations with different long-term reliability or survival characteristics. The reversed hazard
function measures the likelihood of past failure, given survival up to a certain time, making it essential
for analyzing tail behaviors of lifetime distributions and understanding system reliability in retrospec-
tive scenarios. Recall that the reversed hazard rate function of X is defined as `X (t) = f (t)/F (t). The
reversed hazard rate functions of X and Y under this model are related by

`Y (x) = V`X (x),

where `Y (·) is the reversed hazard rate function of Y. The reversed hazard rate function gives the instan-
taneous rate of failure at time t given that failure occurred at or before time t. The interval inaccuracy
under PRHRM is evaluated as

IK (Xt1,t2 ,Yt1,t2) = V − log V + log
(
FV (t2) − FV (t1)

)
+ V

F (t2) logF (t2) − F (t1) logF (t1)
F (t2) − F (t1)

−
∫ t2

t1

f (x)
F (t2) − F (t1)

log `X (x)dx. (4.22)

To analyze the underlying distributionmore accurately in the given range, it is recommended to study the
interval varinaccuracy therein. The below theorem evaluates the dispersion around interval inaccuracy
under PHRM.

Theorem 4.1. Under the above assumption of PHRM, the interval varinaccuracy for all (t1, t2) ∈ D
may be evaluated as

VIK (Xt1,t2 ,Yt1,t2) = \2 + Var[log_X (x) |t1 < X < t2] − \2
F (t1)F (t2)

(
log F (t1 )

F (t2 )

)2
(F (t1) − F (t2))2

+ 2\

[
1 − F (t1) logF (t1) − F (t2) logF (t2)

F (t1) − F (t2)

]
E [log_X (x) |t1 < X < t2]

+ 2\ · E [logF (x) · log_X (x) |t1 < X < t2] .

Proof. Under PHRM, the first term in RHS of Eq. (2.5) is written as

∫ t2

t1

f (x)
F (t1) − F (t2)

(
log

\ [F (x)] \_X (x)
F \ (t1) − F \ (t2)

)2
dx

=

∫ t2

t1

f (x)
F (t1) − F (t2)

(
log \ + \ logF (x) + log_X (x) − log (F \ (t1) − F \ (t2))

)2
dx
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= (log \)2 +
(
logF \ (t1) − F \ (t2)

)2
− 2 log \ · log (F \ (t1) − F \ (t2)) + 2[log \ − log (F \ (t1) − F \ (t2))]E [log_X (x) |t1 < X < t2]

+ \2

[
F (t1) (logF (t1))2 − F (t2) (logF (t2))2

F (t1) − F (t2)
− 2

(
F (t1) logF (t1) − F (t2) logF (t2)

F (t1) − F (t2)

)
+ 2

]
+ 2\ [log \ − log (F \ (t1) − F \ (t2))]

(
F (t1) logF (t1) − F (t2) logF (t2)

F (t1) − F (t2)
− 1

)
+ E [(log_X (x))2 |t1 < X < t2] + 2\E [logF (x) · log_X (x) |t1 < X < t2] .

On substituting the above and the expression of interval varinaccuracy under PRHM (4.21) in Eq. (2.5),
the required expression of the interval varinaccuracy under PRHM is attained after some arrangements.�

A similar expression of the interval varinaccuracy between X and Y under PRHRM is given in the
below theorem. The proof is left out.

Theorem 4.2. Under PRHRM, the interval varinaccuracy for all (t1, t2) ∈ D is given by

VIK (Xt1,t2 ,Yt1,t2) = V2 + Var[log `X (x) |t1 < X < t2] − V2
F (t1)F (t2)

(
log F (t2 )

F (t1 )

)2
(F (t2) − F (t1))2

+ 2V
[
1 − F (t2) logF (t2) − F (t1) logF (t1)

F (t2) − F (t1)

]
E [log `X (x) |t1 < X < t2]

+ 2V · E [logF (x) · log `X (x) |t1 < X < t2] .

Proof. Under the given model, we may write∫ t2

t1

f (x)
F (t2) − F (t1)

(
log

V[F (x)]V`X (x)
FV (t2) − FV (t1)

)2
dx

=

∫ t2

t1

f (x)
F (t2) − F (t1)

(
log V + V logF (x) + log `X (x) − log (FV (t2) − FV (t1))

)2
dx.

Proceeding as in Theorem 4.1, we may obtain the required expression. �

An application of the interval varinaccuracy measure has been presented in the following subsection
using the results obtained above.

4.1. Application

Kullback [11] identified PHRM as the best alternative to the true lifetime distribution in terms of the
well-knownminimum discrimination information (MDI) principle. Inaccuracy under PHRM represents
the overall information about the true distribution given by the model. A natural question that occurs: Is
PHRM, independent of \, a best alternative to the actual distribution? This question seeks attention and
the interval varinaccuracy given in Theorem 4.1 may be functional to analyze the model and identify
the appropriate value of \ at times. It is well-known that the doubly truncated inaccuracy is greater than
the doubly truncated entropy measure and it reduces to the latter for \ = 1, which is its minimum value.
Intuitively, there would be atleast two values of \ in the neighborhood of its minimum having the same
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(a) (b)

Figure 3. Plot of interval inaccuracy for different values of \ (PHRM) in the time interval [0.5, 1.5].

Figure 4. Plot of interval varinaccuracy in the time interval [0.5, 1.5] under PHRM for different values
of \ ∈ [0, 2]. Note that the parameter of PHRM, \ is dimensionless.

doubly truncated inaccuracy. Thus, inaccuracy is not sufficient measure to select \ appropriately. It is
therefore constructive to use interval varinaccuracy measure for its effective choice. For instance, let X
have pdf

f (x) =
{

x, if 0 ≤ x ≤ 1
x
3 , if 1 ≤ x ≤ 2,

and let (t1, t2) = (0.5, 1.5). Then its PHRM is considered to be a suitable alternative of it. From Figure
3(a), it is clear that large value of \ should not be preferred since it would result in higher inaccuracy
in the specified time interval evaluated using (4.21). A magnified view of Figure 3(a) about \ = 1 is
given in Figure 3(b) which shows two values of \ having the same inaccuracy in the given interval. It
is therefore recommended to use the interval varinaccuracy measure for an adequate choice. Interval
varinaccuracy measures the scatterness of overall information on its similarity around the inaccuracy
and the value of \ which minimizes it should be preferred for the model. Figure 4 suggests \ = 0.5 to
have the least varinaccuracy in the given interval. Thus, \ = 0.5 is considered as the best choice for the
PHRM when varinaccuracy in the specified interval is of importance. Therefore, in choosing the finest
alternative to a given distribution in some interval, its varinaccuracy must be considered for an effective
model selection.
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5. Conclusions

In this work, we introduced the concept of interval varinaccuracy for doubly truncated random vari-
ables, providing a novel measure for quantifying uncertainty when the distribution of the observations
is unknown and confined to a specific interval. A key theoretical development is the derivation of an
analytical expression that relates interval varinaccuracy with interval varentropy, allowing for direct
evaluation. Additionally, we explored the behavior of the proposed measure under affine transforma-
tion, strictly monotone transformations, and established theoretical bounds that are particularly useful
when exact computation may be challenging or requires more effort. To substantiate the study, examples
have been presented to illustrate the effectiveness of the bounds obtained. To demonstrate the practical
relevance of our findings, we have introduced the interval varinaccuracy measure for the proportional
hazard model and proportional reversed hazard model in order to model its parameter, providing a bet-
ter approximation of the true distribution within the given interval, based on the MDI principle. An
application of the interval varinaccuracy measure under the proportional hazard model is presented
where the exact value of the model parameter as a best alternative to the chosen distribution is obtained.
Furthermore, we developed a kernel-based nonparametric estimator of interval varinaccuracy and eval-
uated its performance based on simulation studies, validating the estimator’s robustness. Application
of the estimator to real-world mortality data from Mexico and Italy provided further validation and
emphasized the potential of the measure in practical settings.

These applications suggest that the proposed measure can significantly improve modeling of sys-
tem reliability, support more informed decision-making under uncertainty and offer a flexible tool for
handling incomplete or truncated data across domains. While the methodology presented is broadly
applicable, certain limitations remain. Computational challenges can arise when analyzing high-
dimensional or complex datasets, and practical use may require assumptions about the underlying
distribution. These challenges suggest directions for future research. However, doubly truncated vari-
naccuracy is a generalization of left truncated and right truncated varinaccuracy measure, but potential
extensions include adapting the measure to censoring, the study of varinaccuracy in k-record values,
which could offer new insights.
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