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Abstract

We prove that the sequence {log ζ(n)}n≥2 is not holonomic, that is, does not satisfy a finite recurrence
relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result
concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli
numbers.
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A sequence {un}n≥1 is called holonomic if there exist k ≥ 1 and k + 1 polynomials
p0(X), . . . , pk(X) ∈ C[X] not all zero such that the relation

k∑
j=0

p j(n)un+ j = 0

holds for all n ≥ 0. Let ζ(s) be the Riemann zeta function defined as

ζ(s) =
∑
m≥1

1
ms

for all real s > 1.

In [2], it is proved that the sequence {ζ(n)}n≥2 is not holonomic. The method is very
general and extends to other sequences such as the sequence of values at positive
integers of an L-function associated to a character χ. Let us state this result.

T 1. Let N ≥ 2 be a positive integer and let χ be a character modulo N. Let
a ≥ 1 and b ≥ 0 be integers. Then the sequence {L(χ, an + b)}n≥2 is not holonomic.

Let us go quickly through this proof. We follow the proof of Theorem 15 in [2].

P. For typographical convenience, we assume that (a, b) = (1, 0). Suppose that
there exist k ≥ 1 and polynomials p j(X) for j = 0, . . . , k with real coefficients such
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that the relation
k∑

j=0

p j(n)L(χ, n + j) = 0

holds for all integers n ≥ 2. Let D be an upper bound for all the degrees of p j(X) for
j = 0, . . . , k. We show that p j(X) is the zero polynomial for all j = 0, . . . , k. By the
estimate ∣∣∣∣∣∑

`≥L

χ(`)
`s

∣∣∣∣∣ ≤∑
l≥L

1
`s
≤

1
Ls

+

∫ ∞

L

dt
ts

= O
( 1

Ls

)
,

we find
k∑

j=0

p j(n) = −

k∑
j=0

p j(n)
∑
`≥2

χ(`)
`n+ j

= O
(nD

2n

)
= o(1)

as n→∞, which implies that
∑k

j=0 p j(X) = 0. We iterate this argument as follows. Let
1 = m0 < m1 < · · · be all the positive integers which are coprime to N. Then χ(m) , 0
if and only if m = mu for some nonnegative integer u. From

k∑
j=0

p j(n)
(
1 +

χ(m1)

mn+ j
1

)
= χ(m1)

k∑
j=0

p j(n)

mn+ j
1

= −

k∑
j=0

p j(n)
∑
`≥m2

χ(`)
`n+ j

,

together with the fact that |χ(m1)| = 1, we obtain∣∣∣∣∣ k∑
j=0

p j(n)

m j
1

∣∣∣∣∣ = −mn
1

∣∣∣∣∣ k∑
j=0

p j(n)
∑
`≥m2

χ(`)
`n+ j

∣∣∣∣∣ = O
(
nD

(m1

m2

)n)
= o(1)

as n→∞, so that
∑k

j=0 p j(X)/m j
1 = 0. Continuing this argument, we get that

k∑
j=0

p j(X)

m j
u

= 0 for all u ≥ 0.

Taking u = 0, 1, . . . , k, we arrive at the conclusion that (p0(X), . . . , pk(X))T is in the
kernel of the linear map with associated matrix (1/m j

u)0≤u, j≤k whose determinant is
Vandermonde (hence, nonzero), so p j(X) = 0 for all j = 0, . . . , k, a contradiction. �

R 2. As in [2, Theorem 15], the same argument gives that {L(χ, an)}n≥0 is not
holonomic for any increasing sequence {an}n≥1 of integers greater than or equal to 2
having bounded gaps, that is, for which the estimate an+1 − an = O(1) holds.

Next, we prove that the same conclusion holds for {log L(χ, an + b)}n≥2.

T 3. Let N ≥ 2 be a positive integer and let χ be a character modulo N. Let
a ≥ 1 and b ≥ 0 be integers. Then the sequence {log L(χ, an + b)}n≥2 is not holonomic.
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P. Again, for notational simplicity, we assume that (a, b) = (1, 0). Suppose that
there exist k ≥ 1 and polynomials p j(X) for j = 0, . . . , k with real coefficients such that
the relation

k∑
j=0

p j(n) log L(χ, n + j) = 0

holds for all integers n ≥ 2. Let D be an upper bound for all the degrees of p j(X) for
j = 0, . . . , k. We show that p j(X) is the zero polynomial for all j = 0, . . . , k. Using
the Euler product representation of L(χ, n), we have

log L(χ, n) = −
∑
p≥2

log
(
1 −

χ(p)
pn

)
=

∑
a≥1,p≥2

(
χ(p)a

a

) 1
pan

.

Let p1 < p2 < · · · be all the primes that do not divide N and let m1 < m2 < · · · be the
increasing sequence of all the numbers of the form pa

i for some i ≥ 1, a ≥ 1. If mu = pa
i ,

we then put cu := χ(pi)a/a. Note that cu , 0 for all u ≥ 1. We then have

k∑
j=0

p j(n)
c1

mn+ j
1

= −

k∑
j=0

p j(n)
∑
u≥2

cu

mn+ j
u

,

so

|c1|

∣∣∣∣∣ k∑
j=0

p j(n)
1

m j
1

∣∣∣∣∣ = mn
1

∣∣∣∣∣ k∑
j=0

p j(n)
∑
u≥2

cu

mn+ j
u

∣∣∣∣∣ = O
(
nD

(m1

m2

)n)
= o(1)

as n→∞, which implies that
∑k

j=0 p j(X)/m j
1 = 0. Continuing in this way, we get, as

in the proof of Theorem 1, that

k∑
j=0

p j(X)

m j
u

= 0 for all u ≥ 1.

Taking u = 1, 2, . . . , k + 1, we get again that (p0(X), . . . , pk(X)) is a zero of a
nondegenerate linear system of k + 1 equations, so p j(X) = 0 for all j = 0, . . . , k,
which is a contradiction. �

Theorem 3 shows that {log ζ(2n)}n≥1 does not satisfy any finite-order linear
recurrence. In particular, there are no k ≥ 1 and integer exponents a0, . . . , ak not all
zero such that the multiplicative relation

k∏
j=0

ζ(2n + 2 j)a j = 1 (1)

holds for all sufficiently large n. While we have shown that a nontrivial relation
of the form (1) cannot hold for all sufficiently large n, this does not exclude the
possibility that some relations of the form (1) hold for some particular values of n, k
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and a0, . . . , ak. We could not find any such multiplicative combinations, but, allowing
some special values of L-functions, we did find the relation

L(χ3, 1)4L(χ4, 1)−2ζ(2)4ζ(4)−5ζ(6)−5ζ(8)5 = 1,

where χ3 and χ4 are the only nonprincipal characters modulo 3 and 4, respectively.
Via the formula

ζ(2n) = (−1)n+1 B2n(2π)2n

2(2n)!
, (2)

where B2n is the Bernoulli number, we get that the existence of multiplicative relations
of the form (1) is driven by the number of distinct prime factors of the numerators
and denominators of the Bernoulli numbers B2n. We write B2n = (−1)n+1Cn/Dn, with
coprime positive integers Cn and Dn. The prime factors of Dn are well understood
by the von Staudt–Clausen theorem, which asserts that Dn is squarefree and its prime
factors p are precisely the ones for which p − 1 | 2n. In what follows, we give a result
about the prime factors of the numerators Cn.

For a positive integer m, let ω(m) be the number of distinct prime factors of m.

T 4. The estimate

ω
( N∏

n=1

Cn

)
≥ (1 + o(1))

log N
log log N

(3)

holds as N→∞.

P. We shall use the formula (2) under the form

Cn = 2Dn(2n)!(2π)−2nζ(2n) = 2Dn(2n)!(2π)−2n
(
1 + O

( 1
22n

))
.

Taking logarithms, we get

log Cn = log(2Dn) + log(2n)! − 2n log(2π) + O
( 1
22n

)
.

We evaluate the above formula in n, n + 1, n + 2 for some n ∈ (N/2 + 2, N − 6), where
N is large, and take the second difference of the resulting relations, getting

log
(CnCn+2

C2
n+1

)
− log

(DnDn+2

D2
n+1

)
− log

( (2n + 3)(2n + 4)
(2n + 1)(2n + 2)

)
= O

( 1
2N

)
. (4)

We take n = p − 2 in the relation (4). Since p‖Dn+1, p does not divide DnDn+2 and

(2n + 3)(2n + 4)
(2n + 1)(2n + 2)

=
p(2p − 1)

(2p − 3)(p − 1)
,

it follows that the rational number
DnDn+2(2n + 3)(2n + 4)

D2
n+1(2n + 1)(2n + 2)

(5)

has the prime p appearing in its denominator.
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We put K := ω(
∏

n≤N Cn) and assume that K ≤ log N, for if not there is nothing
to prove. By sieve methods, there exist positive constants c1, c2 and N0 such
that for N > N0 there are at least c1N/(log N)3 primes p ∈ (N/2, N − 8) which are
congruent to 1987 (mod 2310) such that the smallest prime factor of both (p − 1)/6
and (p − 2)/5 exceeds Nc2 (see [4, Theorem 2.6′, p. 87]). We take N0 so large such
that c1N/(log N)3 > 2 log N > 2K for N > N0. Then there exist K + 1 distinct primes
p1, . . . , pK+1 in (N/2, N − 8) which do not divide any of the numbers Cn for n ≤ N
and such that for each one of these primes p we have that the smallest prime factor of
both (p − 1)/6 and (p − 2)/5 exceeds Nc2 . We evaluate the relation (4) in n = pi − 2
for i = 1, . . . , K + 1. Since

max{Ω(2n),Ω(2n + 2),Ω(2n + 4)} ≤ 3 + c−1
2 =: c3

for all n = pi − 2 with i = 1, . . . , K + 1, it follows that each of the numbers 2n, 2n +

2, 2n + 4 can have at most c4 := 2c3 divisors of the form p − 1 for some prime p. This
shows, via the von Staudt–Clausen theorem, that

max{log Dn, log Dn+1, log Dn+2} = O(log N)

for all n = pi − 2 and i = 1, . . . , K + 1. Hence, putting Ei for the rational number
shown in (5) for n = pi − 2, we get that its logarithmic height, which for a
nonzero rational number r = a/b with coprime integers a and b is defined as h(r) :=
max{log |a|, log |b|}, satisfies

h(Ei) ≤max{log(DnDn+2(2n + 4)2), log(D2
n+1(2n + 2)2)} < c5 log N (6)

for some suitable constant c5. Now let us assume that Q = {q1, . . . , qK} is the set of all
the prime factors of

∏
m≤N Cm. Write

Cpi−2Cpi

C2
pi−1

=

K∏
j=1

q
ai, j

j .

Then the relation (4) for n = pi − 2 is∣∣∣∣∣ K∑
j=1

ai, j log q j − log Ei

∣∣∣∣∣ = O
( 1
2N

)
. (7)

From the remark following (5), pi divides the denominator of Ei and pi < Q, so the
expressions appearing on the left-hand side of (7) are nonzero for i = 1, . . . , K + 1.
Moreover, for varying i = 1, . . . , K + 1, the expressions appearing on the left-hand
side of (7) are linear forms in {log q j : j = 1, . . . , K} ∪ {log Ei : i = 1, . . . , K + 1},
which are linearly independent. To see why, we claim that the number pi, which
divides the denominator of Ei, divides neither the numerator nor the denominator
of any other Ek for k , i in {1, . . . , K + 1}. Indeed, assume that this were not true.
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First, since 4pi > 2N > 2n + 4 for all n < N − 8, we get that if one of the numbers
2n + 1, 2n + 2, 2n + 3, 2n + 4 is a multiple of pi, then it must be pi, 2pi or 3pi. Hence,
we get equations of the form

2n + δ = λpi with λ ∈ {1, 2, 3} and δ ∈ {1, 2, 3, 4}.

There are 12 possible pairs (λ, δ) leading to 12 possible equations. Only six of them
can actually occur, since by parity reasons we must have δ ≡ λ (mod 2) and, of the
six possible equations, one of them is the trivial one with (λ, δ) = (2, 4) for which
n = pi − 2. The remaining ones are

n =
pi − 1

2
,

pi − 3
2

, pi − 1,
3pi − 1

2
,

3pi − 3
2

.

Putting n = pk − 2 for some k , i, we get

pk =
pi + 3

2
,

pi + 1
2

, pi + 1,
3pi + 3

2
,

3pi + 1
2

.

None of these is possible, since by the way we have chosen the primes pi, the numbers
from the above list are, from left to right, multiples of 5, 7, 2, 3 and 11, respectively.
However, it could still be the case that pi divides one of Dn, Dn+1 or Dn+2 for some
n , pi − 2. This is possible only if pi − 1 divides one of 2n, 2n + 2, 2n + 4. Since
4(pi − 1) > 2N − 4 > 2n + 4 for all n < N − 8, it follows that if one of 2n, 2n + 2, 2n +

4 is a multiple of pi − 1, then it must be one of pi − 1, 2(pi − 1) or 3(pi − 1). So, again
we get equations of the form

2n + δ = λ(pi − 1) with δ ∈ {0, 2, 4} and λ ∈ {1, 2, 3}.

This leads to a totality of nine equations of which one is the trivial one corresponding
to (λ, δ) = (2, 2) for which n = pi − 2. Of the remaining ones, we must have n = pk − 2
for some k , i. The options (λ, δ) = (2, 0) or (2, 4) are not possible by parity reasons,
while the other six lead to

pk =
pi + 3

2
,

pi + 1
2

,
pi − 1

2
,

3pi + 1
2

,
3pi − 1

2
,

3pi − 3
2

.

Again, none of the above relations is possible, since from the way we have chosen the
primes pi, in the above list, the numbers from left to right are divisible by 5, 7, 3, 11, 5
and 3, respectively. Hence, the forms appearing on the left-hand sides of (7) are
linearly independent for i = 1, . . . , K + 1. Since

Cn < 2ζ(2)Dn(2n)! < 4nc4 (2n)! < n2n < N2N

for all sufficiently large N, it follows that ai, j = O(N log N) for all i = 1, . . . , K + 1 and
j = 1, . . . , K.
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Let (∆1, . . . , ∆K+1) be a nonzero vector in the null-space of the K × (K + 1) matrix

A =


a1,1 a2,1 · · · aK+1,1

a1,2 a2,2 · · · aK+1,2
...

... · · ·
...

a1,K a2,K · · · aK+1,K

 .
One such nonzero vector can be computed with Cramer’s rule and its size satisfies

max{|∆i| : i = 1, . . . , K + 1} ≤ (K + 1)! max{|ai, j|}
K < N2K (8)

for N > N0. More precisely, let r ≤ K be the rank of A and, up to rearranging some
of its rows and columns, assume that the r × r-subdeterminant appearing in the upper-
left corner of A is nonzero and has the value ∆. Then by Cramer’s rule, ∆1, . . . , ∆r

are linear combinations of ∆r+1, . . . , ∆K+1 with rational coefficients the denominators
of which are ∆. Thus, taking say ∆r+1 = · · · = ∆K+1 = ∆, we get that ∆1, . . . , ∆r are
integers and the inequality (8) is satisfied. As the referee observed, we may invoke
some result from the geometry of numbers, such as Minkowski’s convex body theory
or Siegel’s lemma, to conclude that an estimate of the shape of (8) holds, but, as we
have just explained above, classical linear algebra suffices.

Then taking the linear combination of the relations (7) with coefficients ∆i for
i = 1, . . . , K + 1, we get∣∣∣∣∣K+1∑

i=1

∆i log Ei

∣∣∣∣∣ = O
( (K + 1) max{|∆i}|

2N

)
= O

( 1
2N/2

)
. (9)

The linear form on the left-hand side of (9) above is nonzero. We apply a result of
Matveev (see [5] or [3, Theorem 9.4]) to bound from below the expression appearing
on the left-hand side of the estimate (9) above by

exp(−1.4 × 30K+4(K + 1)4.5(1 + log B)A1 · · · AK+1),

where we can take B ≥max{|∆i| : i = 1, . . . , K + 1} and Ai ≥ h(Ei) for all i =

1, . . . , K + 1. Thus, we can take Ai := c5 log N for all i = 1, . . . , K + 1 (see (6)) and
B := N2K (see (8)) and now the inequality (9) gives

c6N − c7 < 1.4 × 30K+4(K + 1)4.5(1 + 2K log N)(c5 log N)K+1

with c6 := (log 2)/2 and some suitable constant c7, which implies immediately the
estimate (3). �

Unfortunately, our inequality (3) is too weak to yield any meaningful conclusion
regarding multiplicative independence among the values of ζ(2n) for n = 1, 2, . . . .
As for the values {ζ(2n + 1)}n≥1, the situation is even less understood. As far as
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linear independence relations over Q among the values of ζ(2n + 1) for varying n are
concerned, by [1], it is known that if N > N0, then

dimQ(Qζ(3) + Qζ(5) + · · · + Qζ(2N + 1)) > c8 log N,

where one can take c8 := 1/8. However, we are not aware of any result regarding
the multiplicative independence of ζ(2n + 1) for n = 1, 2, . . . . We leave the following
problem to the reader.

P 5. Prove that the Q-linear space

Q log ζ(3) + Q log ζ(5) + · · · + Q log ζ(2N + 1) + · · ·

is infinite dimensional.
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