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The essence of sub-critical transition of oscillatory boundary-layer flows is the non-modal
growth of finite-amplitude disturbances. The current understanding of the mechanisms
of the orderly and bypass transitions of oscillatory boundary-layer flows is limited.
The present study adopts optimisation approaches to predict the maximum energy
amplification of two- and three-dimensional perturbations in response to the optimal initial
disturbance with or without external forcing. A series of direct numerical simulations
are also performed to compare with the results obtained from the stability analyses. In
particular, the optimal initial perturbation similar to a Tollmien–Schlichting (T–S) wave
yields the largest transient growth under the combined effects of the Orr mechanism and
inflectional point instability. With a considerable level of two-dimensional disturbance,
the vortex tube nonlinearly develops from the T–S-like wave, and then either deforms
into a Λ-vortex in the near-wall region or rolls up to the free shear region. The further
burst of turbulence can follow the first pathway as K-type transition or the second
one as vortex tube breakdown due to the elliptical instability. Additionally, non-modal
growth can initiate the inception of streaky structures by favourable three-dimensional
initial perturbations and/or forcing. The secondary instabilities responsible for the streak
breakdown are classified as the varicose (symmetric) and sinuous (anti-symmetric) modes.
Under a sufficiently high level of three-dimensional disturbance, the bypass transition is
predominantly characterised by the formation of the sinuous mode and turbulent spots,
which leads to the suppression of inflection point instability.
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1. Introduction

The unsteady flows are ubiquitous in nature and their transitions from laminar to turbulent
are fundamental issues of concern in hydrodynamic stability theory. Other than being
the prototype problem in the dynamics of sediment transport along coastal areas, the
characteristics of boundary layers induced by oscillatory flow, pulsatile flow and solitary
waves have been found to be essential for other fields such as biological processes (e.g.
Xu et al. 2020; Xu, Song & Avila 2021). Compared with its steady counterpart, the
instantaneous shifting pressure gradient and velocity profile substantially alter the stability
characteristics and further complicate the relevant transition scenarios to turbulence. Much
has been contributed to the understanding of the instabilities of the most canonical
unsteady boundary layer generated by oscillatory flow or equivalently by sinusoidally
oscillating plate, also known as a Stokes boundary layer, from the perspectives of coherent
structures (Sarpkaya 1993; Özdemir, Hsu & Balachandar 2014; Xiong et al. 2020), linear
stability analyses (Kerczek & Davis 1974; Hall 1978; Blennerhassett & Bassom 2006;
Thomas et al. 2014) and statistical features (Hino et al. 1983; Sleath 1987; Jensen,
Sumer & Fredsoe 1989). The theoretical solution of the Stokes boundary layer explicitly
provides the time-dependent distribution of streamwise velocity along the wall-normal
direction (Stokes 1851). The velocity profile is merely dependent on one dimensionless
parameter, i.e. the Reynolds number defined by Reδ = U∗

0mδ∗/ν∗, where U∗
0m is the

velocity amplitude of the oscillatory free-stream flow and ν∗ is the kinematic viscosity
of the fluid. In addition, the boundary-layer thickness δ∗ is evaluated by δ∗ = √

2ν∗/Ω∗
with Ω∗ being the oscillatory frequency. However, the bypass nature characterised by
the onset of streaky structures in numerical and experimental observations at Reδ >

500 (Costamagna, Vittori & Blondeaux 2003; Carstensen, Sumer & Fredsøe 2010)
has not been well elaborated by the theoretical studies. The secondary instabilities
arising from the transient growth and nonlinear saturation of the primary instability are
possibly responsible for the large deviation of the critical Reynolds numbers that were
obtained from numerical or experimental studies and linear modal stability analyses, e.g.
Reδ,cr = ∞ (instantaneous instability theory, Hall 1978, 2003) and Reδ,cr = 1416 (Floquet
instability theory, Blennerhassett & Bassom 2002, 2006). An ultimate objective of this
study is to provide a universal understanding on the role of the Orr mechanism and
the lift-up effect corresponding to the formation of different two-dimensional (2-D) and
three-dimensional (3-D) coherent structures. Their evolution, competition, interaction and
the final breakdown to turbulence under the unsteady pressure gradient are our primary
interests.

It is well known that Tollmien–Schlichting (T–S) waves originally arise as the primary
2-D instabilities in steady shear flows. T–S waves correspond to exponentially growing
eigenmodes of the Orr–Sommerfeld and Squire (OSS) equations, and readers may refer
to Schmid & Henningson (2001) for details. As indicated in the schematic diagram of
figure 1, the modal growth of T–S waves, after reaching the critical magnitude, leads to the
emergence of secondary 3-D instabilities in the form of Λ-/hairpin vortices with aligned
or staggered spatial patterns corresponding to the Klebanoff (K) mode and Herbert (H)
mode, respectively (Herbert 1988). However, the transition scenarios by modal growth of
perturbations have rarely been observed in the Stokes boundary layer. It is believed that the
instantaneous inflectional mean profile resulting from reverse flow leads to the transient
growth of 2-D waves and to the onset of spanwise vortices (figure 1). These quasi-2-D
coherent structures, referred to as vortex tubes by Carstensen et al. (2010) and Sumer et al.
(2010), are observed in oscillatory and solitary wave boundary layers. In the 2-D numerical
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Figure 1. Schematic diagram of transition scenarios of steady or unsteady parallel boundary-layer flows.

study of Scandura (2013), it was demonstrated that for both unsteady boundary layers
these vortex tubes consist of an array of counter-rotating vortex pairs with almost identical
configurations and similar spatial-temporal characteristics. The latest experimental effort
by Nayak & Das (2021), employing particle image velocimetry measurement, identified
similar coherent vortices developed in a transient pipe flow with trapezoidal velocity
variation. The above results suggest that the non-modal growth mechanism may apply
for more generalised unsteady boundary-layer flows with the inflectional point located
in the high-shear region. The optimal initial perturbation for the maximum transient
amplification of an oscillatory boundary layer has been determined by Biau (2016) through
non-modal stability analyses. Unlike the instantaneous or Floquet stability analysis for the
steady or periodic time-dependent base flow, the non-modal stability analysis (alternatively
named transient stability analysis) is carried out on aperiodic base flow with an arbitrary
period of time. The perturbation amplification by non-modal growth is reminiscent of
the classic Orr mechanism observed in steady shear flow with a homogeneous strain rate,
which signifies the absorption of energy from the mean shear by vortex tilting. Whereas the
time-dependent and heterogeneous strain rate along the velocity profile of an oscillatory
wave boundary layer renders considerable modulation of the classic Orr mechanism, to
manifest such a difference, the terminology ‘Orr-like mechanism’ is adopted and the
corresponding physics will be discussed in § 3.1.

As sketched in figure 1, the secondary instabilities of the vortex tube, which generally
occur with increasing Reδ and disturbance level, are classified into two categories
according to various experimental (Carstensen et al. 2010; Sumer et al. 2010) and direct
numerical simulations (DNS) (Costamagna et al. 2003; Özdemir, Hsu & Balachandar
2013; Özdemir et al. 2014; Xiong et al. 2020) studies. For the first type, 3-D deformation
of the vortex tube is analogous to the scenario of K-type transition for T–S waves, such as
the formation of Λ-vortices close to the bottom wall and their evolution into hairpin-like
vortices (see figure 9 of Costamagna et al. 2003 and figure 4 of Özdemir et al. 2013). It was
pointed out that the flow may or may not develop into a fully turbulent state after showing
the ‘transitional’ characteristics. As the vortex tube strengthens with Reynolds number
and/or 2-D disturbance level rather than 3-D disturbance level, the Crow or elliptical
instabilities will dominate the flow behaviour once the vortex tube completely leaves
the wall due to self-induced velocity. The coupled interaction of two counter-rotating
vortices intrinsically gives rise to spanwise waviness and the formation of rib vortices, as
quantitatively demonstrated in Xiong et al. (2020). For solitary wave flows, the numerical
results shown in figure 5 of Özdemir et al. (2013) and figure 21 of Önder & Liu (2020)
indicate that these rollers themselves break into fine turbulent structures in the free stream,
which also resemble the experimental observations in supplementary movie 1 of Sumer
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et al. (2010). It should be noted that the free-stream turbulence (FST) resulting from
the breakdown of vortex tubes is somewhat independent of boundary-layer transition,
although the latter may be triggered by the former in the subsequent deceleration phase
in a Stokes boundary layer. After roll-up of the vortex tube from the wall, its trajectory
is determined by the summation and ratio of the circulation of each vortex component
with opposite vorticity, whose values are sensitive to the level and distribution of external
disturbances. In addition, FST resulting from the secondary instability of vortex tubes does
not trigger boundary-layer transition if located far away from the wall. These conclusions
were taken by Xiong et al. (2020) to account for abnormal transitional phenomena
initiated by disturbances of different amplitudes. As observed by Özdemir et al. (2014),
the intermittently turbulent state of a Stokes boundary layer is self-sustained for the cases
with moderate initial disturbances rather than the case with a higher amplitude. Despite
the stronger vortex tube induced by the latter case, it has already been ejected to the free
stream without giving rise to the bypass transition in the boundary layer.

Although the onset of vortex tubes characterises the disturbed flow regime of an
unsteady boundary layer, the ultimate transition to turbulence has to be marked by the
inception of low-speed streaks and their subsequent meandering and breakdown into
turbulent spots (Carstensen et al. 2010; Sumer et al. 2010). Compared with the only
slight modulation of the mean flow profile induced by vortex tubes, turbulent spots come
along with violent and scattered transverse swirling motion and intensive fluctuations
of the velocity and wall-shear stress (WSS) with a magnitude one order higher than
that of the vortex tube. Once the intermittently turbulent state is reached, the growth
and decay of the perturbation show a rather regular dependence on the deceleration
and acceleration phases driven by the successive adverse pressure gradient (APG) and
favourable pressure gradient (FPG), respectively. When the Reynolds number exceeds
the last critical value, turbulence prevails throughout the entire cycle of oscillatory flow
(Jensen et al. 1989). The bypass transition is used to describe the scenario where the
aforementioned 2-D instability by the Orr-like mechanism is bypassed and is no longer
the precursor of the burst of turbulence (Vaughan & Zaki 2011). Instead, the bypass
transition exposed to strong external disturbances follows the formation of streaks and
streamwise vortices as well as the onset of secondary instabilities (Brandt, Schlatter &
Dan 2004). The physical mechanism for streak amplification is known as the lift-up
effect (Landahl 1980). It is interpreted as the energy absorption from the mean flow to
feed the streaks by lifting the low-speed fluid upwards from the near-wall region while
pushing the high-speed fluid downwards. By adopting the forced OSS equations and the
corresponding adjoint equations, Schmid (2007) established the framework of non-modal
analysis to determine the optimal external forcing with a prescribed magnitude, which may
represent FST, wall roughness or other external disturbances, to achieve the maximum
amplification of perturbation energy. It provides the specific quantification of transient
growth to interpret the sub-critical characteristics of the bypass transitions. Önder & Liu
(2020) proposed an extension of this approach to time-dependent flows by constructing
a Lagrangian functional of the optimisation problem and revealed the receptivity of the
solitary wave flow based on it. It was found that the steady streamwise-constant forcing,
to drive a pair of counter-rotating vortices, delivers the largest amplification on streaks
per energy input in the acceleration phase. An analogical numerical scheme is adopted by
the present study with a minor modification to adapt for the oscillatory boundary layer,
as briefed in § 2.1 and detailed in Appendix A. As shown in figure 1, the secondary
instabilities of streaky structures with symmetric and anti-symmetric forms are also known
as varicose and sinuous modes, respectively (Andersson et al. 2001; Asai, Minagawa &

943 A45-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.446
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Nishioka 2002). They are also the focus of this paper for their rich physics in the
following transition process that is directly responsible for generating turbulent spots.
The involvement of nonlinear interactions among streamwise vortices/streaks and unstable
T–S-like waves may further complicate the problem and lead to more intensive growth,
which is referred to as vortex–wave interaction (VWI) by Hall & Sherwin (2010).

The present study aims to reveal comprehensive scenarios of non-modal instabilities
of an oscillatory boundary layer subject to different types and levels of finite-amplitude
disturbances, including the optimal initial disturbance, the distributed forcing and the wall
roughness. A fixed Reynolds number is selected at Reδ = 775 for all stability analyses
and direct numerical simulations throughout the paper if not otherwise specified. The rest
of the paper is organised as follows: the computational methods of non-modal analysis
and DNS are generally introduced in § 2 while the detailed derivation and validation
are presented in Appendices A–C; the linear and nonlinear growth of the primary and
secondary instabilities relevant to vortex tubes is discussed in § 3; the inception and further
instabilities of streaky structures subject to the optimal forcing excitation are investigated
in § 4; the more realistic DNS results for the bypass transition of an oscillatory boundary
layer over a rough wall are demonstrated and interpreted in § 5; finally, conclusions are
drawn in § 6.

2. Computational methods

2.1. Linear non-modal growth analyses for theoretical Stokes flow
The algorithms of linear non-modal growth analyses for theoretical Stokes flow employed
in §§ 3.1 and 4.1 are introduced as follows. In our formulation, x∗, y∗ and z∗ denote the
coordinates in the streamwise, vertical and spanwise directions, which correspond to the
velocity components u∗, v∗ and w∗, respectively. The normalisation of coordinate, velocity,
pressure, time and frequency is performed by x = x∗/δ∗, u = u∗/U∗

0m, p = p∗/(ρ∗U∗2
0m),

t = t∗Ω∗ and f = f ∗/Ω∗. The normalised period the flow oscillation is T = 2π. Hence,
figure 2 displays the normalised velocity profiles U0( y, t) = sin t + exp(−y) sin( y − t)
at certain discrete phases of a half-period from t/T = 1/4 to 3/4, and the inflectional
points and the position for flow reversal are marked. The non-modal growth analyses are
conducted upon the theoretical base flow U = [U0, 0, 0]T.

In § 3.1, we only consider the transient growth of the initial disturbance, while in § 4.1
the presence of the external forcing with finite amplitude Af and given frequency Ωf
is taken into consideration to represent the pre-existing background perturbations. The
perturbation fields and the forcing excitation are generally composed of the Fourier modes
û = [û, v̂, ŵ]T, p̂ and f̂ = [f̂u, f̂v, f̂w]T, respectively

[ũ, ṽ, w̃, p̃](x, y, z, t) =
∫∫ ∞

−∞
[û, v̂, ŵ, p̂]( y, t) ei(αx+βz) dα dβ, (2.1)

[fu, fv, fw](x, y, z, t) =
∫∫∫ ∞

−∞
[f̂u, f̂v, f̂w]( y) ei(αx+βz+Ωf t) dα dβ dΩf , (2.2)

where α and β denote the wavenumbers in the streamwise and spanwise directions,
respectively. The objective of the non-modal analysis is to search for the optimal initial
perturbation and optimal forcing of a single Fourier component with definite α, β and
Ωf , which receives the maximum growth of perturbation energy during t0 ≤ t ≤ tf at the
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Figure 2. Base flows U0( y, t) in the deceleration phase (1/4 ≤ t/T ≤ 1/2) and the subsequent acceleration
phase (1/2 ≤ t/T ≤ 3/4) are visualised by the background contours, and velocity profiles at certain instants are
plotted in black curves. Blue solid line denotes the position for U0 = 0. Dotted lines mark the first and second
inflection points along the velocity profile, which are coloured according to the absolute spanwise vorticity
|ωz|.

definite Reδ

G = G(α, β, Ωf , t0, tf , Reδ) = max
‖ f̂ ‖2=Af

‖ û(tf )‖2

‖ û(t0)‖2 , (2.3)

where t0 and tf refer to the initial and final phases of an arbitrary period of time 
t =
tf − t0 for the unsteady parallel flow, and ‖·‖2 denotes the norm of a vector field.

Following the framework presented in Schmid (2007), the linearised Navier–Stokes
(LNS) equations and continuity equation are simplified to OSS equations through the
derivation steps reproduced in Appendix A (see (A1)–(A12)). As a result, the final
compact expression reads as

2
Reδ

d
dt

(
v̂

ω̂y

)
=
(

LOS 0
LC LSQ

)(
v̂

ω̂y

)
+ exp(iΩf t)B

⎛⎜⎝ f̂u
f̂v
f̂w

⎞⎟⎠ , (2.4)

where the differential operators have been converted to the matrix forms to facilitate the
implementation of the forward integration of the discrete perturbation fields of vertical
velocity v̂ and vertical vorticity ω̂y(≡ iβû − iαŵ). It is noted that the upright notations are
used to distinguish discretised expressions from the continuous operators or variables in
the italic font. The inverse transformation from v̂ and ω̂y to the primitive discrete fields û
ad ŵ is as follows:

û = i
k2 (αDv̂ − βω̂y), ŵ = i

k2 (βDv̂ + αω̂y), (2.5)

where k =
√

α2 + β2 denotes the total wavenumber.
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The kinetic energy of perturbation fields and the amplitude of the external forcing are
evaluated by the norm of a vector field

Ek(û) = ‖ û‖2 = 1
2k2

∫ ymax

0

(
k2|v̂|2 +

∣∣∣∣∂v̂

∂y

∣∣∣∣2 + |ω̂y|2
)

dy, (2.6)

Af = ‖ f̂ ‖2 = 1
2

∫ ymax

0
(| f̂u|2 + | f̂v|2 + | f̂w|2) dy. (2.7)

The Orr–Sommerfeld, Squire matrices and coupling matrix denote the corresponding
differential operations

LOS = M−1
(

−iαUM + iαU ′′ + 1
Reδ

M2
)

,

LSQ = −iαU + 1
Reδ

M, LC = −iβU ′,

⎫⎪⎪⎬⎪⎪⎭ (2.8)

and the differential matrix for external forcing is constructed by:

B =
(

−iαM−1D −k2M−1 −iβM−1D

iβI 0 −iαI

)
, (2.9)

where I denotes the identity matrix. The further elucidation of the detailed expressions
of the Laplacian matrix M and the derivative matrix D is presented in Appendix A.
The diagonal matrices are U and U ′, U ′′, whose values are assigned by the base flow,
the first- and second-order spatial derivatives, respectively. The spatial discretisation of
these variables and operators is performed by employing the open-source code provided
in Weideman & Reddy (2000). As detailed in Appendix A, the differentiation matrix
suite is based on the spectral method and the Chebyshev polynomials. The boundary
constraints for stability analyses require zero conditions for v̂, Dv̂ and ω̂y at both ends
y = 0 and ymax (Mao & Sherwin 2011). The domain limit with ymax = 20, the number of
Chebyshev collocation points 101 and the time step δt/T = 10−5 have been demonstrated
to reach good convergence since the relative error of the results compared with the ones
for δt/T = 10−6 is less than 1 %.

The optimisation problem to search for maximum energy amplification G defined
in equation (2.3) is mathematically equivalent to finding the peak of the Lagrangian
functional (Schmid 2007; Önder & Liu 2020)

L(û, û+, û0, û+
0 , f̂ , γ ) = ‖û(tf )‖2

‖û0‖2 + 〈û+, L(t)û − Bf̂ eiωf t〉

+ û+
0 (û(t0) − û0) + γ (E(f̂ ) − Af ), (2.10)

where γ is the Lagrangian multiplier of the excitation energy. The superscript ‘+’ denotes
the adjoint operator or variables and the angle bracket 〈·〉 represents the inner product of
vectors related to the temporal and spatial integral in the vertical direction. The first term
on the right-hand side denotes the functional to be maximised while the second and third
terms are the functionals to implement the governing equations and initial conditions,
respectively. The variance with respect to γ enforces the magnitude Af to constrain the
excitation energy. By employing the optimal conditions derived from the stationary point
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of the Lagrangian, the adjoint OSS equations are obtained and also rewritten in the
compact form

2
Reδ

d
dt

(
v̂

+

ω̂y
+
)

=
(

LOS
+ LC

+
0 LSQ

+
)(

v̂
+

ω̂y
+
)

. (2.11)

The detailed steps of derivation are elaborated in Appendix A (see (A13)–(A19)).
The aforementioned boundary constraints for direct variables also apply to the adjoint
variables, and the adjoint differential matrices of (2.11) are defined as follows:

LOS
+=M−1

(
−iαUM − 2iαU ′D − 1

Reδ

M2
)

,

LSQ
+= − iαU − 1

Reδ

M, LC
+= − iβM−1U ′.

⎫⎪⎪⎬⎪⎪⎭ (2.12)

The steps of optimisation for an arbitrary time-dependent base flow during t0 ≤ t ≤ tf
consist of the iterative looping between the forward integration described in (2.4) and the
backward integration by the adjoint (2.11) until reaching convergence. A random initial
disturbance or forcing is assigned at the first loop and updated after forward–backward
integration following the practice of Corbett & Bottaro (2001)

v̂+( y, tf ) = − 1
2k2Ek(û( y, t0))

v̂( y, tf ),

ω̂+
y ( y, tf ) = 1

2k2Ek(û( y, t0))
ω̂y( y, tf ),

v̂( y, t0) = −2k2 Ek(û( y, t0))
2

Ek(û( y, tf ))
v̂+( y, t0),

ω̂y( y, t0) = 2k2 Ek(û( y, t0))
2

Ek(û( y, tf ))
ω̂+

y ( y, t0).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

The distribution of the forcing excitation is assigned after each iteration according to a
temporal integration of the adjoint fields that is similar to Önder & Liu (2020)

f̂u = − 1
2γ

∫ tf

t0

(
iα

∂v̂+

∂y
+ iβω̂+

y

)
e−iΩf t dt, (2.14)

f̂v = − 1
2γ

∫ tf

t0
k2v̂+ e−iΩf t dt. (2.15)

f̂w = 1
2γ

∫ tf

t0

(
−iβ

∂v̂+

∂y
+ iαω̂+

y

)
e−iΩf t dt, (2.16)

where γ scales the forcing excitation to desirable Af . Although the above numerical
scheme is applicable for non-modal analysis for maximum response to optimal background
perturbation, it degenerates to the optimisation problem for optimal initial perturbation at
Af = 0 whose results are validated against those of Biau (2016).

2.2. Optimal growth of 2-D nonlinear perturbation and 3-D secondary instabilities
The importance of secondary instabilities in boundary-layer transition has been recognised
regardless of the corresponding primary instabilities originating from the Orr-like
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mechanism or the lift-up effect. The emergence of 3-D instability is investigated by the
non-modal growth analysis upon the nonlinearly saturated 2-D base flows. To achieve the
most disturbed 2-D flows induced by optimal initial perturbations with the prescribed finite
amplitude E0 = ‖û0‖2, a nonlinear optimisation approach is developed by considering
the nonlinear advection term û · ∇û. The iterative evolution algorithm comprises of the
forward integration and the backward integration of the following equations:

∂û
∂t

= −Reδ

2
u2D · ∇û − Reδ

2
û · ∇u2D − Reδ

2
∇p̂ + 1

2
∇2û with ∇ · û = 0, (2.17)

−∂û+

∂t
= Reδ

2
u2D · ∇û+−Reδ

2
û+ · (∇u2D)T

−Reδ

2
∇p̂++1

2
∇2û+ with ∇ · û+ = 0, (2.18)

where the adjoint fields are also denoted by the ‘+’ superscript and the 2-D disturbed
flow u2D = U + û implies the superposition of theoretical solution and disturbance field.
Substituting u2D into (2.17) yields the original linear term and the nonlinear advection
term so that the nonlinear evolution of the 2-D perturbation is involved in the iteration.
The corresponding initial conditions are updated at the beginning of forward and backward
integration of each iterative loop

û(t0) = E0

‖û+(t0)‖ û+(t0), û+(tf ) = û(tf ). (2.19)

This approach is an extension of the linear non-modal analysis to search for the optimal
initial perturbation responsible for the largest energy growth (Schmid 2007). Nevertheless,
the nonlinear advection term must be additionally evaluated at the forward step while
the disturbed field u2D has to be stored for reconstruction along with theoretical base
flow U at the backward step. After the most disturbed 2-D flow is obtained by reaching
the convergence of the above iteration, the non-modal growth analyses of 3-D secondary
instabilities are then performed by assuming û as the 3-D disturbance field with a definite
spanwise wavenumber û3D = ũ(x, y, t) eiβz so that the advection term recovers a linear
form. Since the framework of linear transient (non-modal) growth analyses has already
been built in an open-source computational library Nektar++ (Cantwell et al. 2015;
Moxeyet al. 2020), the above numerical approaches are easily implemented with some
minor modifications to deal with the nonlinear term.

A local Lagrangian interpolation of order NL is employed to reconstruct the
instantaneous u2D from the stored flow fields at checkpoints with a total number Ns.
Otherwise, excessively large memory or space is required to save the perturbation field
at every time step (Mao & Sørensen 2018). Lastly, a similar approach is performed on the
same mesh to investigate the non-modal growth of the optimal 3-D instability of a single
Fourier mode û3D(x, y, z, t) = ũ(x, y, t) eiβz. The expressions of the evolution equations
and initial-condition updating are also similar to (2.17)–(2.19), where û and û+ need
to be replaced by û3D and û+

3D, respectively. The mesh partition is designated with 19
h-elements in the vertical direction of length Ly = 38.75 with an expansion ratio of 1.19.
And 20 h-element meshes are equivalently spaced in the x-direction with length Lx = 4π,
corresponding to the streamwise wavelength Lα = 2π/α of α = 0.5. The polynomial
order Np = 7 for p-type refinement within each h-element is adopted to achieve high-order
accuracy.
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Section Lx × Ly × Lz Spectral/hp Fourier direction Fourier modes Optimal forcing

3.3 4π × 38.75 × 30 x–y plane z-axis Nz = 64 No
4.2 4π × 38.75 × 2π z–y plane x-axis Nx = 64 Yes
5 30 × 60 × 20 x–y plane z-axis Nz = 64–192 No

Table 1. The numerical parameters for DNS tests in §§ 3.3, 4.2 and 5. The topology and the grid distribution
over the spectral/hp plane in §§ 3.3 and 4.2 are identical to those of the mesh adopted in § 2.2. Other numerical
set-ups for the cases in § 5 are further detailed in table 2.

2.3. Three-dimensional direct numerical simulations
The cases investigated by 3-D DNS in §§ 3.3, 4.2 and 5 differ in numerical set-up due
to distinct objectives. The evolution of secondary instabilities from vortex tubes and
streaks are respectively validated against the DNS results in §§ 3.3 and 4.2. The coupled
interaction between different coherent structures is demonstrated by the more realistic
DNS, where the perturbations are induced by random wall roughness rather than artificial
disturbances, as detailed in § 5. All of them adopt the quasi-3-D approach in-built by
Nektar++ (Rocco 2014) to discretise the computational domain. As indicated in table 1,
the computational domain consists of a spectral/hp mesh over a 2-D plane and a Fourier
expansion along the other direction. The Fourier discretisation is implemented in the
spanwise direction in §§ 3.3 and 5 and in the streamwise direction in § 4.2. A different
Fourier direction is selected hereby because Fourier decomposition is convenient for
implementing the decomposition of the secondary instability. Except for the body force
to drive the flow oscillation, the optimal forcing term f̂ opt exp(iΩf t) obtained in § 4.1
is introduced to Navier–Stokes (N-S) equations to amplify the streak nonlinearly from
the theoretical initial condition, and the tertiary forcing term with a random distribution
and a prescribed amplitude is imposed to trigger the secondary instability of streaks.
Additionally, the other numerical set-ups for DNS over the random wall roughness are
specified in § 5, where the 3-D topology of the bottom is implemented by the coordinate
transformation. A stabilisation technique of spectral vanishing viscosity, adopted in the
precursor study (Xiong et al. 2020), is applied to the 25 % highest Fourier modes to
enhance the controlled artificial dissipation. To eliminate aliasing errors, the 3/2 padding
rule is activated on the advection term, as proposed by Kirby & Sherwin (2006).

3. The linear and nonlinear evolution of a vortex tube

The optimal 2-D disturbances and the maximum energy growth with respect to different
initial and final phases are obtained in § 3.1 to determine the most favourable scenario for
the amplification of disturbance waves. The nonlinear growth of 2-D perturbations and the
evolution of the vortex tube are investigated in § 3.2. Last, the 3-D instabilities evolved
from the vortex tube are resolved from the linear non-modal growth analyses and DNS
results in § 3.3 to illustrate the physical mechanisms of different transition pathways.

3.1. Optimal initial perturbation with phase dependency
As indicated in figure 3, the non-modal energy amplification in response to optimal initial
perturbations displays a strong phase dependency. The results are obtained at Reδ = 775
for the convenience of comparison with the available experimental and numerical data
achieved at the identical Reδ = 775 (Carstensen et al. 2010; Scandura 2013). We focus on
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log(G)
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Figure 3. The non-modal energy growth in response to the optimal initial perturbation for (α, β) = (0.5, 0)

of an oscillatory boundary layer at Reδ = 775. (a) Contour of the optimal energy growth G in the space of
t0/T − 
t/T , and the final phase tf /T = (t0 + 
t)/T from 0.2 to 1.4 is denoted by the yellow dotted lines. The
red and blue crosses mark the corresponding maximum and minimum energy growth, respectively. (b) The
instantaneous traces of energy evolution for t0/T = 0.2–0.6 with an interval of 0.1 and the same evolution time

t/T = 0.2.

the optimal energy growth G in the space of t0/T − 
t/T at a set of fixed wavenumbers
(α, β) = (0.5, 0), as shown in figure 3(a). Our preliminary results, although not presented
here, have confirmed that optimal initial perturbation is always two-dimensional (β = 0),
while the most amplified streamwise wavenumbers, consistent with the results reported
in Carstensen et al. (2010), Scandura (2013) and Biau (2016), range roughly between 0.3
and 0.8 but they all exhibit similar characteristics of temporal evolution. Therefore, the
analyses are performed in a subspace of controlling parameters to save computational cost.
It is seen that t0 is crucial for the overall growth G and tf affects the sensitivity of the
growth rate of G with respect to the evolution time. Figure 3(b) shows the temporal energy
evolution of optimal initial perturbations with different t0 in the same time duration length

t/T = 0.2. The results indicate that the interval of 0.1T between t/T = 0.4 and 0.5 is a
crucial temporal range for amplification of a 2-D disturbance in an oscillatory boundary
layer.

The perturbation fields of three typical cases for t0/T = 0.2, 0.4 and 0.6 are visualised in
figure 4. The tilting configuration of unstable waves is reminiscent of the Orr mechanism
(Orr 1907), which has been recognised as the dominant physical origin of the transient
growth of perturbations in the parallel shear flow. The Orr mechanism signifies the energy
transfer from mean shear flow via the only non-vanishing component −ûv̂U′ of the
Reynolds stress production term in the Reynolds–Orr equation (Schmid & Henningson
2001). Therefore, a train of 2-D vorticity waves with a tilted configuration against the
direction of the mean shear rate is the most efficient configuration as long as −ûv̂U′ is
positive throughout the domain. The inclined perturbation wave would experience the
transient energy amplification by undergoing a clockwise rotation driven by the mean
shear base flow (Jiao, Hwang & Chernyshenko 2021). Biau (2016) demonstrated strong
amplifications of instabilities in a half-period of oscillatory boundary-layer flows due to
the Orr mechanism and the exponential scaling of the optimal growth of perturbation
energy with Reδ . At sufficiently large Reδ , similar non-modal growth may also give rise
to sub-critical transition to turbulence for the other unsteady flows such as solitary wave
boundary layers (Verschaeve, Pedersen & Tropea 2018) as well as pulsatile and oscillatory
pipe flows (Xu et al. 2021). Based on the above understanding, we will further justify why
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ωz
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Figure 4. Linear evolution of spanwise vorticity ωz for the optimal perturbations of (a) (t0/T, tf /T) =
(0.2, 0.4), (b) (0.4, 0.6) and (c) (0.6, 0.8). The yellow dashed lines denote the position of inflection points
and the white dashed lines denote the positions for maximum absolute ωz. The energy of perturbation fields is
normalised to unity to facilitate the comparison.

the transient growth rate is much larger at certain phases of an oscillatory boundary-layer
flow.

At the initial instant shown in figure 4, the white dashed lines, marking the peak position
of perturbation waves, generally overlap with one of the instantaneous inflectional points
denoted by the yellow dashed lines. Despite the existence of multiple inflection points,
the initial perturbations for t0/T = 0.4 and 0.6 are concentrated at the lower inflection
points because high background shear yields strong perturbation growth. The two layers
of vorticity waves tilting towards opposite directions observed at the initial instant of
t0/T = 0.2 and 0.6 are attributed to the opposite sign of U′ of corresponding shear layers.
The lower shear layers of the two anti-tilting shear layers disappear soon after the initial
instants, primarily because the perturbation shown in figure 4 is normalised to unity after
evolution time 
t/T = 0.1. This observation implies that perturbations in the lower shear
layers grow much slower than those in the upper shear layers due to the absence of an
inflectional point in the lower shear layers. The upper vorticity waves of three cases all
separate into two segments relative to the corresponding inflection points at which they
initially peaked. The physical explanation for the splitting of vorticity waves is that the
crest and trough of sinusoidal vorticity perturbation located near the inflection point are
mainly advected to opposite directions with respect to the reference frame moving with
the velocity of the inflection point. The steepening and amplification of the low-amplitude
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Figure 5. The instantaneous kinetic energy of the real component of the Fourier mode ERe and wavelet
analyses of perturbation waves of (a) (t0/T, tf /T) = (0.2, 0.4), (b) (0.4, 0.6) and (c) (0.6, 0.8). The wavelet
energy spectrum is calculated from the normalised fluctuation Ẽf . The contours of wavelet energy spectrum
Aw(t/T, f ) are coloured by Ãw = Aw/ max(Aw), where max(Aw) is the corresponding maximum. The white
dashed line in each contour indicates the instantaneous dominant frequency that is extracted from the wavelet
spectrum and is equivalently converted into wave speed by uc = fLα/Reδ , where Lα = 2π/α denotes the
streamwise wavelength corresponding to α = 0.5. The red dotted line denotes |U( yI)|, namely the absolute
value of the velocity of the inflection point where the vorticity wave is centred in figure 4.

vorticity perturbations lead to the swirling motion of vortex structures (Scandura 2013;
Xiong et al. 2020).

Wavelet analyses are performed to quantify the instantaneous frequency and the
dominating propagation speed of the perturbations. Since a complex mode of perturbation
field û consists of the real and imaginary components, the variation of the norm of
each component conveys the wave information so that the instantaneous norm of the real
component ERe = E(Re(û)) is firstly plotted in figure 5 for further discussion. The overall
variation of the curves is decomposed into the mean part, Ē = E(û)/2, and the pure
fluctuation part, Ef = (ERe − Ē). Following the guide provided by Torrence & Compo
(1998), the wavelet analyses are carried out by taking the Morlet basis function

ϕ0(η) = π−1/4 exp(iΩ0η) exp(−η2/2), (3.1)

where Ω0 is the non-dimensional frequency. According to Farge (1992), it is set to
6 to conform with the admissibility condition. The non-dimensional time η = t/sj is
determined by different time scales sj = (2δt)2jδt (j = 1, 2, . . . , J). The required amount
for different time scales is calculated by J = δt−1 log2(N/2), where N is the overall length
of the input time-series data. It is obvious that the wave speed uc for all cases is generally
in line with the velocity of the inflection point, |U( yI)|, where yI denotes the vertical
position of the inflectional point. It also demonstrates that the disturbance wave is the
most amplified if it remains stationary in the co-moving reference frame with the local
inflection point.

In summary, the linear evolution of optimal perturbations is highly dependent on the
initial phase because a short time interval prior to the flow reversal is most favourable for
the amplification of a tilted perturbation wave, when the inflectional point located in the
high-shear region enhances its transient growth by the Orr mechanism.
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Figure 6. The 2-D nonlinear results for the evolution of vortex tube. (a) Peak energy of perturbation max(E(t))
during t0/T < t/T < t0/T + 0.5. The random disturbance with the amplitude E0 = ‖u0‖/S and the Gaussian
distribution is imposed on the theoretical solution at t0/T to initialise each simulation, where S = Lx × Ly is the
area of the 2-D computational domain. The white dashed line at t0/T = 0.325 implies the initial phase for the
maximum response predicted in figure 3(a). (b) The instantaneous normalised WSS τw = τ ∗

wδ∗/(ρ∗ν∗U∗
0m).

3.2. The nonlinear evolution of a 2-D vortex tube
The influence of the phase and the initial amplitude on the characteristics of vortex
tubes are further discussed in this section by 2-D DNS and nonlinear non-modal growth
analyses. A random perturbation u0 in a zero-mean Gaussian distribution is superimposed
with the theoretical solution to serve as the initial condition at a given phase t0/T for
2-D DNS. Here, u0 is scaled to reach an expected amplitude E0 = ‖u0‖/S over the
computational area S by varying the variance σ . As indicated in figure 6(a), the different
initial phases lead to a change of the peak perturbation energy max(E(t)) that is larger
than 8 orders of magnitude. With the decrease of E0, the evolution of perturbation
waves asymptotically approaches the prediction by linear non-modal stability analyses. In
contrast, the peak perturbation energy max(E(t)) is almost independent of the initial phase
for E0 > 10−3. This suggests that the increase of initial perturbation energy strengthens
the nonlinear effect and leads to a larger deviation from the linear prediction of the phase
effect on perturbation amplification.

The WSS is an important physical quantity in studies of the Stokes boundary layer
due to its relevance to engineering applications. Figure 6(b) shows a comparison of the
analytical prediction and measurements of the instantaneous normalised WSS, defined by
τw = τ ∗

wδ∗/(ρ∗ν∗U∗
0m), in response to initial perturbations of four amplitudes imposed

at the optimal initial phase t0/T = 3/8. The propagation of vorticity waves induced by
the smallest initial perturbation (E0 = 5.9 × 10−11) and the second smallest perturbation
(E0 = 6.0 × 10−9) does not leave significant kinks in the variation of τw. Instead, the large
deviation of τw from the analytical solution for E0 = 6.2 × 10−8 and 6.0 × 10−7 is induced
by the passing of vortex tubes over the probe point. The amplitude of fluctuation reaches
the peak within a short interval around t/T = 0.45 and is comparable in amplitude to the
variation of the WSS during the entire oscillatory motion for E0 = 6.0 × 10−7. The abrupt
onset of the most intensive fluctuation of τw is followed by a monotonic decay in amplitude
and an increase in frequency, which is similar to the results reported in Carstensen et al.
(2010) and Scandura (2013). The monotonic decay of τw occurs because the production
term vanishes due to the zero-mean shear rate once the vortex tube enters the free stream.
The vortex tube dissipates by viscosity, while its influence on WSS exponentially decreases
with increasing distance.
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Figure 7. Instantaneous 2-D perturbation energy for different E0 imposed at t0/T = 3/8. (a) Random initial
perturbation by DNS; (b) optimal initial perturbation by nonlinear non-modal growth analyses.

The evolution trends of log(E) at different E0 values are similar to each other in
figure 7(a). The peak energy for the case with the strongest initial perturbation is reached
at a much earlier phase than the rest. Once the perturbation energy reaches its peak, it
retains a relatively steady amplitude due to nonlinear saturation and monotonically decays
by dissipation in the long term. Figure 8(a,b) shows that vortex pairs start to roll up into
the free stream shortly after flow reversal and are gradually diffused and dissipated in
the free stream with time. The evolution process of the vortex pairs is responsible for the
instantaneous variation patterns of WSS and the perturbation energy described above. In
comparison, the instantaneous perturbation energy and flow fields obtained by nonlinear
non-modal growth analyses are exhibited in figures 7(b) and 8(c,d), respectively. The
receptivity stage experienced by random initial disturbances is not observed for the growth
of the optimal initial disturbance. This leads to more rapid growth at an early stage and a
much lower threshold E0 for triggering the onset of a nonlinear vortex tube. The nonlinear
saturation is observed shortly after t/T = 1/2 for the cases with considerable amplitudes
of initial perturbations regardless of the optimal or random ones.

The contours of ωz in figure 8 indicate that the spanwise vorticity contours directly
obtained from nonlinear non-modal analyses are highly consistent with those decomposed
from the overall DNS results. For the first instants shown in figure 8(a–d), the perturbation
fields are similar to those obtained from the linear stability analyses shown in figure 4(b).
The slight difference between the positive and negative vorticity components of the
perturbation field is attributed to the interaction between the perturbation and mean flow
fields, which are absent in the linear stability analysis. The peak of the overall waviness is
caused by the superposition of the mean shear and a perturbation of the same sign while
the trough is induced by those of opposite sign. The increase of inclination angle between
the vorticity wave and wall is primarily due to the Orr mechanism. The self-induced
velocity by the interaction between the positive and negative vortices intrinsically leads
to the roll-up motion observed in figure 8. The final departure of the vortex pairs from
the wall to the free stream is identical to the flow mechanism demonstrated analytically by
Xiong et al. (2020).

Briefly speaking, the results of nonlinear evolution of the 2-D instability exhibit
phase-dependent characteristics similar to those of linear non-modal analyses. The
increase of disturbance amplitude leads to the growth of perturbation energy and WSS
until the nonlinear saturation is reached. On the other hand, the interaction between a pair
of counter-rotating vortices induces the roll-up motion to actuate themselves into the free
stream.
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Figure 8. Nonlinear evolution of spanwise vorticity ωz. Two-dimensional DNS results visualised by filled
contours of overall flow fields and contour lines of the perturbation fields of two cases presented in figure 7(a):
(a) E0 = 6.2 × 10−8; (b) E0 = 6.0 × 10−7. Results by nonlinear non-modal growth analyses of two cases
presented in figure 7(b): (c) E0 = 3.6 × 10−12; (d) E0 = 1.4 × 10−11.

3.3. Secondary instabilities of vortex tube
In the present study, the optimal 3-D instability with different spanwise wavenumbers β is
determined by employing the computational method outlined in § 2.2. The most disturbed
2-D flows u2D(t) need to be acquired beforehand to serve as the base flow. The results
displayed in figure 9(a) indicate that the base flow is susceptible to 3-D perturbation with
10−1 ≤ β ≤ 100 while the peak transient growth generally increases with the strength of
vortex tubes triggered by E0. Based on the visualisation results shown in figure 10, the
structures of the 3-D optimal perturbations are divided into two parts, namely the streaky
structure in the near-wall region and the rib vortex around the vortex tube. Vortex tubes
are identified by iso-surfaces of positive Q, which is the second invariant of ∇u (Hunt,
Wray & Moin 1988). Mathematically, Q is defined as

Q = (‖R‖2 − ‖S‖2)/2, (3.2)

where R and S are the anti-symmetric and symmetric tensors decomposed from the
gradient tensor ∇u, respectively.

The near-wall streaks result from the lift-up effect induced by the 3-D instability of
the vortex tube, while the formation of spanwise waviness or a rib vortex is similar
to 3-D transition of the counter-rotating vortex pair in the free shear region. A more
in-depth discussion of 3-D deformation of vortex tubes in an otherwise stationary fluid
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Figure 9. Energy growth G of 3-D linear optimal perturbation for 2-D nonlinear base flow u2D = U + û
during the phase interval (t0/T, tf /T) = (3/8, 7/8), where û denotes 2-D nonlinear optimal perturbation with
a definite initial amplitude E0. (a) The overall optimal growth of a 3-D perturbation in the form of a single
Fourier mode at the specific spanwise wavenumber β ranging in 10−2 ≤ β ≤ 101. (b) Instantaneous energy
growth of three cases with β = 0.3, 0.4 and 0.5 for corresponding E0 specified in (a).

(a) (b) (c)

y
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z

Figure 10. Visualisations of 3-D linear optimal perturbation at the same instant t/T ≈ 0.86. These secondary
instabilities evolve from the 2-D nonlinear vortex tube of the same cases shown in figure 9(b): (E0, β) =
(1.9 × 10−13, 0.3), (3.6 × 10−12, 0.4) and (1.4 × 10−11, 0.5) for (a–c), respectively. Iso-surfaces of vertical
vorticity ωy, in which red/blue colour denotes positive/negative value, respectively, are superposed on the
Q-criterion iso-surfaces of the base flow, whose black/grey colour scales with the value of ωz.

is presented in the recent studies of Dehtyriov, Hourigan & Thompson (2019, 2020),
which distinctly quantified non-modal growth of long-wave and short-wave disturbances
corresponding to Crow and elliptical instabilities, respectively. The large transient growth
implies that significant secondary instabilities are inevitably triggered by a strong 2-D
initial perturbation even if the 3-D disturbance is quite low. The instantaneous growth
of perturbation energy shown in figure 9(b) suggests that the peak transient growth
for lower E0 is surprisingly higher than that for larger E0 at the phase t/T ≈ 0.5,
which is opposite to the overall growth trend. A likely explanation is that the near-wall
vortex tube corresponding to lower E0 is initially more conducive to the growth of the
wall-bounded streak structures. On the other hand, the elliptical instability of relatively
higher wavenumber is mainly responsible for the growth of 3-D perturbation of vortex
tubes themselves corresponding to higher E0. Therefore, it is justified that, if considerable
3-D initial disturbance already exists in the background, the secondary instability takes
place in the near-wall region at approximately the phase of flow reversal before the vortex
tube enters the free stream by rolling-up motion. Otherwise, the secondary instability of
the elliptical type will lead to the formation of a rib vortex around the vortex tube away
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(a)

t/T = 0.867

(b)

t/T = 0.664
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t/T = 0.844

y
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Figure 11. Visualisations of DNS tests 1–3 for the secondary instabilities evolving from a vortex tube by
iso-surfaces of ωy and Q-criterion. The corresponding amplitudes of 2-D initial perturbations and 3-D initial
perturbations (E2D

0 , E3D
0 ) are: (a) (10−7, 10−12); (b) (10−7, 10−7); (c) (10−6, 10−12).

from the wall, which corresponds to the two transition pathways identified by Özdemir
et al. (2013, 2014).

The above prediction is validated by DNS tests, in which the amplitudes of 2-D and
3-D initial perturbations (E2D

0 and E3D
0 ) are individually controlled and both of them are

superimposed with theoretical base flow U to serve as the initial condition at t0/T = 3/8.
The 2-D perturbation has a random distribution in the x − y plane but is homogeneous
along the z direction while the 3-D perturbation is randomly distributed. Their amplitudes
are controlled to investigate different transition scenarios corresponding to the onset of the
secondary instability. The flow visualisation shown in figure 11(a) is consistent with the
results through linear stability analysis although the nonlinear effect gives rise to the minor
waviness on the vortex tube, especially on the weak component with positive ωz. As E2D

0
is increased one order higher, the iso-contours displayed in figure 11(c) indicate that the
elliptical instability leads to significant deformation of the spanwise vortex with positive
ωz evolving into a rib vortex. Meanwhile, more streaks are induced on the wall from the
interaction between the distorted vortex tube and the boundary layer. This transitional
process is ubiquitous in coastal areas, where the wave boundary layer is generated by
oscillatory flow over the sand ripple with a quasi-2-D geometry. While E3D

0 is raised to
the same magnitude as E2D

0 , a different transition scenario, known as K-type transition,
is observed in figure 11(b). These principal transitional behaviours are the focus of the
present work. They are found to be largely affected by the initial conditions and well
consistent with the prediction by non-modal growth analyses.

The long-term responses of the above tests are tracked in figure 12, where the
instantaneous perturbation energy is decomposed into components contributed by u, v and
w separately. It is well known that the 2-D vortex tube is not self-sustainable in the absence
of prominent secondary instabilities (Akhavan, Kamm & Shapiro 1991; Carstensen et al.
2010; Scandura 2013; Özdemir et al. 2014; Biau 2016). The energy components u and v

of test 1 almost monotonically decay after reaching the peak. The energy components
of u and v of test 3 experience a higher transitional peak than that of test 2, while
the amplitude w-component remains at approximately the same order of magnitude as
that observed in test 1, implying that the perturbation energy is initially dominated by
intensive and homogeneous swirling motion of vortex tubes at that moment. For test
2, the transition pathway is analogous to K-type transition of a steady boundary layer
and three components of the perturbation energy contributed by u, v and w all reach
10−4 soon after flow reversal. After the first burst of turbulence in the first half-cycle,
tests 2 and 3 share a similar self-sustaining pattern featuring alternatively increasing and
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Figure 12. Instantaneous perturbation energy contributed by velocity components u (blue), v (red) and w
(green) over three periods in polar coordinates is displayed in (a–c). The cases are identical to those visualised
in figure 11. The cross-comparison of each velocity component in logarithmic coordinates among these three
cases, denoted accordingly by solid (test 1), thick dashed (test 2) and thin dotted (test 3) curves are shown in
(d–f ).

decreasing perturbation energy, whose trajectories resemble the shape of a peanut in the
polar coordinate system. The self-sustaining mechanisms are characterised by the stages
of inception by free-stream turbulence, growth of streaks under APG and breakdown of
coherent structures. Readers can refer to Salon, Armenio & Crise (2007), Carstensen
et al. (2010), Mazzuoli, Vittori & Blondeaux (2011) and Xiong et al. (2020) for a detailed
description of the self-sustaining motion and statistical features of an oscillatory boundary
layer in the intermittently or fully turbulent regime.

4. The inception and secondary instabilities of streaky structures

In the previous sections, the transitional scenarios of the Stokes boundary layer initiated
from T–S-like waves have been systematically investigated. As indicated in figure 1,
the bypass transition featuring the primary inception of the streaky structures is another
important route to turbulence for parallel boundary-layer flows. In § 4.1, we focus on the
linear non-modal growth of the perturbations in the Stokes boundary layer subject to an
optimal forcing excitation of finite amplitude as well as the mechanism for the inception
of streaks. The amplitudes of nonlinear streaks are quantified in § 4.2, based on which
the influences of amplitudes of the forcing excitation and the optimal initial perturbation
on the growth of streaks are discussed. Furthermore, two kinds of secondary instabilities
of streaks are identified and their deterministic factors are discussed in § 4.3. Lastly, the
corresponding pathways of the streak breakdown responsible for the burst of turbulence
are analysed in § 4.4.

4.1. The optimal forcing excitation for the inception of streaks
The optimisation algorithm to implement the linear non-modal growth analysis with
an optimal forcing excitation is introduced in § 2.1, whose framework is similar to that
proposed by Önder & Liu (2020). Compared with the orderly transition originating from
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Figure 13. The non-modal energy growth in response to optimal forcing excitation at Reδ = 775. (a) Contour
of the optimal energy growth for forcing excitation with Af = 10−4 and β = 0.5 in response to different initial
phase t0/T and duration length of time interval 
t/T . The black crosses denote the point with the shortest

t/T required to reach a specific energy growth. (b) The optimal energy growth for forcing excitation with
different Af and β. The initial and final phases are fixed at (t0/T, tf /T) = (0, 0.5).

2-D primary instabilities, the linear non-modal analysis for the bypass transition is more
complicated. Two additional parameters, namely Af and Ωf , are introduced to characterise
the amplitude and frequency of forcing excitation in addition to Reδ , t0, tf , α and β. It
is unrealistic and unnecessary to traverse the entire large parameter space spanned by
all of them so a few simplifications are implemented by referring to the conclusions
of Önder & Liu (2020). They demonstrated that for the boundary-layer flows induced
by a solitary wave the most dangerous environmental excitation prior to flow reversal
is a pair of counter-rotating forcing cells that directly drives the streamwise vortex pair.
Due to the lift-up effect, these structures efficiently amplify the streamwise-constant low-
and high-speed streaks featuring alternate deficit and surplus of streamwise velocity with
respect to the mean flow, respectively. We have verified that streamwise-constant (α = 0,
β /= 0) excitation is also the most dangerous one for oscillatory boundary-layer flows in
the acceleration phase. It is noted that the 2-D mode (α /= 0, β = 0) is still the optimal
perturbation in a time interval containing the late deceleration phase, because this phase
is critical for the growth of 2-D instabilities. To investigate the early transient behaviour
associated with the bypass transition, especially the inception of streaks, we only focus
on the optimal streamwise-constant forcing excitation and corresponding optimal initial
condition with α = 0 in this section. Additionally, the frequency of the optimal forcing
excitation asymptotically approaches zero frequency with an increasing terminal time so
that the steady assumption (Ωf = 0) is employed as a compromise between optimality and
simplicity.

The phase-dependent energy growth subject to forcing excitation with a definite
amplitude Af = 10−4 and spanwise wavenumber β = 0.5 is shown by the contour plotted
in figure 13(a). Unlike the strong phase dependency for non-modal energy growth of 2-D
initial perturbations (see figure 3a), the optimal forcing excitation leads to a generally more
stable growth of 3-D instability. Although the maximum response is not identified in this
contour, the local peak response for the initial phase t0/T = 0 is obtained at tf /T ≈ 0.6. In
fact, the long-term prediction by this approach is not applicable because of the non-validity
of using the theoretical solution as the base flow after the flow reversal. It has already
been demonstrated that 2-D instabilities may have been nonlinearly saturated after the first
half-cycle under the condition of high-level disturbances. The markers of black crosses
indicate the lowest positions of the contour with each value. Their coordinates physically
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Figure 14. Optimal forcing excitation and corresponding optimal perturbation at (Af , t0, tf , β) =
(10−4, 0, 0.6, 1). (a) Filled contours of the normalised forcing magnitude f̃ = | f̂ |/ max(| f̂ |) and contour lines
of the streamfunction corresponding to the transverse forcing components as f̂u = ∂Ψ/∂y and f̂v = ∂Ψ/∂x.
The solid and dashed lines denote the positive and negative levels of Ψ . (b) Filled contours of streamwise
component of normalised optimal initial perturbation ũ(t0) and contour lines of the streamfunction to denote
the transverse components v̂(t0) and ŵ(t0). (c) Contours of normalised energy production term P̃ = −ûv̂U′ in
the Reynolds–Orr equation at tf = 0.6. The dashed line denotes the local peak point for streamwise velocity.

signify the initial phase and the shortest duration length required to reach each level of
energy growth. It is seen that, for low energy growth, the shortest 
t/T is required for
t0/T ≈ 0.25, while, for the large energy growth, the initial phase shifts towards t0/T = 0.

In figure 13(b), the optimal energy growth with respect to different Af and β is examined
for the fixed time interval (t0/T, tf /T) = (0, 0.5). The results show that an oscillatory
boundary layer is more receptive to forcing excitation with spanwise wavenumber β ∈
(0.5, 1). The peak response varies almost linearly with Af while the wavenumber for
the peak response, approximately at 0.75, is almost independent of Af . We note that
the magnitude of the peak response, which reaches approximately 105 for Af = 10−4, is
still far less than that of the non-modal growth induced by T–S-like 2-D instability, as
previously mentioned. It is inferred that the transition of the oscillatory boundary layer
in a relatively undisturbed state must commence from the amplification of primary 2-D
instabilities. This process is bypassed only by the earlier formation of a nonlinear streaky
structure triggered by high-level 3-D disturbances.

The configuration of the optimal forcing at (Af , t0/T, tf /T, β) = (10−4, 0, 0.6, 1) and
the associated optimal initial perturbation is displayed in figure 14(a,b), indicating that
the optimal forcing excitation for both takes the similar form of a pair of counter-rotating
cells. This kind of structure is conducive to activating the lift-up process by continuously
amplifying the counter-rotating vortices, which in turn redistribute the momentum from
the mean flow to intensify the streak. Due to the unsteady nature of an oscillatory base
flow, the steady forcing may not monotonically amplify perturbations. As indicated in
figure 14(c), the contour of the energy production term −ûv̂U′ is divided into two parts
about the dashed line, which marks the instantaneous position for a local peak point for
streamwise velocity. While the higher part absorbs the energy from mean shear to feed
the perturbation field, the lower part delivers energy out from the perturbation because of
the opposite sign of U′ in the near-wall region, which justifies a local peak obtained at
tf /T ≈ 0.6 for the initial phase t0/T = 0.
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Figure 15. The amplitude of nonlinear streaks Au in response to different amplitudes of the optimal forcing
excitation Af and the optimal input perturbation E0 for (t0/T, tf /T, β) = (0, 0.5, 1): (a) the final response at
tf /T = 0.5; (b) the instantaneous variation of Au for specific sets of (Af , E0).

4.2. The nonlinear growth of streaks
As for the nonlinear evolution of streaks, the final output is simultaneously dependent
on the amplitude of the optimal input perturbation E0 and the optimal forcing excitation
Af . Instead of full 3-D DNS, a series of 2D3C simulations are carried out to obtain the
streak amplitude. The terminology 2D3C denotes that three velocity components are only
resolved in a 2-D y–z plane by assuming homogeneity along the x-direction. This approach
is adopted to exclude the influence of the instabilities induced by the Orr mechanism and
inflectional point on the streak amplitude.

Following the practice of Andersson et al. (2001), the definition of streak amplitude Au
is adopted

Au(t) = 1
2(max{ũ( y, z, t)} − min{ũ( y, z, t)}), (4.1)

where ũ( y, z, t) = u( y, z, t) − ū|z( y, t) stands for the streamwise velocity directly
associated with the streak field. The results shown in figure 15(a) manifest that Au becomes
increasingly insensitive to the growth of E0 with the increase in Af . Furthermore, an
abnormal decrease is observed for the curve of Af = 10−4 and E0 ≥ 10−7, which is due to
the tilting down of the low-speed streak after the occurrence of wake instability. Generally,
the amplification of streak is more dependent on the forcing excitation, but it seems that
the sufficiently large initial perturbation or the large forcing amplitude individually results
in the nonlinear saturation after Au reaches the order of 0.1.

As shown in figure 15(b), the significant amplification of streaks is achieved at the
early stage of simulation, after which the streak amplitude remains in quasi-equilibrium or
gradually decays. According to the scaling analysis proposed by Waleffe (1995), the streaks
of O(1) need to be sustainably forced by the steady streamwise vortices of O(1/Reδ). For
low initial optimal perturbations, the equilibrium state is only relevant to Af , because the
influence of initial conditions on the steady streamwise vortices is negligible compared
with that of the continuous input by forcing excitation. On the other hand, a high-amplitude
streak transiently induced by a relatively large initial optimal perturbation may not be able
to be maintained if insufficient extra energy is imposed. However, we note that a transient
peak of streak amplitude is crucial for the onset of secondary instabilities of the streak and
the subsequent nonlinear effect may lead to the large deviation of the later results using
the 2D3C approach from realistic situations.
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Figure 16. The contours of the streamwise velocity field u, its spanwise derivative ∂u/∂z and vertical
derivative ∂u/∂y to demonstrate (a) inner and (b) outer instabilities of streaks at t/T = 0.5, which are induced
by (Af , E0) = (10−6, 10−7) and (10−5, 10−7), respectively. The black solid lines denote the critical layer for
u = uc. The yellow dashed lines mark the position for inflectional points with respect to spanwise and vertical
directions.

4.3. Secondary instabilities of streaky structures
Although the inception of streaks is regarded as the harbinger of the bypass transition,
the transition to turbulent flow is finalised by the formation of turbulent spots. The
onset of secondary instabilities of streaky structures and their breakdown have been an
extensively investigated topic of turbulent transition, especially for steady boundary layers
(e.g. Andersson et al. 2001; Asai et al. 2002; Brandt et al. 2004). A list of experimental and
numerical studies on oscillatory boundary layers, including Sarpkaya (1993), Carstensen
et al. (2010) and Mazzuoli et al. (2011), also suggested the onset of turbulent spots. The
twisting and turning motions of the streaks before their eventual breakdown signify the
onset of secondary instabilities for the originally streamwise-constant flow structure. The
classification of secondary instabilities of streaks into varicose (V) mode and sinuous (S)
modes has already been well accepted (Saric 1994; Andersson et al. 2001; Vaughan &
Zaki 2011; Hack & Zaki 2014). The former is in the form of a symmetric perturbation with
respect to the centreline of the low-speed streak while the latter features an anti-symmetric
pattern. The varicose mode is attributed to the inner instability of the normal-to-wall
shear layer, which resembles that of T–S waves but displays a spanwise modulation. As
indicated by the example shown in figure 16(a), it usually occurs when the spanwise
wavelength of the streak is longer than the boundary-layer thickness. The vertical shear
is still significantly stronger than the horizontal shear such that the position of inflectional
points is aligned with the upper critical layer of u = uc. In contrast, the sinuous mode is
ascribed to outer instability and is similar to the wake-type instability that leads to vortex
shedding after a bluff body. Because of the relatively high streak amplitude, the thickness
of the boundary layer is comparable to the width of streaks and the spanwise shear
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prevails over the vertical shear above the viscous sub-layer, as displayed in figure 16(b). In
addition, the critical layer is more consistent with the curves of inflectional points for the
spanwise shear rather than the vertical shear. This provides an intuitive understanding on
the appearance of different kinds of secondary instabilities.

As the transition scenarios depend on the streak amplitude, Önder & Liu (2020)
investigated the threshold of Au for secondary instabilities in a solitary boundary layer.
They concluded that the streaks become highly unstable to sinuous instability for Au
reaching 15 % of the free-stream velocity at the respective phase. Otherwise, the streaks
remain stable until the varicose instability develops after the APG phase. A series of
tests are carried out to classify the secondary instabilities of streaks in response to
different forcing excitation Af and amplitude of initial optimal perturbation E0. These
so-called quasi-DNS tests only employ a single harmonic Fourier expansion in the
x-direction for numerical efficiency. The V and S modes are identified by the symmetric
or anti-symmetric pattern of u1

Re, where the combination of the subscript and superscript
denotes the real component of the first Fourier mode.

The regime map shown in figure 17 indicates that the parameter space of the V
mode is approximately bounded in a rectangular region. Two almost invariant threshold
values Af ≈ 3.2 × 10−5 and E0 ≈ 6.3 × 10−7 correspond to two limit conditions of low
initial perturbation or low forcing excitation, respectively. The curve for streak amplitude
Au = 0.1 determined from the results of figure 15(a) is also plotted in comparison with
the regime boundary. We note that this value is much lower than the counterpart critical
Au ≈ 0.26 required for the Blasius boundary layer (Andersson et al. 2001; Brandt &
Henningson 2002), which is possibly due to the smaller free-stream velocity in the FPG
phase of oscillatory flow. The enclosed region by this curve of Au = 0.1 is approximately
a trapezoid partly overlapping with the regime of the V mode. However, the regime
boundary is above the curve of Au = 0.1 at the low E0 limit while the latter is located
rightward beyond the regime boundary at the low Af limit. By referring to figure 15(b), it
could be deduced that, if relatively large optimal perturbation already exists at t0 = 0, the
threshold of Au for the S mode is reached at an earlier phase than those of the cases with
lower E0. Therefore, the decrease of E0 renders an increasing time interval required for the
growth of Au while the critical value of Au simultaneously increases in the acceleration
phase. In conclusion, the appearance of secondary instabilities is dependent not only on the
final streak amplitude itself but also on the initial amplitude of streaks and the continuous
environmental disturbances in the transitional process.

4.4. The streak breakdown into turbulence
So far we have not considered the nonlinear effect of secondary instabilities and their
interaction with the base streaky flow structures. In the following, the nonlinear evolution
of streaks and secondary instabilities will be demonstrated by three typical DNS results.
The streak amplitude is controlled by Af with E0 invariably equivalent to 10−10 and a
random environmental noise is introduced by a tertiary forcing term Aε . Figure 18(a)
compares the evolution of secondary instabilities among these cases by the trajectory of
E1

Re, namely the norm of the real velocity components in the first harmonic mode. The
energy of the pure streaky fields Es, which is obtained by subtracting the 1-D mean flow
from the zero Fourier mode, has also been simultaneously recorded and plotted in the
same figure to facilitate the discussion. For test 1, the intermediate excitation forcing with
Af = 10−6 only gives rise to a mild streak amplitude Au ≈ 0.07, which is far below the
threshold for the S mode. Meanwhile, the secondary instability triggered by the random
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Figure 17. Classification of secondary instabilities of streaks into varicose (V) and sinuous (S) modes in the
parameter space of Af − E0. The flows in the critical points display ambiguous features between symmetric
and anti-symmetric patterns due to mode competition. The dashed line denotes the streak amplitude Au = 0.1,
which is extracted by interpolating the results of figure 15(a).
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Figure 18. The comparison of nonlinear evolution of streaks and secondary instability in response to different
amplitudes of forcing excitation and random environmental noise (Af , Aε) = (10−6, 10−17), (10−4, 10−17) and
(10−6, 10−10) for tests 1–3. (a) The instantaneous energy of streamwise-constant perturbation Es and the real
component of the first harmonic mode E1

Re. (b) The instantaneous wave speed of the secondary instability uc
in comparison with |U0( yI)|, namely the absolute value of the velocity of the inflection point. The wave speed
is converted from the instantaneous dominant frequency via the wavelet analyses of E1

Re.

disturbance of Aε = 10−17 still falls in the linear stage despite the abrupt amplification just
prior to the flow reversal. Due to the same nature of the vertical inflectional instability, the
evolution of the varicose mode in an oscillatory boundary layer is similar to that of the
T–S-like wave in many aspects, including the most receptive phase and the propagation
speed uc (figure 18b). The wave speed uc is extracted from E1

Re via the wavelet analysis
which is introduced in § 3.1. In addition, the inclination pattern at each x − y cross-section
of the disturbance field also resembles what has been observed in figure 4. The patterns of
the varicose mode shown in figures 19(a) and 20(a) share much similarity with the results
of Floquet analysis on moderate-amplitude base streaks in a solitary boundary layer, as
presented in Önder & Liu (2020).

As various studies have pointed out that the sinuous mode is the most dangerous
disturbance for base streaks in the bypass transition of a steady boundary layer (Andersson,
Berggren & Henningson 1999; Asai et al. 2002; Brandt et al. 2004), our results further
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xyz

(a) (b) (c)

Figure 19. Three-dimensional visualisations to demonstrate three types of secondary instabilities of a
finite-amplitude streak in an oscillatory boundary layer: (a) varicose mode (small Aε); (b) sinuous mode;
(c) varicose mode (large Aε). Iso-surfaces of vertical vorticity ωy, in which red/blue colour denotes
positive/negative value, respectively, are superposed on the iso-surfaces of the streamwise velocity of the
overall secondary perturbation field u − us, whose positive/negative values are denoted by grey/black colour,
respectively. These results correspond to the last instant of 2-D visualisations for each test shown in figure 20.
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Figure 20. Visualisations of nonlinear evolution of streaks and secondary instability, where (a–c) correspond
to tests 1–3 presented in figure 18, respectively. Filled contours show the streamwise-constant component of
streamwise velocity, us, while contour lines indicate the secondary instability by u1

Re. The peak values for the
presented iso-lines are: (a) u1

Re = ±1.2 × 10−6, ±8.0 × 10−6, ±1.0 × 10−5; (b) ±5.0 × 10−6, ±5.0 × 10−4,
±4.5 × 10−2; (c) ±9.0 × 10−3, ±3.0 × 10−2, ±1.0 × 10−1.
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confirm that this conclusion is also valid for an oscillatory boundary layer. Within a
very short interval about 
t/T = 0.15 after the beginning of the APG phase, E1

Re as an
indicator of the secondary instability bursts from the order of 10−17 to 10−4 if the streak
amplitude reaches the threshold for the S mode by increasing Af to 10−4 (figure 18a). The
amplification of the anti-symmetric disturbance, after reaching a comparable amplitude of
Es, leads to meandering deformation of the streak, as shown in figure 19(b), and hence
it is called the sinuous mode. Unlike the strict alignment between uc and |U( yI)| for the
V mode, the wave speed of the S mode quasi-periodically fluctuates around the velocity
of the inflection point before breakdown, after which a large deviation between them is
found. By comparing figure 20(b) with 16(b), it is inferred that the curve where the S
mode instabilities are concentrated is simultaneously affected by the spanwise and vertical
inflectional points.

The results of test 3 in this section indicate that the transition to turbulence also
follows the pathway of the V mode instability as long as the amplitude of the secondary
instability induced by environmental noise is sufficiently large to activate its nonlinear
interaction with the base streak. This scenario, resulting from the strongly nonlinear
interaction of streaks and T–S wave-like instabilities, actually resembles the K-type
transition discussed in § 3.3, which originated from inflectional point instability with
considerable 3-D perturbation. In the context of VWI, quite a few studies specialised in
the interaction between T–S-like waves and streaks (Hall & Smith 1991; Hall & Sherwin
2010; Deguchi, Hall & Walton 2013), which emphasised its importance in generating
self-sustained coherent structures. In the context of the secondary instability of streaks,
Asai et al. (2002) demonstrated that the transition led by the V mode features the
appearance of hairpin vortices. Although such instability still possesses a symmetric
pattern, the low-speed streak itself splits into two branches with respect to its central
line. For each branch, a meandering variation along the streamwise direction is similar
to that of the S mode (figure 19c). The splitting phenomenon indicated in the last instant
in figure 20(c) along with its streamwise variation feature are similar to the velocity fields
presented in figure 19 of Asai et al. (2002). Furthermore, the transitional phenomena and
statistical characteristics at the later stage do not show much difference regardless of the
amplification of the S or V mode. In conclusion, both S and V modes result in streak
breakdown but the specific transition pathways are dependent on the streak amplitude and
background disturbance level.

5. DNS for random wall roughness

5.1. DNS model
In the previous sections, the linear and nonlinear non-modal growths of vortex tubes
and streaks were investigated in order to reveal the particular mechanisms responsible
for the orderly and bypass transitions of an oscillatory boundary layer, where the initial
perturbation and environmental excitation were artificially controlled to modulate the
amplitude of primary instabilities and to trigger the corresponding secondary instabilities
on purpose. The DNS tests are carried out in this section to investigate the transitional wave
boundary layer induced by random wall roughness that is close to the natural condition on
the seabed.

The main numerical set-ups in this section are finalised by referring to the combination
of parameters in tables 1 and 2. A numerical configuration similar to that of Önder & Liu
(2021) is adopted to take the advantage of the high efficiency of the quasi-3-D approach
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Tests h Reδ (ys1, ys2) (N1
p , N2

p , N3
p ) Nz δt/T Mapping

1 0.01 775 (0.2,8) (7,7,5) 64/128/192 2.5 × 10−6 Explicit
2 0.05 775 (0.2,8) (7,7,5) 128/192 2.5 × 10−6 Implicit
3 0.1 775 (0.2,8) (7,7,5) 128/192 1.25 × 10−6 Implicit

Table 2. The detailed numerical parameters for DNS tests in § 5. All cases employ the same topology to
describe the wall roughness despite the different characteristic amplitudes, h. Here, N1

p , N2
p and N3

p denote the
different interpolation orders of the Legendre basis for the p-type refinement for three sub-domains, which are
divided by the vertical coordinate at ys1 = 0.2 and ys2 = 2. The explicit or implicit mapping denotes the option
of treatment regarding to the spurious pressure term induced by coordinate transformation.
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Figure 21. The randomly generated bottom wall employed in § 5. (a) Contour of the roughness elevation η/h,
where the peak and trough are marked by the green and orange cross, respectively. The spanwise cross-sections
for the (b) peak and (c) trough.

(Xu et al. 2017). The 3-D wall roughness of the physical domain is implemented on the
smooth computational domain by coordinate transformation with an explicit or implicit
treatment of the induced pressure term, depending on the trade-off of numerical cost and
stability. The elevation of wall topography is characterised by the summation of a series
of 2-D Fourier modes

η(x, z) = ε

N∑
n=0

M∑
m=−M

Anm cos
(

2πnx
Lx

+ 2πmz
Lz

+ φnm

)
,

ε

√√√√( N∑
n=0

M∑
m=−M

A2
nm

)
= h,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.1)

where Anm > 0 and φnm are generated randomly in the range of [0, 1] and [0, 2π],
respectively, except that A00 = 0 is enforced to avoid pure translation. The factor ε scales
the ensemble of Fourier mode amplitudes to the total magnitude h as required. The results
exhibit more realistic responses to broadband perturbations because the only external
disturbance is introduced by the wall roughness on the bottom with topology defined in
(5.1). The wall topology shown in figure 21(a) is generated by (5.1) with M = N = 32. The
spectrum bandwidths of the streamwise and spanwise wavenumbers are 0.21 ≤ α ≤ 6.70
and 0.31 ≤ β ≤ 10.05, respectively, both of which cover the range spanned by the most
receptive disturbance. Therefore, roughness spectra with the cutoff mode at M = N = 32
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Figure 22. Comparison of instantaneous kinetic energy based on the DNS results: (a) h = 0.01; (b) h = 0.05;
(c) h = 0.10. The solid, dot-dashed and dashed lines denote the overall perturbation ũ, the streamwise-constant
perturbation ¯̃u|x and the spanwise-constant perturbation ¯̃u|z, respectively. The shaded area in each panel marks
the crucial temporal range for transitional behaviours.

are sufficient to trigger the most dangerous perturbations. The dimensionless elevations of
the peak and trough of the wall roughness are η/h = 3.7 (figure 21b) and −3.5 (figure 21c).
The wall topology remains unchanged for cases in this section while the total magnitude of
wall elevation h is the only altered variable. Except for test 1 with the smallest roughness
amplitude, the pressure term due to coordinate transformation is solved implicitly to
increase the numerical stability. A sensitivity analysis presented in Appendix C indicated
that the selected parameters of the numerical model are sufficient to obtain converged
results.

5.2. Results and discussion
Firstly, the instantaneous perturbation energy for h = 0.01, 0.05 and 0.10 is plotted
in figure 22 to provide an overview of instability growth. Except for the amplitude
of overall perturbation, the summation of spanwise-constant (m /= 0, n = 0) and
streamwise-constant (m = 0, n /= 0) components are evaluated as follows:

E( ¯̃u|z) =
∑

m /= 0,n=0

‖ûmn‖, E( ¯̃u|x) =
∑

m=0,n /= 0

‖ûmn‖, (5.2)

where the overline denotes the averaging operation and the subscript denotes the direction
for averaging. We employ the values of E( ¯̃u|z) and E( ¯̃u|x) to quantitatively differentiate
the evolution of the spanwise and streaky coherent structures, respectively. The complex
Fourier modes ûmn are obtained by 2-D Fourier transformation with respect to the z- and
x-directions and the order of Fourier mode m or n is converted to streamwise and spanwise
wavenumbers as α = 2πm/Lz and β = 2πn/Lx.

For h = 0.01, the amplitude of the streamwise-constant component E( ¯̃u|x) remains
quite low during the first half-period, implying the insignificance of streak amplification
at this stage. Meanwhile, the growth of E( ¯̃u|z) has been activated just prior to flow
reversal, but the overall perturbations are still dominated by the oblique terms of
‖ûmn‖ (m, n /= 0). In the subsequent FPG phase, the amplitude of streamwise-constant
components catches up with and surpasses that of spanwise-constant components and
finally takes over the overall perturbation after t/T ≈ 0.75. The transitional scenarios
are deduced from the above quantitative analysis in combination with the flow
visualisations in figure 23(a) with corresponding movie 1. Two associated transition
pathways corresponding to secondary instabilities of the vortex tube are simultaneously
observed in the first two instants. They are respectively analogous to K-type transition
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in a steady boundary layer and Crow/elliptical instability of a counter-rotating vortex
pair in free shear flow. More specifically, figure 24(a) displays that one of vortex
tubes has already evolved into a Λ-vortex while the other one is more straight at
t/T = 0.609, which gives rise to the formation of the spanwise waviness or rib
vortex out from the vortex tube subsequently. The co-existence of both coherent
structures implies the case of h = 0.01 is on a critical point, below which the initial
disturbance amplification mechanism is governed by 2-D perturbations. At the third
instant t/T = 0.938 of figure 23(a), the pronounced streamwise vortices and their
sinuous deformation signify the onset of the bypass transition, which is induced
by the favourable 3-D perturbation inherited from the aforementioned transitional
process.

The increase of wall-roughness amplitude from h = 0.01 to 0.05 leads to a significant
intensification of streaky structures during the first transitional process. Hence, the
majority of the overall perturbation energy is constituted of E( ¯̃u|x) just prior to flow
reversal (figure 22b). In § 4.2, we have demonstrated that the symmetric perturbation of
streak (V mode) is the most receptive during t/T ∈ (0.4, 0.6) due to the coupling effect of
the inflectional point instability and the Orr mechanism similar to those of T–S-like waves.
This explanation is believed to be still valid here to account for the abrupt increase of
E( ¯̃u|z) around t/T ≈ 0.5 in figure 22(b). In addition, the transitional patterns for h = 0.05
share resemblance to those of test 3 in § 4.2. Actually, the symmetric streak breakdown due
to the V mode secondary instability does not differ substantially from K-type transition,
especially at the late stage. They are both finalised by twisting off and loss of coherency
of the hairpin vortex, as shown in figure 23(b) with supplementary movie 2 available at
https://doi.org/10.1017/jfm.2022.446.

With a wall-roughness amplitude on the bottom as large as h = 0.10, the streak
amplitude soon directly reaches the threshold for the onset of anti-symmetric instability
in the first half-period according to figure 23(c) and supplementary movie 3. As a result,
the growth of the spanwise-constant perturbation has little influence on the transitional
behaviours, which is hinted at by the wide gap in the magnitude of the perturbation energy
between overall perturbations and E( ¯̃u|z) according to figure 22(c). The sinuous mode
develops at a tremendously fast speed, which is marked by the short time interval from the
bifurcation point of E(ũ) and E( ¯̃u|x) at t/T = 0.41 to the peak point of E(ũ) at t/T = 0.48.
From the point of view of the flow visualisations in figure 24(b), the streaks remain
rather constant along the streamwise direction at t/T = 0.430, but the mild meandering
structures signify the inception of the V mode instability. It is subsequently followed by
the breakdown of streaks into short segments with intensive transverse swirling motion of
the scattering vortex structures at t/T = 0.469 of figure 23(c).

The connection between the transitional characteristics and the WSS is illustrated in
figure 25, where the average value τ̄x and the standard variance σ of instantaneous
normalised WSS over the bottom plane are plotted. For h = 0.01, the average τ̄x is highly
consistent with theoretical solution regardless of the appearance of hairpin vortices, vortex
tubes and streaks, but these coherent structures contribute to the gentle growth of the
divergent extent of the WSS represented by σ . For the same reason, the streak amplification
is associated with the obvious increase of σ during the FPG phase for h = 0.05 and 0.1,
but the actual deviation of τ̄x from the theoretical prediction resulted from the complete
development of the turbulent state in the second burst of turbulence at the beginning of the
APG phase t/T ≈ 0.75.
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Figure 23. Visualisations of DNS results for random wall roughness of different amplitudes: (a) h = 0.01;
(b) h = 0.05; (c) h = 0.10. The contours show the distribution of instantaneous streamwise velocity u at
y = 1. The values of Q-criterion employed to plot iso-surfaces of coherent structures for each panel are:
(a) 6.6 × 10−4, 3.3 × 10−4, 3.3 × 10−4; (b) 3.3 × 10−3, 4.0 × 10−3, 3.3 × 10−3; (c) 6.6 × 10−4, 4.0 × 10−3,
1.3 × 10−2. It is noted that the original flow field is presented with spanwise and streamwise replication for the
complete presentation of the coherent structures. Supplementary movies 1–3 are provided for reference.
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Figure 24. The instantaneous flow visualisations in the x–z plane at the slice y = 1: (a) ωz-contour at
t/T = 0.609 for the case of h = 0.01; (b) u-contour at t/T = 0.430 for the case of h = 0.10.
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Figure 25. Instantaneous normalised WSS τx for three full DNS cases with h = 0.01, 0.05 and 0.10, where
the solid lines denote the averaged value over the x − z plane and the vertical bars corresponding to each line
represent the standard variance σ of τx over the plane. The theoretical solution τx = cos(2πt/T) + sin(2πt/T)

is determined by the derivative of U0( y, t) with respect to y.

In figure 26, where the spectral components of each Fourier mode’s energy Emn are
shown at fixed time instant t/T = 0.5 for three DNS results, different transitional features
with respect to different disturbance levels are further demonstrated. At this moment, the
first transition is still at the early stage for the case of h = 0.01 because the peak modes
of Emn correspond to vortex tubes and their spanwise modulation. However, this moment
for h = 0.05 is in the middle of the first transition. The peak streamwise-constant mode
E02 and the peak spanwise-constant mode E20 share approximately the same amplitude,
although the oblique term E21 still takes the largest energy. In contrast, the first transition
for h = 0.10 has finished prior to t/T = 0.5 and the breakdown of the coherent vortex
structure has caused the wider distribution of energy in the spectra.

Finally, the roles of the lift-up effect and the Orr mechanism in transferring energy
from the mean flow to feed the growth of coherent structures, namely the streak and vortex
tube, are discussed by calculating the integral production of perturbation energy of all
streamwise-constant components (

∑
m=0,n /= 0 Pmn) and all spanwise-constant components

(
∑

m /= 0,n=0 Pmn) for the same DNS results. Because of the orthogonal nature of the
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Figure 26. Energy spectra of each Fourier mode Emn = ‖ûmn‖ at fixed time instant t/T = 0.5 for (a) h = 0.01,
(b) h = 0.05, (c) h = 0.10, where m and n stand for the order of the Fourier mode in the streamwise and
spanwise directions.
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Figure 27. Time series of integral production of perturbation energy of (a) streamwise-constant components
(m = 0, n /= 0) and (b) spanwise-constant components (m /= 0, n = 0) for three DNS results of h = 0.01, 0.05
and 0.1.

Fourier basis, the production term is evaluated individually for each Fourier mode

Pmn = −
∫ Ly

ηmax

ûmnv̂mnU′ dy, (5.3)

where the mean flow U = û00 is extracted from the zero Fourier mode and the lower
limit for integration ηmax = 3.3h denotes the highest impediment on the bottom. This
quantification is applicable to approximately account for the transient growth of two
coherent structures in the transitional stage, which is one of the most concerning problems
for the present study. Figure 27(a) indicates that the energy production of streaks generally
increases during the FPG phase and decreases during the APG phase. The peak energy
production for h = 0.10 at t/T = 0.25 is approximately 102 times of that for h = 0.05
and 106 times of that for h = 0.01, which suggests that the lift-up effect with respect to
streak amplification is very sensitive to wall-roughness amplitude. In addition, the highest
amplitude of energy production induced by the lift-up effect reaches O(1), which is much
larger than that induced by the Orr mechanism. On the other hand, the second peaks for
streak of h = 0.05 and 0.1 coincide at t/T = 0.75 due to saturation and anti-symmetric
streak breakdown. As for energy production for spanwise-constant perturbations, the peak
for h = 0.01 is reached at approximately t/T = 5/8 where secondary instabilities of the
vortex tube have not played the dominant role in flow behaviours. It is concluded that the
energy production by the Orr mechanism is not as sensitive to wall-roughness amplitude in
comparison with the lift-up effect, as the peaks are of the same order of magnitude for the
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three cases. We also note that the peak for h = 0.05 is even higher and sharper than that for
h = 0.10 because the evolution of vortex tubes has been suppressed by the high-amplitude
streaks, while the high-frequency oscillations after the initial peak are induced by the
fragments of coherent structure after the burst of turbulence.

6. Conclusions

In this study, we investigated the non-modal growth of instabilities in an oscillatory
boundary layer under different types of finite-amplitude disturbances by means of linear
and nonlinear stability analyses as well as direct numerical simulations. The approach of
linear non-modal growth analysis is adopted to determine the optimal initial perturbation
and optimal forcing excitation to maximise the energy amplification of perturbations.
In addition, a nonlinear optimisation approach is also developed to search for the most
unstable 2-D base flows under definite initial disturbances. Furthermore, the emergence
of secondary instabilities for such base flows is investigated by linear non-modal growth
analysis again. A series of direct numerical simulations with artificially controlled the
initial disturbance and/or environmental excitation was conducted to validate and extend
the conclusions drawn from stability analyses. Finally, the transition of an oscillatory
boundary layer over a randomly rough wall was modelled by three DNS tests with different
roughness amplitudes, which represent a number of comprehensive transitional scenarios
and the selective responses to broadband perturbations under different disturbance levels.
A schematic diagram of transition pathways is plotted in figure 28 for a clear illustration
of the main conclusions obtained from the paper:

(i) The sub-critical nature of the transition of an oscillatory boundary layer leads to a
high dependency of transitional characteristics on the disturbance level. An optimal
initial disturbance imposed at the favourable phase just prior to flow reversal may
experience a substantial transient growth under the combined effect of the Orr
mechanism and inflectional point instability, but these T–S wave-like instabilities
vanish asymptotically rather than stepping into the nonlinear stage without sufficient
initial amplitude.

(ii) With a moderately increasing 2-D disturbance level under a rather low 3-D
disturbance level, the spanwise-constant coherent structure consisting of a pair of
counter-rotating vortices, namely a vortex tube, becomes stronger and inclined to
roll up with self-induced velocity after the nonlinear evolution of T–S wave-like
instabilities. Although the passage of vortex tubes is able to leave observable
fluctuations of WSS, it is unable to initiate the further transition to turbulence.

(iii) If 3-D disturbance is offered with a moderate level comparable to the 2-D
disturbance, the secondary instability of the vortex tube results in the corresponding
spanwise modulation. The wavy deformation of vortex tubes leading to the evolution
into a Λ-vortex may mark the early stage of K-type transition, but is also insufficient
to cause the burst of turbulence.

(iv) The streamwise-constant coherent streaky structures, namely the alternate low- and
high-speed perturbations along with counter-rotating vortex pairs in the streamwise
direction, are amplified by the lift-up effect in response to the favourable 3-D
disturbance. The streaks themselves are stable if the amplitude of 3-D disturbance,
which is either in form of an initial condition or continuously forced excitation, is
below a certain threshold level.
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Figure 28. Schematic diagram of transition pathways of the oscillatory boundary layer in response to
non-modal growth of instabilities under different levels of 2-D and 3-D disturbance.

(v) The turbulent transition scenario under the combined condition of a strong 2-D
disturbance and a much weaker 3-D disturbance resembles the prototype of the wave
boundary layer over a sand ripple on the seabed. The vortex tube is ejected into the
free stream and is then wrapped by rib vortices evolved from Crow and elliptical
instabilities. Although the following event of the vortex tube breakdown occurs away
from the wall, the fragments of vortex disturbance may inspire the subsequent bypass
transition of the boundary layer.

(vi) K-type transition and symmetric streak breakdown are two pathways for turbulent
transition that take place on the premise of the co-existence of strong 2-D and 3-D
disturbances that are of a comparable level. For K-type transition, the vortex tube
develops as the primary instability and deforms into a hairpin vortex in the near-wall
region due to strong secondary instability. For the latter route, the evolution of
streaks initially plays a dominant role but the intensive varicose mode also leads
to the appearance of hairpin vortices. Therefore, the two pathways differ in the types
of primary instabilities but share a similar stage for the final burst of turbulence.

(vii) The anti-symmetric streak breakdown due to the sinuous secondary instability
might be the most robust route for turbulent transition. It generally dominates the
self-sustaining process regardless of the initial transitional behaviours once the
turbulent state has first been established. Under sufficiently strong 3-D disturbance,
the streak amplitude reaches the threshold value for wake-type instability in the
FPG phase, which enables the rapidly growing sinuous deformation and the final
breakdown during the APG phase. Meanwhile, the energy production of the
spanwise coherent structure is suppressed by the high-amplitude streak so that the
vortex tube is no longer observed in the region once covered by streaks.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.446.
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Appendix A. Derivation of the non-modal stability equations

Following Önder & Liu (2020), the general derivation steps of non-modal stability
analysis based on the Orr–Sommerfeld and Squire equation are reproduced first. The
LNS equations of the perturbation field ũ = (ũ, ṽ, w̃) subject to the force perturbation
f = ( fu, fv, fw) are as follows:

2
Reδ

∂u
∂t

+ U
∂u
∂x

+ vU′ = −∂p
∂x

+ 1
Reδ

∇2u + fu, (A1)

2
Reδ

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
+ 1

Reδ

∇2v + fv, (A2)

2
Reδ

∂w
∂t

+ U
∂w
∂x

= −∂p
∂z

+ 1
Reδ

∇2w + fw, (A3)

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (A4)

By substituting (2.1)–(2.2) into (A1)–(A4), we derive

2
Reδ

∂ û
∂t

+ iαUû + v̂U′ = −iαp̂ + 1
Reδ

(
∂2

∂y2 − k2
)

û + f̂u eiΩf t, (A5)

2
Reδ

∂v̂

∂t
+ iαUv̂ = −∂ p̂

∂y
+ 1

Reδ

(
∂2

∂y2 − k2
)

v̂ + f̂v eiΩf t, (A6)

2
Reδ

∂ŵ
∂t

+ iαUŵ = −iβp̂ + 1
Reδ

(
∂2

∂y2 − k2
)

ŵ + f̂w eiΩf t, (A7)

iαû + ∂v̂

∂y
+ iβŵ = 0, (A8)

where the total wavenumber is defined by k =
√

α2 + β2.
Next, the pressure is eliminated by variable conversion. By subtracting (A6)×iα from

(A5)×iβ, an expression for the forced Squire equation, only containing the vertical
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vorticity ω̂y = iβû − iαv̂ and vertical velocity v̂(z, t), is derived(
2

Reδ

∂

∂t
+ iαU − 1

Reδ

Δ̂

)
ω̂y + iβU′v̂ = ĝωy eiΩf t, ĝωy = iβ f̂u − iαf̂w, (A9)

where Δ̂ = ∂2/∂y2 − k2 represents the Laplacian operator. By combining equation (A8)
and the summation of (A5)×iα and (A6)×iβ , the following equation is obtained:

2
Reδ

∂

∂t

(
−∂v̂

∂y

)
+ iαU

(
−∂v̂

∂y

)
+ iαv̂U′ = k2p̂ + 1

Reδ

Δ̂

(
−∂v̂

∂y

)
+ (iαf̂u + iβ f̂w) eiΩf t.

(A10)

The partial differential of the above equation with respect to y plus the (A7)×k2 yields the
forced Orr–Sommerfeld equation[(

2
Reδ

∂

∂t
+ iαU − 1

Reδ

Δ̂

)
Δ̂ − iαU′′

]
v̂ = ĝv eiΩf t,

ĝv = −iα
∂ f̂u
∂y

− iβ
∂ f̂w
∂y

− k2 f̂v.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A11)

The reconstructions of (A9) and (A11) are written in the matrix form of forced OSS
equations (

Δ̂ 0
0 1

)
2

Reδ

d
dt

(
v̂

ω̂y

)

=

⎛⎜⎝−iαUΔ̂ + iαU′′ + 1
Reδ

Δ̂2 0

−iβU′ −iαU + 1
Reδ

Δ̂

⎞⎟⎠( v̂

ω̂y

)

+ exp(iΩf t)

⎛⎝−iα
∂

∂y
−k2 −iβ

∂

∂y
iβ 0 −iα

⎞⎠⎛⎝ f̂u
f̂v
f̂w

⎞⎠ (A12)

whose the discrete version is identical to (2.4) by replacing the continuous variables v̂

and ω̂y with discrete fields v̂ and ω̂y, replacing the differential operators Δ̂ and ∂/∂y with
differential matrices M and D and replacing the constant fields with diagonal matrices.
These matrix differential operators are implemented with convenience by the available
Chebyshev matrix suite provided by Weideman & Reddy (2000), where the Chebyshev
spectral collocation method is employed for spatial discretisation.

In order to find the maximum G subject to the unit kinetic perturbation and the
optimal excitation disturbance, the Lagrangian functional defined in (2.10) is introduced.
According to the first-order optimality conditions, the variation of L(û, û+, û0, û+

0 , f̂ , γ )

with respect to all variables has to be identically zero

∂L
∂û

= ∂L
∂û+ = ∂L

∂û0
= ∂L

∂û+
0

= ∂L
∂f

= ∂L
∂γ

= 0. (A13)

Since the forced OSS (A12) is succinctly noted by L(t)û = B f̂ eiΩf t, the adjoint fields and
OSS equation have to satisfy L(t)+û+ = 0 and the following relationship:

〈û+, Lû〉 = 〈û, L+û+〉. (A14)
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Therefore, the first and second stationary conditions of the Lagrangian functional with
respect to û and û+ are automatically met as

∂L
∂û

= ∂〈û+, Lû − Bf̂ eiΩf t〉
∂û

= ∂〈û+, Lû〉
∂û

= ∂〈û, L+û+〉
∂û

= 0, (A15)

∂L
∂û+ = ∂〈û+, Lû − Bf̂ eiΩf t〉

∂û+ = 0. (A16)

The derivation of the specific expression of the adjoint operator L+(t) involves the
integration by parts of both sides of (A14) by employing the following boundary
conditions:

ω̂y(0, t) = ω̂y(∞, t) = ω̂+(0, t) = ω̂+
y (∞, t) = 0 (A17)

v̂(0, t) = ∂v̂

∂y
(∞, t) = v̂+(0, t) = ∂v̂+

∂y
(∞, t) = 0. (A18)

Since the details of the integration by parts have been well documented in Schmid
& Henningson (2001), the specific operations are skipped here and the final matrix
expression of adjoint OSS equations is(

Δ̂ 0
0 1

)
2

Reδ

d
dt

(
v̂+
ω̂+

y

)

=

⎛⎜⎝−iαUΔ̂ − 2iαU′ ∂

∂y
− 1

Reδ

Δ̂2 −iβU′

0 −iαU − 1
Reδ

Δ̂

⎞⎟⎠( v̂+
ω̂+

y

)
, (A19)

which is equivalent to (2.11) if written in a discrete style. The optimisation problem in the
iterations over forward temporal marching of (A12) and backward temporal marching of
(A19), whose initial conditions are obtained by the third and fourth stationary conditions
indicated in (A13), is

û(t0) = ‖û0‖4

2‖û(tf )‖2
û+(t0), û+(tf ) = 2

‖û0‖2 û(tf ), (A20)

which yields the scaling for each component shown in (2.13).
Finally, the formulation of the optimal forcing f̂ with a given amplitude Af is derived

from the fifth and sixth stationary conditions of the Lagrangian functional L. According to
the zero variation with respect to f̂ , the directional variation for each component (f̂u, f̂v, f̂w)

must homogeneously vanish as (δf̂u, δf̂v, δf̂w) are free variables

∂L
∂ f̂u

δf̂u = ∂L
∂ f̂v

δf̂v = ∂L
∂ f̂w

δf̂w = 0. (A21)

Readers can refer to Önder & Liu (2020) for the specific derivation process that is similar
to that of the present study, except for some different notations, while the final expressions
for the updating of the optimal excitation force are given directly in (2.14)–(2.16). The last
stationary condition ∂L/∂γ = E( f̂ ) − Af = 0 determines the value of γ , which has to
scale the amplitude of forcing to Af . The full iteration algorithm consists of an initial guess
of û0 and f̂ and looping between (A12) and (A19) with an update of the initial condition by
(2.13) and forcing configuration by (2.14)–(2.16) until the desired convergence condition
is reached.
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Cases Re α t0/T tf /T log(G1) log(G2)

1 800 0.7821 0.3315 0.6032 4.7982 4.5334
2 1000 0.7670 0.3223 0.6499 6.5768 6.3453
3 1200 0.7546 0.3150 0.6876 8.4098 8.1973

Table 3. Comparison of the peak energy growth G of 2-D perturbation (β = 0) between the present study (G2)
and Biau (2016) (G1), which employs a different definition of the Reynolds number as Re = U0m

√
T/ν.
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Figure 29. The instantaneous vorticity contours of the optimal disturbance for case 2 in table 3 at (a) t0 and
(b) tf to facilitate the comparison with the identical case shown in figure 4(a,c) of Biau (2016). The convergence
of the spatial resolution is demonstrated by showing the components of optimal forcing excitation (c,d,e) | f̂u|,
| f̂v | and | f̂w| for (α, β, t0/T, tf /T) = (0, 0.5, 0.2, 0.55), which are obtained by using different numbers of
collocation points Ny.

Appendix B. The validation of the stability analysis

The numerical scheme of linear non-modal growth analyses for the theoretical Stokes
flow, as introduced in § 2.1 and detailed in Appendix A, is first validated against Biau
(2016), where the transient growth of a 2-D optimal initial disturbance (α /= 0, β = 0) in an
oscillatory boundary layer has been investigated. As shown in table 3, the relative errors of
the order of peak energy growth between the two approaches are within 6 %, demonstrating
the satisfactory accuracy of the present study. It is noted that their numerical set-ups are
not completely equivalent, which may give rise to the minor difference between the results.
In particular, Biau (2016) solved the linearised and adjoint linearised N-S equations in a
2-D domain while the present results in table 3 were obtained by solving the 1-D OSS and
adjoint OSS equations.

Despite the distinction in numerical set-ups, the visualisations of the optimal
disturbance shown in figure 29(a,b) are in good agreement with figure 4(a,c) of Biau
(2016), demonstrating that the present numerical scheme is capable of searching for
the correct optimal initial disturbance and capturing the physics of transient growth. In
addition, a convergence test on the spatial resolution has also been carried out. The results
shown in figure 29(c,d,e) confirm that the number of collocation points Ny = 61 is already
sufficient to achieve convergent results of streamwise-constant optimal forcing excitation.
To be more conservative, Ny = 101 is actually adopted for all tests calculated in §§ 3.1 and
4.1.

943 A45-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.446


M. Gong and others

t0/T

0.2

0.4

0.6

0.8

1.0

�t/T

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
t0/T

0.2

0.4

0.6

0.8

1.0

–0.5 5.5 –0.5 12.5

log(G) log(G)

(a) (b)

Figure 30. Comparison of the non-modal energy growth in response to optimal initial perturbation for
(α, β) = (0.5, 0) at (a) Reδ = 500 and (b) Reδ = 1000.

The overall study is mainly focused on a single Reynolds number Reδ = 775, which
is of particular interest because of the rich transitional phenomena identified by various
numerical and experimental studies at the same Reynolds number (Jensen et al. 1989;
Vittori & Verzicco 1998; Costamagna et al. 2003; Carstensen et al. 2010; Mazzuoli et al.
2011; Scandura 2013). To check the generalisation of the results obtained at Reδ = 775,
the non-modal stability analyses are further carried out at Reδ = 500 and 1000. According
to the comparison of non-modal energy growth shown in figure 30, the optimal 2-D
perturbation always reaches the peak in the half-cycle after flow reversal and the most
receptive phase with respect to the fastest perturbation growth is still in the range t/T =
0.4–0.5. The vertical inflectional instability and Orr mechanism are applicable to account
for the sub-critical transition of the Stokes boundary layer over a wide range of Reynolds
number.

As introduced in § 2.2, we implemented the optimal growth analyses of 2-D nonlinear
perturbation and 3-D instabilities in the framework of Nektar++. It is an extensively
validated open-source library for DNS and hydrodynamic stability analysis. The 2-D
mesh distribution described in § 2.2 is similar to that of Xiong et al. (2020), whose
mesh independence has been validated. In addition, the convergence of local Lagrangian
interpolation of order NL and the total checkpoint number Ns to reconstruct the unsteady
base flow u2D have been carefully checked. We confirmed that their further refinement
makes a negligible difference in the results.

Appendix C. The validation of the DNS

For the DNS tests in § 5, the coordinate transformation technique is employed to map the
stochastic wall roughness onto the smooth bottom boundary. Since it is an in-built module
named as VCSMapping in Nektar++ and the detailed operations were elaborated in Önder
& Liu (2021), we actually follow their practice to determine the mesh configuration and
set up the numerical parameters as described in § 2.3. The numbers of h-type elements
are 10, 38 and 32 for these sub-domains from the bottom up, where the size of element
increases exponentially with coefficients 1.08, 1.05 and 1.05, while 40 h-elements are
homogeneously distributed in the streamwise direction. The spanwise resolution by the
number of Fourier modes temporally increases from 64 or 128 to 192 to compromise the
accuracy and efficiency, which follows the criterion that the overall 3-D modal energy of
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Figure 31. Comparison of (a) the energy spectra with respect to streamwise wavenumbers for different
interpolation orders Np and (b) the energy spectra with respect to spanwise wavenumbers for different spanwise
Fourier modes, which are obtained by averaging the flow fields from t/T = 1.25 to 1.5.

the last 50 % Fourier modes has to be less than 1 % of the summation of the top half ones
without the mean mode.

The convergence of spatial discretisation is demonstrated through a comparison of the
energy spectra in the x- and z-directions, which are extracted from the average flows of case
1 with different interpolation orders Np and Fourier mode numbers Nz. As demonstrated
by the energy spectra exhibited in figure 31, the statistical convergence of the kinetic
energy within the inertial and large-eddy scales has been reached at Np = 6 and Nz = 64.
Therefore, the physical phenomena are independent of a further increase in Np and Nz.
However, to better resolve the coherent structure, we still choose Np = 7 throughout the
simulation and Nz = 128/192 after the first half-cycle.
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