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1. Introduction. The theorem of von Neumann, that every finite, zero-sum 
two-person game has a value, has been extended in various ways to infinite 
games. In particular Wald (6) has shown that any bounded game in which 
one player has finitely many pure strategies, has a value. Our interest was 
aroused by the infinite analogue of the game of "hide and seek" as described 
by von Neumann (5), which does not appear to fit any of the known cases, 
unless the matrix is bounded. However, the bounded game is dull since its 
value is zero. This has led us to give another set of sufficient conditions under 
which an unbounded infinite game may have a value. 

2. Notation and definitions. The game (J, 7", K) will consist of two 
arbitrary sets I and / and a real function K on the product set / X / . If the 
maximising player chooses i G / and the minimising player independently 
chooses j Ç J, then the former receives the amount K (i, j) from the latter. 

Let £ = {xi\ i G 1} denote a vector with dimension the cardinality of / , 
such that YL Xi = 1 and all x t > 0, the sum being taken in the sense of Bour-
baki (3, Ch. I l l , §4). The vector £ will be used as a mixed strategy for the 
maximising player. Similarly rj = {y3} will be used as a mixed strategy for the 
minimising player. We write 

K&v) = lL,K(hj)Xiyj 

when the expression on the right is summable in the sense of Bourbaki (3). 
For a particular £, 

V 

will denote the infimum over all those rj for which i£(£, rj) exists. We write 

Vu = supinfi£(£, rj) 
€ v 

and similarly 
Vu = inf supi£(£, rj). 

v È 

If the sets I and / are finite then the fundamental theorem states that 
Vij = Vu. If / is a finite set and the K(i,j) are bounded then it is known 
(1) that Vu = Vu. In the general case, if K(%, rj) exists for all £ and 77 then 

(1) Vu < Vu. 
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However, as we may see from an example of Bohnenblust, Karlin and Shapley 
(2), if there is some i£(£, rj) which does not exist, we may have Vu > Vu. 

Games for which (1) holds we call admissible, and we say that any game for 
which Vu = Vu is determinate, or has a value. Any game for which the K(i,j) 
are bounded below or bounded above is admissible, because all the i£(£, rj) 
exist. It is a simple matter to construct admissible games and in fact deter
minate games in which, for some £ and rj, K(%, rj) does not exist. For any 
admissible game we have from (1) and the definitions that 

(2) Vu < Vu < Vin, 

for any subset n of / . 
If M is the collection of finite subsets of I directed by inclusion, then 

lim*/(f) = A will mean that for all e > 0 there exists an m G M such that for 
all i$m, \f(i) — A\ < e. Similarly limm€Mf(m) = A will mean that for all 
e > 0 there exists an mf Ç M such that for all m~Dm\ \f(m) — A\ < e. 
There are obvious modifications in the case where A is not finite. Similarly N 
will represent the collection of finite subsets of / . We denote the cardinal 
number of the set s by \s\. 

3. A sufficient condition for an admissible game to have a value. 

THEOREM. If the game (J, / , K) is admissible and if for each] 6 / there is a 
real number Li such that 

(3) i n f i n i ) =Lj 

(4) limK(iJ) =Ljy 
i 

then the game has a value 
v = lim vIn, v < + oo, 

ntN 

and the maximising player has an optimal strategy. 

Proof. For any n Ç N, the game (7, n, K) is bounded by hypothesis, and 
so (1) has a value vIn = vIn = vIn. But if n C n', then vIn > vIn> so that we 
may write 
(5) v = lim vIn 

neN 

and v < + oo. From (2) and (5) we have that 

(6) Vu < vu < v. 

If v = — oo, then the game has the value — oo and every strategy for the 
maximising player is optimal. Thus we need only consider the case where v 
is finite. 

For each n G N we may choose a strategy £n = {xni} for the maximising 
player which is |w|-1 optimal for the game (7, n, K) in the sense that for all 
j € n 
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(7) K(tn,j) = Y,K(iJ)Xni > Vin ~ W\ *• 
i 

Since the closed interval [0, 1] is compact, it follows from the Tychonoff 
theorem that the product w of |7| of these intervals is compact (4) in the 
topology of coordinate-wise convergence. Since for every n G N, %n = {xni} 
lies in w, the net {£w; n G N] has a convergent (4) subnet {£TO; n G Nf). 
For each i put 

x/ = lunocni. 
neN' 

Then for every i G 7 

(8) 0 < * / < l , 2 > / < l . 

We now write J' = {x/} even though £' may not be a strategy. 
Put L(i,j) = i£0', j ) - Lj, then from (3) 

(9) L(i,j)>0, 

and from (4), 

(10) l i m £ ( * , i ) = 0 . 
i 

With the obvious interpretation of L(£n,j) and 7,(£',j) we shall prove that, 
for all j G 7", 

(11) H m L f e , i ) = L ( £ ' , j ) . 

In fact, given e > 0, choose, by (10), a finite subset nij Ç 7 so that when 
i { % L(i,j) < fe, and putting 

5 y = max 7,(2,7), 

choose n' G iV7 so that whenever n follows n' in Nf we have for all i £ nij 
that |xwi — x/\ < e^m^Bj)-1. Then 

< 13 i(i»j)l^i< - xi\ + X) L ( z , j K z - + Z) L(i,j)xi 

< Bj X) *($\™<ÀBl)~l +h^j Xni + hll Xt 
iemj i i 

< 3* + 3* + 3€ = €. 

Since for each j G w, we have from (7) that 

vm - \n\~l < L(£n,j) + i i 

it follows from (5) and (11) that for all j G 7 

(12) » < L ( £ ' , j ) + £ , . 

Let £ x / = ^, then from (8) 0 < 0 < 1 and if g* = {xf*} is any mixed 
strategy, put £ = £' + (1 - 0)f*, that is for all i, xt = x/ + (1 - 0)xt*. 
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From (8) we have that £ #* = 1 and that all xt > 0 so that £ is a mixed 
strategy. Using (12), (9) and the fact that x( < xu we have for all j G J" 
that 

» < 13 L(i,j)Xi + Lj < 23 L(i,j)xt + L,23 xi = 23 K{iJ)xt = K(%,j), 
i i i i 

and therefore that 
^ < i n f i n i ) . 

However, from the definition of Z/JJ, 

infi£(£,7) < v7 J ; 

so, using (6), 
v < inf i£(£, j ) < £7^ < Vu < ». 

This proves that the game has a value v, which by (5) is 

lim vIni 
neN 

and that £ is an optimal strategy for the maximising player. 

4. The infinite game of hide and seek. This game is played on a count-
ably infinité matrix {atj) where atj > 0. The hider chooses a place (i,j) and 
the seeker chooses either a row i or a column j and if he "finds" the hider, 
the amount atj passes from the hider to the seeker. In the finite n X n case, 
von Neumann has shown (5) that the value of the game is 5n

_ 1 , where, if Pn 

is some permutation of the integers i = 1, . . . , n, 
n 

Sn = max 23 («i^»)"1-
Pn i= l 

We observe, in both the finite and the infinite case, that corresponding to 
every pure strategy of the hider, the seeker has only two pure strategies in 
which the pay-off is positive and in all other cases it is zero. If this game is 
considered in the normal form (/, J", K)t this means that, for each j , every 
K(i, j) is zero except for two which are positive. The game is clearly admissible, 
since the K(i, j) are bounded below by zero. The conditions of our theorem are 
easily satisfied with L ; = 0 for all j and the infinite game therefore has the 
value 

v = lim vn, 
rc->oo 

where vn is the value of the game ( oo, n2, K). However the game ( oo, ^ JQ 
is clearly equivalent to the game (2«, n2, K), whose value is 5n

_ 1 , because if 
the hider is restricted to a square, the seeker would not seek outside it. 
Thus 

v = lim vn = lim Sn~ . 
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If we let P be any permutation of the set of positive integers onto itself and 
if 

oo 

S = s u p ^2 (an?)'1, 
P z = l 

then it is easily shown that 
lim Sn = S, 

and therefore that v = S_1 . In fact, if 5 < » , then we can choose P so that 
CO 

1 = 1 

and then choose n so that 
n 

X (0LUP)~1 > S — €. 
i=l 

If 
m = maxi P , 

1<Z<71 

then we have 
n 

S > 5 m > ^ ( « z i p ) - 1 > 5 — e. 
1 = 1 

The case 5 = co is similar. This justifies our statement in §1 that the value 
of the bounded game is zero, since in that case 5 = °o. 

There exist unbounded hide and seek games in which the value is not zero, 
for example if atj = 2max(z , ; ), the value of the game is 1. 

There is the same connection between the game of hide and seek and the 
optimal assignment problem, as in the finite case, but with obvious modifica
tions. 

More general games of hide and seek can be considered as played on a 
/-dimensional array (ah it) where the hider chooses a place (ii,...,i«) and the 
seeker chooses some r subscripts, r < t. Our theorem shows that such infinite 
games have a value. 
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