LINEAR FUNCTIONALS AND SUMMABILITY INVARIANTS

BY

M. S. MACPHAIL AND A. WILANSKY

1. Introduction. The purpose of this paper is to continue the study of certain "distinguished" subsets of the convergence domain of a matrix, as developed by A. Wilansky [6] and G. Bennett [1]. We also consider continuous linear functionals on the domain, and the extent to which their representation is unique; this turns out to be connected with the behaviour of the subsets.

As in [7], we use s, m, c, c_0, E^{∞} , respectively, for the set of all sequences, bounded sequences, convergent sequences, null sequences, and sequences with almost all terms zero. If A is a matrix (a_{nk}) and x a sequence $\langle x_k \rangle$, we put $(Ax)_n = \sum_k a_{nk} x_k$, $Ax = \langle (Ax)_n \rangle$, $d_A = \{x: (Ax)_n \text{ exists for } n=1, 2, \ldots\}$, $c_A = \{x: Ax \in c\}$, and $c_A^0 = \{x: Ax \in c_0\}$. We assume A conservative, that is, $c = c_A$. We use the *FK* topology on c_A , as described in [7]. We put 1 for $\langle 1, 1, \ldots \rangle$, δ^k for $\langle 0, 0, \ldots, 0, 1, 0, \ldots \rangle$ (1 in the k-th place), and Δ for the set $\{\delta^k\}$. For any letter, say y, denoting a sequence, we use y_1, y_2, \ldots for the terms of y.

The primary subsets are

$$S = \{x \in c_A : \sum x_k \delta^k = x\},\$$

$$W = \{x \in c_A : \sum x_k f(\delta^k) = f(x) \text{ for all } f \in c'_A\},\$$

$$F = \{x \in c_A : \sum x_k f(\delta^k) \text{ converges for all } f \in c'_A\},\$$

$$B = \{x \in c_A : \sum_{1}^{p} x_k \delta^k \text{ is bounded in } c_A\}.\$$

We can write equivalently ([6], [3])

$$B = \left\{ x \in c_A : \text{there exists } M = M(x) \text{ such that} \\ \left| \sum_{k=1}^p a_{nk} x_k \right| < M \text{ for all } p, n = 1, 2, \dots \right\}$$

or again

$$B = \left\{ x \in c_{\mathcal{A}} \colon \sum_{k} \sum_{n} t_{n} a_{nk} x_{k} \text{ exists for all } t \in l \right\},\$$

where $t \in l$ means as usual $\sum |t_n| < \infty$. It is also known ([6], p. 331) that

(1)
$$\sum_{k}\sum_{n}t_{n}a_{nk}x_{k}=\sum_{n}\sum_{k}t_{n}a_{nk}x_{k}$$

for all $x \in B$, $t \in l$.

233

When dependence on a matrix is in question, we write S_A , and so forth. With a_k denoting the k-th column limit of A, we define

$$I = \{x \in c_A : \sum a_k x_k \text{ converges} \}.$$

On *I* we define $\Lambda(x) = \lim_{A} x - \sum a_k x_k = \lim(Ax)_n - \sum a_k x_k$; we then define $\Lambda^{\perp} = \{x : \Lambda(x) = 0\}$. We have the relations

$$S \subset W \subset F \subset B,$$

but I, Λ^{\perp} and also $m \cap c_A$ cut across S, W, F, B in an apparently capricious way, as the matrix A varies. Examples are given in [1] and [6].

The general form of a continuous linear functional f on c_A is [7, page 230]

(2)
$$f(x) = \alpha \lim_{A} x + t(Ax) + \beta x$$

where $t \in l$, and by a product of two sequences such as βx we understand $\sum \beta_k x_k$. The sequence β is such that βx converges for all $x \in d_A$. Sometimes we shall let β be such that βx converges for all $x \in c_A$; this also defines a continuous linear functional on c_A . We shall call β restricted or unrestricted in the two cases, respectively.

The representation (2) is far from unique, as α , t, β are interrelated; for example, we could change any one term t_k and adjust β accordingly. If A is row-finite we have $d_A = s$, and so $\beta \in E^{\infty}$ (restricted), while if A is a triangle (i.e. $a_{nk} = 0$ for k > n, but $a_{nn} \neq 0$ for all n) there is a representation with $\beta = 0$, though other representations are also possible.

In this connection the most interesting question is whether α is *unique*, that is, uniquely determined by f for each $f \in c'_A$. This was briefly considered in [6]. We define $\chi = \lim_n \sum_k a_{nk} - \sum a_k$, and call A coregular if $\chi \neq 0$, conull if $\chi = 0$. It is known [6, page 329] that α is unique if A is coregular. If A is conull, α may or may not be unique, and our first objective is to give certain classes of conull matrices for which α is unique. We also consider α for other matrices D with $c_D = c_A$. When necessary we write $\alpha(f)$ for α .

We then present some new results, mostly connected with invariance and replaceability ([4], [6]) for I, Λ^{\perp} , and for the set P defined in section 4.

2. The coefficient α . To clarify the ideas, we start with some examples.

with $\sum |c_k| < \infty$. Then $\lim_A x=0$ for every $x \in c_A$, and so for any given $f \in c'_A$, α may have any value.

https://doi.org/10.4153/CMB-1974-046-2 Published online by Cambridge University Press

Example 2. Let $A = c_1 \quad 0 \quad 0 \quad 0 \quad \cdots$ $c_1 \quad c_2 \quad 0 \quad 0 \quad \cdots$ $c_1 \quad c_2 \quad c_3 \quad 0 \quad \cdots$

with $\sum |c_k| < \infty$, $c_k \neq 0$ for all *n*. Then $\lim_{\mathcal{A}} x = \sum c_k x_k$, so with β unrestricted we may take $\alpha(\lim_{\mathcal{A}})$ to be 1 or 0, or indeed any value, by adjusting β . Any function $f \in c'_{\mathcal{A}}$ has a representation

$$f(x) = \alpha \lim_A x + t(Ax),$$

and if we insist on this form, α is unique. See, moreover, Theorem 2.1 below.

Here the equation $\lim_{A} x=t(Ax)+\beta x$ cannot hold for any choice of t and β , restricted or not, for if it did we would find by considering $x=\delta^1, \delta^2, \ldots$ and $\langle (-1)^{k+1} \rangle$ that $t_n \rightarrow -2$, which contradicts $t \in l$. So in this case α is unique, with β unrestricted.

We recall that a matrix A is said to be *reversible* if the equation y=Ax has a unique solution x for each $y \in c$. It is well known [6, page 229, Theorem 4] that in this case each mapping $y \mapsto x_k$ is continuous, so we may write

$$x_k = v_k \lim y + \sum_n c_{kn} y_n$$

or

$$(3) x = v \lim y + Cy$$

with $\langle c_{k1}, c_{k2}, \ldots \rangle \in l$.

THEOREM 2.1. Let A be row-finite and reversible. Then with β restricted, α is unique.

Proof. Suppose α is not unique. Then for some t, β we have

or

$$\lim_{A} x = t(Ax) + \beta x$$

$$\lim y = ty + \beta x,$$

with $t \in l$, $\beta \in E^{\infty}$. Now with A row-finite we have v=0 in (3) [5, Lemma 4], and each member of the finite set $\{\beta_k x_k\}$ can be expressed in terms of y and combined with ty; thus

 $\lim y = \tau y$

for each $y \in c$, which is impossible.

[June

The row-finiteness condition cannot be dropped; for example, the transformation defined by

$$y_{2r} = \sum_{p=1}^{r} 2^{-2p} x_{2p},$$

$$y_{2r-1} = 2^{-2r+1} x_{2r-1} + \sum_{p=1}^{\infty} 2^{-2p} x_{2p}$$

is reversible and has

$$x_{2r-1} = 2^{2r-1}(y_{2r-1} - \lim y_n)$$

for each $y \in c$; thus (with $P_k(x) = x_k$) we have $\alpha(P_{2r-1}) = 0$ or -2^{2r-1} .

In the rest of this section A need not be reversible, except in 2.4, and β is unrestricted.

A property or set, associated with a matrix A, which remains unaltered for any matrix D with $c_D = c_A$ is called *invariant for* A. If it is invariant for each conservative matrix A, it is called simply *invariant*. In particular the FK topology on c_A is invariant, and the subsets S, F, W, B, being defined in terms of this topology, are invariant.

It is well known that if A is the Cesàro matrix,

then $I_A = c_A$, and $I_B = c_B$ for every matrix B with $c_B = c_A$ ([4], Theorem 2). But for

$$D = 1 \\ -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \\ \cdot \cdot$$

I is not invariant ([6], Example 5). Thus I is invariant for A, but not invariant in the unqualified sense.

THEOREM 2.2. If A has $W \neq B$, then α is unique.

PROOF. If α is not unique, we can find t and β such that $\lim_A x+t(Ax)+\beta x=0$. Then [9, Satz 5.3] there is a matrix D such that $c_D = c_A$ and $\lim_D = 0$. In particular the column limits of D are all zero, and $\Lambda_D^{\perp} = c_D$. By [6, Theorem 5.4], $W_D = B_D \cap \Lambda_D^{\perp} = B_D$, and by invariance, $W_A = B_A$.

We remark that if A is coregular we have $F = W \oplus u$ for some $u \in c_A \setminus W$, while if A is conull F may be either W or $W \oplus u$ [6, Theorem 5.4]. In either case $B \supseteq F$, and B may or may not equal F. Thus 2.2 extends the known uniqueness of α for the coregular matrices to a class of conull matrices.

236

1974] LINEAR FUNCTIONALS AND SUMMABILITY INVARIANTS 237

According to standard definitions, A is *multiplicative* if there is a constant M such that $\lim_A x=M \lim x$ for all $x \in c$. A necessary and sufficient condition for this is that $\langle a_k \rangle = 0$ and $\lim_n \sum_k a_{nk} = M$. If A is conull, M must be zero. A matrix is called *replaceable* if there is a multiplicative matrix with the same convergence domain.

THEOREM 2.3. If A is not replaceable, then α is unique.

The proof is contained in the opening lines of 2.2.

We return briefly to the study of reversible matrices, and make the following remark.

COROLLARY 2.4. Let A be reversible, and assume either $W \neq B$ or A not replaceable. Then v=0 in (3).

This follows at once from 2.2 and 2.3. It generalizes the corresponding result for reversible coregular matrices [8, Theorem 7], and as in that theorem leads to the conclusion that A^{-1} exists and is the matrix of the inverse of the transformation defined by A.

Theorem 2.3 can be strengthened as follows.

THEOREM 2.5. If A is not replaceable, and f=g on Δ , then $\alpha(f)=\alpha(g)$.

Proof. Suppose if possible there is a function f which vanishes on Δ , but has a representation (2) with $\alpha \neq 0$. Then as in 2.2 there is a matrix D with $c_D = c_A$, and $\lim_D f$. Then $d_k = f(\delta^k) = 0$, and A is replaceable.

There is a similar strengthening of 2.2, namely,

THEOREM 2.6. If A has $W \neq B$, and f = g on B, then $\alpha(f) = \alpha(g)$.

Proof. Suppose f=B on B. For $x \in B$ we have, using (1),

$$f(x) = \alpha \lim_{A} x + t(Ax) + \beta x$$
$$= \alpha \lim_{A} x + (tA + \beta)x$$
$$= \alpha \lim_{A} x + \gamma x, \text{ say.}$$

By putting $x = \delta^k$ we find $\alpha a_k + \gamma_k = 0$, whence $f(x) = \alpha(\lim_A x - \sum a_k x_k) = \alpha \Lambda(x) = 0$ on *B*. Now $W = B \cap \Lambda^{\perp}$ [6, Theorem 5.4] so from $W \neq B$ we get $B \notin \Lambda^{\perp}$, whence $\alpha = 0$.

The theorem of Zeller [9, Satz 5.3] referred to in the proof of our Theorem 2.2 states that if f has a representation (1) with $\alpha \neq 0$, there is a matrix D with $c_D = c_A$, $\lim_D = f$. It is left open whether a function f with α uniquely zero could have such a matrix representation. Our next theorem will show that if the uniqueness arises from $W \neq B$, this cannot occur.

THEOREM 2.7. Let A have $W \neq B$, and let D be such that $c_D = c_A$. Then with $\lim_D c_B$ regarded as a functional on c_A , we have $\alpha(\lim_D) \neq 0$.

6

Proof. By 2.2, α is unique. Suppose $\alpha(\lim_D)=0$. Then $\lim_D x=t(Ax)+\beta x$. For $x \in B$ we have as before t(Ax)=(tA)x, and so $\lim_D x=\gamma x$, say. By putting $x=\delta^k$ we find $\gamma_k=d_k$, so $\lim_D x=\sum d_k x_k$, that is, $B_D \subset \Lambda_D^\perp$. As noted in 2.2, $W_A=W_D=B_D \cap \Lambda_D^\perp=B_D=B_A$.

We now define α to be *invariantly unique* if α is unique for every D with $c_D = c_A$. Any invariant condition that implies α is unique obviously implies α is invariantly unique, for example, A coregular, $W \neq B$, or A not replaceable. But the matrix in Example 2 has α unique (with β restricted), while the matrix in Example 1 has the same convergence domain, but α not unique.

If α is invariantly unique, and *D* is any matrix with $c_D = c_A$, and *f* is a continuous linear functional on c_A (or c_D), we write $\alpha_A(f)$, $\alpha_D(f)$ for the values of α when *f* is expressed in the form (2) with respect to *A* or *D*. We put $\alpha_A^{\perp} = \{f \in c'_A : \alpha_A(f) = 0\}$, and similarly for α_D^{\perp} . If $\alpha_D^{\perp} = \alpha_A^{\perp}$ for every *D* with $c_D = c_A$, we say that α^{\perp} is invariant.

THEOREM 2.8. If A has $W \neq B$, then α^{\perp} is invariant.

Proof. Suppose α^{\perp} is not invariant. Without loss of generality we may assume that for some D with $c_D = c_A$ we have $\lim_A x + t(Ax) + \beta x = u(Dx) + \gamma x$. For $x \in B$ this reduces to $\lim_A x = \zeta x$, say. Setting $x = \delta^k$ we find $a_k = \zeta_k$, whence $\Lambda(x) = 0$. Thus $B \subset \Lambda^{\perp}$, and since $W = B \cap \Lambda^{\perp}$ we obtain W = B.

The following questions are left open.

A. Does α invariantly unique imply α^{\perp} invariant? We observe that α is not invariantly unique if and only if there exists D with $c_D = c_A$, $\lim_D = 0$, and that α^{\perp} is not invariant if and only if there exists D with $c_D = c_A$, $\alpha(\lim_D) = 0$.

- B. Does A not-replaceable imply α^{\perp} invariant?
- C. If A is a matrix for which α is unique, must $\alpha(\lim_{D}) \neq 0$ for all D with $c_{D} = c_{A}$?
- D. Does a not-unique imply $\Lambda^{\perp} = c_A$? (By 2.2, $\Lambda^{\perp} \supset B$.) Or possibly $W = c_A$?

3. The subsets I and Λ^{\perp} . In this section we consider the relations between Λ^{\perp} and the other subsets of c_A , and also the question of invariance of I and Λ^{\perp} . They are certainly not invariant in the general sense, but it may happen that for a particular matrix A every matrix D with $c_D = c_A$ has $I_D = I_A$ or $\Lambda_D^{\perp} = \Lambda_A^{\perp}$ or both.

We observe first that W and $m \cap c_A$ are about the same "size", meaning that they both lie between $m \cap \Lambda^{\perp}$ and F, but are ordinarily of different "shapes": they usually cut across one another, though inclusion relations are possible.

Now $\Lambda^{\perp} \supset W$ always [6, Theorem 5.4], but $\Lambda^{\perp} \supset m \cap c_A$ implies A conull, since $1 \in m \cap c_A$ and $\chi = \Lambda(1)$. Some but not all conull matrices have $\Lambda^{\perp} \supset m \cap c_A$; if it holds, then also $W \supset m \cap c_A$ [2]. The inclusion $\Lambda^{\perp} \subset m \cap c_A$ is possible, but implies $\Lambda^{\perp} = c_0$, as we shall show.

THEOREM 3.1. If $\Lambda^{\perp} \subset m \cap c_A$, then $\Lambda^{\perp} = c_0$.

Proof. We consider first the case $\langle a_k \rangle = 0$, so that $\Lambda^{\perp} = c_A^0$, and we are assuming $c_A^0 \subset m$. It can be proved by adapting [9, Satz 7.1] that if A sums to zero a bounded

sequence which does not tend to zero, then A also sums an unbounded sequence to zero. That is, $c_A^0 \subset m$ implies $c_A^0 \subset c_0$, or $\Lambda^{\perp} \subset c_0$, whence $\Lambda^{\perp} = c_0$.

If not all a_k are zero, define

$$D = \begin{array}{ccc} a_1 & a_2 & \cdots \\ a_{11} - a_1 & a_{12} - a_2 & \cdots \\ a_{21} - a_1 & a_{22} - a_2 & \cdots \\ & & & & & & & & & \\ \end{array}$$

Then $m \cap c_D = m \cap c_A$, and $\Lambda_A^{\perp} = c_D^0$. Finally,

$$\Lambda^{\perp}_{A} \subseteq m \, \cap \, c_{A} \, \Rightarrow \, c^{0}_{D} \subseteq m \, \cap \, c_{D} \, \Rightarrow \, c^{0}_{D} \subseteq \, c_{0} \, \Rightarrow \, \Lambda^{\perp}_{A} = c_{0}.$$

As to the invariance of I and Λ^{\perp} , we collect some results which are already known, or easily proved. It is familar that, for certain matrices A, I may equal c_A and be invariant [6, Corollary 5.9]. For an example where I is invariant but not equal to c_A , see [1, Example 3]. If I is invariant, it must equal F, since $F = \bigcap \{I_D: c_D = c_A\}$ [6, page 332].

If *I* is invariant, then Λ^{\perp} is invariant [1, Prop. 4]. The converse holds if *A* is coregular [1, Prop. 5], or indeed if we assume only $W \neq F$; this can be seen from the relations $W=B \cap \Lambda^{\perp}$, $F=B \cap I$, $F=W \oplus u$ [6, pages 332-333].

We note also that if Λ^{\perp} is invariant, then S=W. For $W=\bigcap \{\Lambda_D^{\perp}: c_D=c_A\}$ (this is proved by the same method as the corresponding result for F, [6, page 332]), so if Λ^{\perp} is invariant we have $W=\Lambda^{\perp}$. Then by a theorem of Zeller [10, 8.2] it follows that S=W.

We leave the following question open:

E. If $\Lambda_{\mathcal{A}}^{\perp} = I_{\mathcal{A}}$, must $\Lambda_{D}^{\perp} = I_{D}$ for every matrix D with $c_{D} = c_{\mathcal{A}}$? (Compare [6] and [1], Question VI).

4. The sets T and P. A set P was introduced in [6, Section 6]; it is most conveniently described by first setting

 $T = \{t \in l: (tA)x \text{ exists for all } x \in c_A\},\$

then

$$P = \{x \in c_A : (tA)x = t(Ax) \text{ for all } t \in T\}.$$

Obviously T=l if and only if $B=c_A$ (see Introduction). We shall consider conditions on A and f under which the sequence t in (2) belongs to T. It is easy to see that if f has the form $f(x)=t(Ax)+\beta x$, and f=0 on Δ , then $t \in T$. It then follows from 2.5 that if A is not replaceable, and f=0 on Δ , then $t \in T$. If $I=c_A$, and f=0 on Δ , then $t \in T$; this can be seen by writing (2) in the form [6, equation (4)]:

$$f(x) = \alpha \lim_{A} x + t(Ax) + \sum_{k} \left\{ f(\delta^{k}) - \alpha a_{k} - \sum_{n} t_{n} a_{nk} \right\} x_{k}.$$

However, the condition f=0 on Δ is not by itself sufficient to ensure $t \in T$. For let $\chi(A)=1$, $I \neq c_A$, f(1)=1, and f=0 on Δ . Then we can calculate from (2) that $(tA)_k=-a_k-\beta_k$, so $t \notin T$, since $\sum a_k x_k$ diverges for some $x \in c_A$. It will appear in the course of an example given later that T is not invariant in general.

The question of the invariance of P was raised in [6, Question VIII], and studied in [1]. It is known that P is invariant for A except when A satisfies the three conditions: A replaceable, W=F, $\bar{B}\neq c_A$, simultaneously, in which case the invariance remains in doubt. The bar denotes closure.

To illustrate these ideas, we consider the example

A =	1	0	0	0	0	• • •
	-1	1	0	0	0	• • •
	0	-1	1	0	0	• • •
	0	0	-1	1	0	• • •
	•••	• • • •	• • • •	• • •	•••	

As shown in [6, Example 5], we have $B=m \cap c_A$, and obviously $I=c_A$, $\Lambda^{\perp}=c_A^0$. Then $F=B \cap I=m \cap c_A$, $W=B \cap \Lambda^{\perp}=m \cap c_A^0$, and it can be checked that W=F. Next, let $v=\langle 1, 2, \ldots \rangle$; with $\varepsilon < 1$ it can be verified that the ball of radius ε centred at v in c_A consists entirely of unbounded sequences, so $\bar{B} \neq c_A$. Also A is multiplicative, so we have the doubtful situation described in the preceding paragraph. We have not decided whether P is invariant for A. We shall show that T is not invariant, but that $P_H=P_A$ for H=JA, where J is any matrix of the type:

with $b \in l$. (It is well known that $c_J = c$, so $c_H = c_A$). We shall show that $T_H \neq T_A$ if J is properly chosen. Let

$$R = R(r, t, x) = \sum_{k=1}^{r} (tH)_k x_k - \sum_{k=1}^{r} t_n (Hx)_n.$$

With $H=(h_{nk}), \lambda_r = \sum_{n=r}^{\infty} t_n$, we find

$$R = \sum_{k=1}^{r} \sum_{\substack{n=r+1 \ k=1}}^{\infty} t_n h_{nk} x_k$$

= $\lambda_{r+1} \sum_{k=1}^{r} (b_k - b_{k+1}) x_k + t_{r+1} (b_{r+1} - 1) x_r.$

Now let y = Ax, that is, $y_n = x_n - x_{n-1}$. Then

$$\sum_{k=1}^{r} (b_k - b_{k+1}) x_k = \sum_{k=1}^{r} b_k y_k - b_{r+1} x_r,$$

and

$$R = \lambda_{r+1} \sum_{k=1}^{r} b_k y_k - \lambda_{r+1} b_{r+1} x_r + t_{r+1} b_{r+1} x_r - t_{r+1} x_r$$

= $o(1) - \mu_r x_r$,

when $\mu_r = t_{r+1} + \lambda_{r+2}b_{r+1}$. Now $t \in T_A$ if and only if $t_{r+1} = o(r)$ [6, p. 345], while $t \in T_H$ if and only if $\langle \mu_r x_r \rangle$ converges for all $x \in c_H$. Choose $t = \langle r^{-3/2} \rangle$. Then $t \in T_A$, but with $x = \langle 1, 2, \ldots \rangle \in c_H$ we can find a sequence $b \in l$ (using terms of a convergent series suitably diluted with zeros) such that $\langle \mu_r x_r \rangle$ diverges, and so $t \notin T_H$.

Now $P_A = c_A$ ([6], p. 345), and we shall show that although $T_H \neq T_A$, we have $P_H = c_A = P_A$. Let $M = \text{diag } \mu_n$. Then for $x \in c_A$, $t \in T_H$, we have as before $R = o(1) - \mu_r x_r$, and now $\mu_r x_r = (Mx)_r = (MA^{-1}Ax)_r$. We find

$$MA^{-1} = \mu_1 \\ \mu_1 \quad \mu_2 \\ \mu_1 \quad \mu_2 \quad \mu_3 \\ \dots \dots \dots$$

Since $\mu \in l$ and MA^{-1} is conservative, it must be multiplicative-0, so $R \rightarrow 0$, and $x \in P_H$.

It was indicated earlier that if A is not replaceable, P is invariant. We now give a more precise result.

THEOREM 4.1. If A is not replaceable, then $P = \bar{c}_0$.

This is Theorem 9.1 of [6].

THEOREM 4.2. If A is multiplicative, then $P = \tilde{c}_0$ or $\tilde{c}_0 \oplus u$ for some $u \in c_A$.

Proof. Assume f=0 on c_0 ; then with A multiplicative we have $f(\delta^k) = (tA)_k + \beta_k = 0$, $(tA)_k = -\beta_k$, so $(tA)_x$ exists for all $x \in c_A$, which gives $t \in T$. Then for $x \in P$ we have $f(x) = \alpha \lim_A x + (tA)x + \beta x = \alpha \lim_A x + \gamma x$, say. Again using $f(\delta^k) = 0$ we find $\gamma = 0$, so $f(x) = \alpha \lim_A x$ on P.

If $\lim_A =0$ on P we have f=0 on P, and $P \subset \bar{c}_0$. Otherwise let $u \in P$, $\lim_A u=1$. Now assume f=0 on $c_0 \oplus u$. Let $x \in P$ and put $y=x-(\lim_A x)u$. Then $y \in P$ and as before $f(y)=\alpha \lim_A y=0$, whence f(x)=0. We now have $P \subset \bar{c}_0 \oplus u$; but by [6, Theorem 6.3] $P \supset \bar{c}_0$, so $P=\bar{c}_0$ or $\bar{c}_0 \oplus u$.

COROLLARY 4.3. Let A be any conservative matrix, and let $P^i = \bigcap \{P_D: c_D = c_A\}$. Then $P^i = \bar{c}_0$ or $\bar{c}_0 \oplus u$.

Proof. If A is not replaceable, we have $P^i = \bar{c}_0$ by 4.1. If A is replaceable, let D be multiplicative, with $c_D = c_A$. Then by 4.2, $P_D = \bar{c}_0$ or $\bar{c}_0 \oplus u$, for some $u \in c_A$. If $P_D = \bar{c}_0$, then $P^i = \bar{c}_0$. If $P_D = \bar{c}_0 \oplus u$, and among the matrices E with $c_E = c_A$ there is one such that P_E does not contain u, then $P^i = \bar{c}_0$. But if for every matrix E with $c_E = c_A$, P_E contains u, then $P^i = \bar{c}_0 \oplus u$.

THEOREM 4.4. Let A have $I = c_A$. Then $P = \bar{c}_0$ or $\bar{c}_0 \oplus u$, for some $u \in c_A$; moreover, $P = \bar{c}_0$ if and only if $P \subset \Lambda^{\perp}$.

Proof. With $I=c_A$ and f=0 on c_0 we find $f(x)=\alpha \Lambda(x)$ on P, and conclude as in 4.2 that $P=\tilde{c}_0$ or $\tilde{c}_0 \oplus u$. We conclude also that

$$P \subset \Lambda^{\perp} \Rightarrow P \subset \tilde{c}_0 \Rightarrow P = \tilde{c}_0.$$

But $I = c_A$ makes Λ continuous, and as Λ vanishes on c_0 we have $\Lambda^{\perp} \supset \bar{c}_0$, so

$$P = \bar{c}_0 \Rightarrow P \subset \Lambda^{\perp}.$$

This completes the proof.

Added in proof. While this paper was in press, it was shown by W. Beekman, J. Boos and K. Zeller [Math. Z. 130 (1973), 287–290] that our Theorem 4.2 holds for any conservative matrix, and that P is invariant.

References

1. G. Bennett, Distinguished subsets and summability invariants. Studia Math. 40 (1971), 225-234.

2. S.-C. Chang, Conull FK spaces belonging to the class O, Math. Z. 113 (1970), 249-254.

3. John J. Sember, The associative part of a convergence domain is invariant, Canad. Math. Bull. 13 (1970), 147-148.

4. A. Wilansky, Summability: the inset, replaceable matrices, the basis in summability space, Duke Math. J. 19 (1952), 647–660.

5. —, Convergence fields of row-finite and row-infinite reversible matrices, Proc. Amer. Math. Soc. 3 (1952), 389-391.

6. —, Distinguished subsets and summability invariants, J. Analyse Math. 12 (1964), 327–350.

7. —, Functional analysis, Blaisdell, New York, 1964.

8. A. Wilansky and K. Zeller, Inverses of matrices and matrix-transformations, Proc Amer. Math. Soc. 6 (1955), 414-420.

9. K. Zeller, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53 (1951), 463-487.

10. ----, Faktorfolgen bei Limitierungsverfahren, Math. Z. 56 (1952), 134-151.

CARLETON UNIVERSITY, OTTAWA, CANADA, Lehigh University, Bethlehem, Pennsylvania