
JFP 20 (2): 137–173, 2010. c© Cambridge University Press 2010

doi:10.1017/S0956796810000067 First published online 19 March 2010

137

Lightweight checkpointing for concurrent ML

LUKASZ ZIAREK and SURESH JAGANNATHAN

Department of Computer Science Purdue University, 305 N. University Street, West Lafayette,

IN 47907-2107, USA

(e-mail: [lziarek, suresh]@cs.purdue.edu)

Abstract

Transient faults that arise in large-scale software systems can often be repaired by reexecuting

the code in which they occur. Ascribing a meaningful semantics for safe reexecution in

multithreaded code is not obvious, however. For a thread to reexecute correctly a region

of code, it must ensure that all other threads that have witnessed its unwanted effects

within that region are also reverted to a meaningful earlier state. If not done properly,

data inconsistencies and other undesirable behavior might result. However, automatically

determining what constitutes a consistent global checkpoint is not straightforward because

thread interactions are a dynamic property of the program. In this paper, we present a safe

and efficient checkpointing mechanism for Concurrent ML (CML) that can be used to recover

from transient faults. We introduce a new linguistic abstraction, called stabilizers, that permits

the specification of per-thread monitors and the restoration of globally consistent checkpoints.

Safe global states are computed through lightweight monitoring of communication events

among threads (e.g., message-passing operations or updates to shared variables). We present a

formal characterization of its design, and provide a detailed description of its implementation

within MLton, a whole-program optimizing compiler for Standard ML. Our experimental

results on microbenchmarks as well as several realistic, multithreaded, server-style CML

applications, including a web server and a windowing toolkit, show that the overheads to use

stabilizers are small, and lead us to conclude that they are a viable mechanism for defining

safe checkpoints in concurrent functional programs.1

1 Introduction

A transient fault is an exceptional condition that can often be remedied through

re-execution of the code in which it is raised. Typically, these faults are caused by

the temporary unavailability of a resource. For example, a program that attempts

to communicate through a network may encounter timeout exceptions because

of high network load at the time the request was issued. Transient faults may

also arise because a resource is inherently unreliable; consider a network protocol

that does not guarantee packet delivery. In large-scale systems comprising many

independently executing components, failure of one component may lead to transient

faults in others even after the failure is detected (Candea et al. 2004). For example,

a client-server application that enters an unrecoverable error state may need to

be rebooted; here, the server behaves as a temporarily unavailable resource to

1 This is a revised and extended version of a paper that appeared in the 2006 ACM SIGPLAN
International Conference on Functional Programming.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

138 L. Ziarek and S. Jagannathan

Fig. 1. A simple server-side RPC abstraction using synchronous communication.

its clients who must reissue requests sent during the period the server was being

rebooted. Transient faults may also occur because program invariants are violated.

Serializability violations that occur in software transaction systems (Harris & Fraser

2003; Herlihy et al. 2003; Welc et al. 2004) are typically rectified by aborting the

offending transaction and having it reexecute.

A simple solution to transient fault recovery would be to capture the global state

of the program before an action executes that could trigger such a fault. If the fault

occurs and raises an exception, the handler only needs to restore the previously

saved program state. Unfortunately, transient faults often occur in long-running

server applications that are inherently multithreaded, but must nonetheless exhibit

good fault tolerance characteristics; capturing global program state is costly in these

environments. On the other hand, simply reexecuting a computation without taking

prior thread interactions into account can result in an inconsistent program state

and leads to further errors, such as serializability violations.

Suppose a communication event via message-passing occurs between two threads

and the sender subsequently reexecutes this code to recover from a transient fault.

A spurious unhandled execution of the (re)sent message may result because the

receiver would have no knowledge that a reexecution of the sender has occurred.

Thus, it has no need to expect re-transmission of a previously executed message.

In general, the problem of computing a sensible checkpoint for a transient fault

requires calculating the transitive closure of dependencies manifested among threads

and the section of code which must be reexecuted.

To alleviate the burden of defining and restoring safe and efficient checkpoints

in concurrent functional programs, we propose a new language abstraction called

stabilizers. Stabilizers encapsulate three operations. The first initiates monitoring of

code for communication and thread creation events, and establishes thread-local

checkpoints when monitored code is evaluated. This thread-local checkpoint can

be viewed as a restoration point for any transient fault encountered during the

execution of the monitored region. The second operation reverts control and state

to a safe global checkpoint when a transient fault is detected. The third operation

allows previously established checkpoints to be reclaimed.

The checkpoints defined by stabilizers are first-class and composable: A monitored

procedure can freely create and return other monitored procedures. Stabilizers can

be arbitrarily nested, and work in the presence of a dynamically varying number of

threads and nondeterministic selective communication. We demonstrate the use of

stabilizers for several large server applications written in CML (Reppy 1999).

As a more concrete example of exception recovery, consider a typical remote

procedure call in ML. The code shown below depicts the server-side implementation

of the remote procedure call (RPC):

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 139

Suppose the request to the server is sent asynchronously, allowing the client to

compute other actions concurrently with the server; it eventually waits on replyCh

for the server’s answer. It maybe the case that the server raises an exception during

its processing of a client’s request. When this happens, how should client state be

reverted to ensure it can retry its request, and have any effects performed based on

the assumption.

For example, if the client is waiting on the reply channel, the server must ensure

exception handlers communicate information back on the channel, to make sure

the client does not deadlock waiting for a response. Moreover, if the client must

retry its request, any effects performed by its asynchronous computation must also

be reverted. Weaving fault remediation protocols can be complex and unwieldy.

Stabilizers, on the other hand, provide the ability to unroll cross-thread computation

in the presence of exceptions quickly and efficiently.

Stabilizers provide a middle ground between the transparency afforded by op-

erating systems or compiler-injected checkpoints, and the precision afforded by

user-injected checkpoints. In our approach, thread-local state immediately preceding

a nonlocal action (e.g., thread communication, thread creation, etc.) is regarded as a

possible checkpoint for that thread. In addition, applications may explicitly identify

program points where local checkpoints should be taken, and can associate program

regions with these specified points. When a rollback operation occurs, control reverts

to one of these saved checkpoints for each thread. Rollbacks are initiated to recover

from transient faults. The exact set of checkpoints chosen is determined by safety

conditions that ensure a globally consistent state is preserved. When a thread is

rolled back to a thread-local checkpoint state C , our approach guarantees other

threads with which the thread has communicated will be placed in states consistent

with C .

This paper makes the following contributions:

1. The design and semantics of stabilizers, a new modular language abstraction

for transient fault recovery in concurrent programs. To the best of our

knowledge, stabilizers are the first language-centric design of a checkpointing

facility that provides global consistency and safety guarantees for transient fault

recovery in programs with dynamic thread creation, and selective message-

passing communication.

2. A lightweight dynamic monitoring algorithm faithful to the semantics that

constructs efficient global checkpoints based on the context in which a

restoration action is performed. Efficiency is defined with respect to the

amount of rollback required to ensure that all threads resume execution

after a checkpoint is restored to a consistent global state.

3. A formal semantics along with soundness theorems that formalize the correct-

ness and efficiency of our design.

4. A detailed explanation of an implementation built as an extension of the CML

library (Reppy 1999) within the MLton (http://www.mlton.org) compiler. The

library includes support for synchronous, selective communication, threading

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

140 L. Ziarek and S. Jagannathan

primitives, exceptions, shared memory, as well as event and synchronous

channel-based communication.

5. An evaluation study that quantifies the cost of using stabilizers on various

open-source server-style applications. Our results reveal that the cost of

defining and monitoring thread state is small, typically adding roughly no

more than 4%–6% overhead to overall execution time. Memory overheads are

equally modest.

The remaining paper is structured as follows. Section 2 describes the stabilizer

abstraction. Section 3 provides a motivating example that highlights the issues

associated with transient fault recovery in a highly multithreaded web server, and

how stabilizers can be used to alleviate complexity and improve robustness. An

operational semantics is given in Section 4. A strategy for incremental construction

of checkpoint information is given in Section 5; the correctness and efficiency of this

approach is examined in Section 6. Implementation details are provided in Section 7.

A detailed evaluation of the overhead of using stabilizers for transient fault recovery

is given in Section 8, related work is presented in Section 9, and conclusions are

given in Section 10.

2 Programming model

Stabilizers are created, reverted, and reclaimed through the use of three primitives

with the following signatures:

stable : (’a -> ’b) -> ’a -> ’b

stabilize : unit -> ’a

cut : unit -> unit

A stable section is a monitored section of code whose effects are guaranteed to be

reverted as a single unit. The primitive stable is used to define stable sections. Given

function f, the evaluation of stable f, yields a new function f ’ identical to f except

that interesting communication, shared memory access, locks, and spawn events

are monitored and grouped. Thus, all actions within a stable section are associated

with the same checkpoint. This semantics is in contrast to classical checkpointing

schemes where there is no manifest grouping between a checkpoint and a collection

of actions.

The second primitive, stabilize, reverts execution to a dynamically calculated

global state; this state will always correspond to a program state that existed

immediately prior to execution of a stable section, communication event, or thread

spawn point for each thread. We qualify this claim by observing that external

irrevocable operations that occur within a stable section that needs to be reverted

(e.g., I/O, foreign function calls, etc.) must be handled explicitly by the application

prior to an invocation of a stabilize action. Note that similar to operations like

raise or exit that also do not return, the result type of stabilize is synthesized

from the context in which it occurs.

Informally, a stabilize action reverts all effects performed within a stable section

much like an abort action reverts all effects within a transaction. However, whereas

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 141

a transaction enforces atomicity and isolation until a commit, stabilizers enforce

these properties only when a stabilize action occurs. Thus, the actions performed

within a stable section are immediately visible to the outside; when a stabilize action

occurs, these effects along with their witnesses are reverted.

The third primitive, cut, establishes a point beyond which stabilization cannot

occur. Cut points can be used to prevent the unrolling of irrevocable actions within

a program (e.g., I/O). A cut prevents reversion to a checkpoint established logically

prior to it. Informally, a cut executed by a thread T requires that any checkpoint

restored for T be associated with a program point that logically follows the cut

in program order. Thus, if there is an irrevocable action A (e.g., ‘launch missile’)

that cannot be reverted, the expression: atomic (A; cut()) ensures that any

subsequent stabilization action does not cause control to revert to a stable section

established prior to A. If such control transfer and state restoration were permitted,

it would (a) necessitate revision of A’s effects, and (b) allow A to be reexecuted;

neither of which is possible. The execution of the irrevocable action A and the cut()

must be atomic to ensure that another thread does not perform a stabilization action

in between the execution of A and cut() .

Unlike classical checkpointing schemes or exception handling mechanisms, the

result of invoking stabilize does not guarantee that control reverts to the state

corresponding to the dynamically closest stable section. The choice of where control

reverts depends upon the actions undertaken by the thread within the stable section

in which the stabilize call was triggered.

Composability is an important design feature of stabilizers: there is no a priori

classification of the procedures that need to be monitored, nor is there any restriction

against nesting stable sections. Stabilizers separate the construction of monitored

code regions from the capture of state. When a monitored procedure is applied, or

inter-thread communication action is performed, a potential thread-local restoration

point is established. The application of such a procedure may in turn result in

the establishment of other independently constructed monitored procedures. In

addition, these procedures may themselves be applied and have program state saved

appropriately; thus, state saving and restoration decisions are determined without

prejudice to the behavior of other monitored procedures.

2.1 Interaction of stable sections

When a stabilize action occurs, matching inter-thread events are unrolled as pairs.

If a send is unrolled, the matching receive must also be reverted. If a thread spawns

another thread within a stable section that is being unrolled, this new thread (and

all its actions) must also be discarded. All threads which read from a shared variable

must be reverted if the thread that wrote the value is unrolled to a state prior to

the write. A program state is stable with respect to a statement if there is no thread

executing in this state affected by the statement (e.g., all threads are in a point within

their execution prior to the execution of the statement and its transitive effects).

For example, consider thread t1 that enters a stable section S1 and initiates a

communication event with thread t2 (see Figure 2(a)). Suppose t1 subsequently

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

142 L. Ziarek and S. Jagannathan

Fig. 2. Interaction between stable sections. Clear circles indicate thread-local checkpoints,

dark circles represent stabilization actions.

enters another stable section S2, and again establishes a communication with thread

t2. Suppose further that t2 receives these events within its own stable section S3.

The program states immediately prior to S1 and S2 represent feasible checkpoints

as determined by the programmer, depicted as white circles in the example. If a

rollback is initiated within S2, then a consistent global state would require that t2
revert back to the state associated with the start of S3 because it has received a

communication from t1 initiated within S2. However, discarding the actions within

S3 now obligates t1 to resume execution at the start of S1 because it initiated a

communication event within S1 to t2 (executing within S3). Such situations can

also arise without the presence of nested stable sections. Consider the example in

Figure 2(b). Once again, the program is obligated to revert t1, since the stable section

S3 spans communication events from both S1 and S2.

Consider the RPC example presented in the introduction rewritten to utilize

stabilizers.

stable fn () => let fun rpc-server (request, replyCh) =

let val ans = process request

in spawn(send(replyCh,ans))

end handle Exn => ...

stabilize()

in rpc-server

end

If an exception occurs while the request is being processed, the request and the

client are unrolled to a state prior to the RPC. The client is free to retry the

RPC, or perform some other computation. Much like exceptions in ML, we

envision extending stabilizers to be value carrying. We believe such extensions

are straightforward and discuss them in Section 10.

3 Motivating Example

An open-source third-party web server wholly written in CML is Swerve

(http://www.mlton.org) (see Figure 3) . The server is composed of five separate

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 143

Fig. 3. Swerve module interactions for processing a request (solid lines) and error-handling

control and data flow (dashed lines) for timeouts. The numbers above the lines indicate the

order in which communication actions occur.

interacting modules. Communication between modules makes extensive use of CML

messagepassing semantics. Threads communicate over explicitly defined channels on

which they can either send or receive values. To motivate the use of stabilizers,

we consider the interactions of three of Swerve’s modules: the Listener, the File

Processor, and the Timeout Manager. The Listener module receives incoming

HTTP requests and delegates file-serving requirements to concurrently executing

processing threads. For each new connection, a new listener is spawned; thus, each

connection has one main governing entity. The File Processor module handles

access to the underlying file system. Each file that will be hosted is read by a file

processor thread that chunks the file and sends it via message-passing to the thread

delegated by the listener to host the file. Timeouts are processed by the Timeout

Manager through the use of timed events. Our implementation supports all CML

synchronization primitives on channels. Threads can poll these channels to check if

there has been a timeout. In the case of a timeout, the channel will hold that a flag

signaling time has expired, and is empty otherwise.

Timeouts are the most frequent transient fault present in the server, and difficult

to deal with naively. Indeed, the system’s author notes that handling timeouts in a

modular way is “tricky” and devotes an entire section of the user manual explaining

the pervasive cross-module error handling in the implementation. Consider the

typical execution flow given in Figure 3. When a new request is received, the

listener spawns a new thread for this connection that is responsible for hosting

the requested page. This hosting thread first establishes a timeout quantum with

the timeout manager (1) and then notifies the file processor (2). If a file processing

thread is available to process the request, the hosting thread is notified that the file

can be chunked (2). The hosting thread passes to the file processing thread through

the channel on which it will receive its timeout notification (2). The file processing

thread is now responsible to check for explicit timeout notification (3).

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

144 L. Ziarek and S. Jagannathan

Fig. 4. An excerpt of the the File Processing module in Swerve. The code fragment

displayed on the bottom shows the code modified to use stabilizers. Italics areas in the

original where the code is changed.

Since a timeout can occur before a particular request starts processing a file

(4) (e.g., within the hosting thread defined by the Listener module) or during the

processing of a file (5) (e.g., within the File Processor), the resulting error-handling

code is cumbersome. Moreover, the detection of the timeout itself is handled by a

third module, the Timeout Manager. The result is a complicated message passing

procedure that spans multiple modules, each of which must figure out how to deal

appropriately with timeouts. The unfortunate side effect of such code organization

is that modularity is compromised. The code now contains implicit interactions

that cannot be abstracted (6) (e.g., the File Processor must explicitly notify the

Listener of the timeout). The Swerve design illustrates the general problem of

dealing with transient faults in a complex concurrent system: How can we correctly

handle faults that span multiple modules without introducing explicit cross-module

dependencies to handle each such fault?

Figure 4 shows the definition of fileReader, a Swerve function in the file

processing module that sends a requested file to the hosting thread by chunking the

file contents into a series of smaller packets. The file is opened by BinIOReader,

a utility function in the File Processing module. The fileReader function must

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 145

Fig. 5. An excerpt of the Listener module in Swerve. The main processing of the hosting

thread is wrapped in a stable section and the timeout handling code can be removed. The

code fragment on the bottom shows the modifications made to use stabilizers. Italics in the

code fragment on the top mark areas in the original where the code is removed in the version

modified to use stabilizers.

check in every iteration of the file processing loop whether a timeout has occurred

by calling the Timeout.expired function due to the restriction that CML threads

cannot be explicitly interrupted. If a timeout has occurred, the procedure is obligated

to notify the receiver (the hosting thread) through an explicit send on channel

consumer the value XferTimeout; timeout information is propagated from the

Timeout module to the fileReader via the abort argument which is polled.

Stabilizers allow us to abstract this explicit notification process by wrapping the

file processing logic in a stable section. Suppose a call to stabilize replaced the

call to CML.send(consumer, Timeout). This action would result in unrolling both

the actions of sendFile as well as the receiver, because the receiver is in the midst

of receiving file chunks.

However, a cleaner solution presents itself. Suppose we modify the definition of

the Timeout module to invoke stabilize, and wrap its operations within a stable

section. Now, there is no need for any thread to poll for the timeout event. Since the

hosting thread establishes a timeout quantum by communicating with Timeout and

passes this information to the file processor thread, any stabilize action performed

by the Timeout Manager will unroll all actions related to processing of this file. This

transformation therefore allows us to specify a timeout mechanism without having

to embed non-local timeout handling logic within each thread that potentially could

be affected. The hosting thread itself is also simplified (as seen in Figure 5); by

wrapping its logic within a stable section, we can remove all of its timeout error-

handling code as well. A timeout is now handled completely through the use of

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

146 L. Ziarek and S. Jagannathan

Fig. 6. A multi-server implementation which utilizes a central coordinator and multiple

servers. A series of requests is multiplexed between the servers by the coordinator. Each

server handles its own transient faults. The shaded portions represent computation, which

is unrolled due to the stabilize action performed by the server. Single arrows represent

communication to servers and double arrows depict return communication. Circular wedges

depict communications which are not considered because a cut operation limits their effects.

stabilizers localized within the Timeout module. This improved modularization of

concerns do not lead to reduced functionality or robustness. Indeed, a stabilize

action causes the timed-out request to be transparently reprocessed, or allows the

web server to process a new request, depending on the desired behavior.

3.1 Cut

The cut primitive can be used to delimit the effects of stabilize calls. Consider

the example presented in Figure 6, which depicts three separate servers operating

in parallel. A central coordinator dispatches requests to individual servers and acts

as the front-end for handling user requests. The dispatch code, presented below, is

wrapped in a stable section and each server has its request processing (as defined

in the previous section) wrapped in stable sections. After each request is completed,

the server establishes a cut point so that the request is not repeated if an error is

detected on a different server.

Servers utilize stabilizers to handle transient faults. As the servers are independent

of one another, a transient fault local to one server should not affect another. The

request allocated only to that server must be reexecuted.

When the coordinator discovers an error, it calls stabilize to unroll request pro-

cessing. All requests which encountered an error will be unrolled and automatically

retried. Those which completed will not be affected.

fun multirequest(requestList) =

foreach

fn (request,replyCh) =>

let val serverCh = freeServer()

in spawn

fn () => (send(serverCh, request);

let val reply = recv(serverCh)

in (send(replyCh,reply);

cut())

end)

end

requestList

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 147

Fig. 7. A core call-by-value language for stabilizers.

The code above depicts a front-end function, which handles multiple requests by

dispatching them among a number of servers. The function freeServer finds the

next available server to process the request. Once the front-end receives a reply

from the server, subsequent stabilize actions by other threads will not result in the

revocation of previously satisfied requests. This is because the cut() operation

prevents rollback of any previously satisfied request. If a stabilization action

does occur, the cut() avoids the now satisfied request to this server from being

reexecuted; only the server that raised the exception is unrolled.

4 Semantics

Our semantics is defined in terms of a core call-by-value functional language

with threading primitives (see Figures 7 and 8). For perspicuity, we first present

an interpretation of stabilizers in which evaluation of stable sections immediately

results in the capture of a consistent global checkpoint. Furthermore, we restrict

the language to capture checkpoints only upon entry to stable sections, rather

than at any communication or thread creation action. This semantics reflects a

simpler characterization of checkpointing than the informal description presented

in Section 2. In Section 5, we refine this approach to construct checkpoints

incrementally, and to allow checkpoints to be captured at any communication

or thread creation action.

In the following, we use metavariables v to range over values, and δ to range over

stable sections or checkpoint identifiers. We also use P for thread terms, and e for

expressions. We use over-bar to represent a finite ordered sequence, for instance, f

represents f1 f2 . . . fn. The term α.α denotes the prefix extension of the sequence α

with a single element α, α.α the suffix extension, αα′ denotes sequence concatenation,

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

148 L. Ziarek and S. Jagannathan

Fig. 8. A core call-by-value language for stabilizers.

φ denotes empty sequences and sets, and α � α′ holds if α is a prefix of α′. We write

| α | to denote the length of sequence α.

Our communication model is a message-passing system with synchronous send

and receive operations. We do not impose a strict ordering of communication

actions on channels; communication actions on the same channel are paired

nondeterministically. To model asynchronous sends, we simply spawn a thread

to perform the send.2 To this core language we add three new primitives: stable,

stabilize, and cut. When a stable function is applied, a global checkpoint is

2 Asynchronous receives are not feasible without a mailbox abstraction.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 149

established, and its body, denoted as stable(e), is evaluated in the context of this

checkpoint. The second primitive, stabilize, is used to initiate a rollback and the

third, cut, prevents further rollback in the thread in which it executes due to a

stabilize action.

The syntax and semantics of the language are given in Figures 7 and 8.

Expressions include variables, locations that represent channels, λ-abstractions,

function applications, thread creations, channel creations, communication actions

that send and receive messages on channels or operations which define stable

sections, stabilize global state to a consistent checkpoint, or bound checkpoints. We

do not consider references in this core language as they can be modeled in terms of

operations on channels.

A program is defined as a set of threads and we utilize φ to denote the empty

program. Each thread is uniquely identified, and is also associated with a stable

section identifier (denoted by δ) that indicates the stable section the thread is

currently executing within. Stable section identifiers are ordered under a relation

that allows us to compare them (e.g., they could be thought of as integers incremented

by a global counter). For convention we assume δs range from 0 to δmax, where

δmax is the numerically largest identifier (e.g., the last created identifier). Thus, we

write t[e]δ if a thread with identifier t is executing expression e in the context of

the stable section with identifier δ; as stable sections can be nested, the notation

generalizes to sequences of stable section identifiers with sequence order reflecting

nesting relationship. We omit decorating a term with stable section identifiers when

not necessary. Our semantics is defined up to congruence of threads (P‖P ′ ≡ P ′‖P).

We write P � {t[e]} to denote the set of threads that does not include a thread

with identifier t, and P ⊕ {t[e]} to denote the set of threads that contains a thread

executing expression e with identifier t. We use evaluation contexts to specify order

of evaluation within a thread, and to prevent premature evaluation of the expression

encapsulated within a spawn expression.

A program state consists of a collection of evaluating threads (P) and a stable

map (Δ) that defines a finite function associating stable section identifiers to states.

A program begins evaluation with an empty stable map (⊥). Program evaluation

is specified by a global reduction relation, P ,Δ,
α

=⇒ P ′,Δ′ that maps a program

state to a new program state. We tag each evaluation step with an action, α, that

defines the effects induced by evaluating the expression. We write
α

=⇒
∗

to denote

the reflexive, transitive closure of this relation. The actions of interest are those that

involve communication events, or manipulate stable sections. We use labels lr to

denote local reduction actions, sp(t) to denote thread creation, comm(t, t′) to denote

thread communication, ss to indicate the start of a stable section, st to indicate a

stabilize operation, es to denote the exit from a stable section, and cut to indicate

a cut action.

Local reductions within a thread are specified by an auxiliary relation, e → e′

that evaluates expression e within some thread to a new expression e′. The local

evaluation rules are standard: function application substitutes the value of the

actual parameter for the formal in the function body; channel creation results in

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

150 L. Ziarek and S. Jagannathan

the creation of a new location that acts as a container for message transmission

and receipt; and, supplying a stable function as an argument to a stable expression

simply yields the stable function.

There are seven global evaluation rules. The first (rule Local) simply models

global state change to reflect thread local evaluation. The second (rule Spawn)

describes changes to the global state when a thread is created to evaluate expression

e; the new thread evaluates e in a context without any stable identifier. The third

(rule Comm) describes how a communication event synchronously pairs a sender

attempting to transmit a value along a specific channel in one thread with a receiver

waiting on the same channel in another thread. Evaluating cut (rule Cut) discards

the current global checkpoint. The existing stable map is replaced by an empty one.

This rule ensures that no subsequent stabilization action will ever cause a thread

to revert to a state that existed logically prior to the cut. While certainly safe, the

rule is also very conservative, affecting all threads, even those that have had no

interaction (either directly or indirectly) with the thread performing the cut. We

present a more refined treatment in Section 5.

The remaining rules are the ones involving stable sections. When a stable section

is newly entered (rule Stable), a new stable section identifier is generated; these

identifiers are related under a total order that allows the semantics to express

properties about lifetimes and scopes of such sections. The newly created identifier

is associated with its creating thread. The checkpoint for this identifier is computed

as either the current state if no checkpoint exists, or the current checkpoint. In

this case, our checkpointing scheme is conservative: If a stable section begins

execution, we assume it may have dependencies to all other currently active stable

sections. Therefore, we set the checkpoint for the newly entered stable section to

the checkpoint taken at the start of the oldest active stable section. When a stable

section exits (rule Stable-Exit), the thread context is appropriately updated to

reflect that the state captured when this section was entered no longer represents

an interesting checkpoint; the stable section identifier is removed from its creating

thread. A stabilize action (rule Stabilize) simply reverts the state to the current

global checkpoint.

Note that the stack of stable section identifiers recorded as part of the thread

context is not strictly necessary because there is a unique global checkpoint that

reverts the entire program state upon stabilization. However, here we introduce it to

help motivate our next semantics that synthesizes global checkpoints from partial

ones, and for which maintaining such a stack is essential.

4.1 Example

Consider the example program shown in Figure 9. We illustrate how global

checkpoints would be constructed for this program in Figure 10. Initially, thread t1
spawns thread t2. Afterwards, t1 begins a stable section, creating a global checkpoint

prior to the start of the stable section. Additionally, it creates an identifier (δ1) for

this stable section. We establish a binding between δ1 and the global checkpoint in

the stable map, Δ. Next, thread t2 begins its stable section. Since Δ is non-empty,

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 151

Fig. 9. An example used to illustrate the interaction of inter-thread communication and

stable sections.

Fig. 10. An example of global checkpoint construction.

t2 maps its identifier δ2 to the checkpoint stored by the least δ, namely the checkpoint

taken by δ1, rather than creating a new checkpoint. Then, thread t1 exits its stable

section, removing the binding for δ1 from Δ. It subsequently begins execution within

a new stable section with identifier δ3. Again, instead of taking a new global

checkpoint, δ3 is mapped to the checkpoint taken by the least δ, in this case δ2.

Notice that δ2’s checkpoint is the same as the one taken for δ1. Lastly, t1 and t2
communicate. Observe that the same state is restored regardless of whether we revert

to either δ2 or δ3. In either case, the checkpoint that would be restored would be

the one initially created by δ1. This checkpoint gets cleared only when no thread is

executing within a stable section.

4.2 Soundness

The soundness of the semantics is defined by an erasure property on stabilize actions.

Consider the sequence of actions α that comprise a potential execution of a program;

initially, the program has not established any stable section, i.e., δ = φ. Suppose

there is a stabilize operation that occurs after α. The effect of this operation is

to revert the current global program state to an earlier checkpoint. However, given

that program execution successfully continued after the stabilize call, it follows

that there exists a sequence of actions from the checkpoint state that yields the same

state as the original, but does not involve execution of stabilize. In other words,

stabilization actions can never manufacture new states, and thus have no effect on

the final state of program evaluation.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

152 L. Ziarek and S. Jagannathan

Theorem [Safety.]

Let E t,P
φ [e],Δ

α

=⇒ ∗ P ′,Δ′
st.β

=⇒ ∗ P ′′‖t[v],Δf . Then, there exists an equivalent

evaluation E t,P
φ [e],Δ

α′ .β

=⇒ ∗ P ′′‖t[v],Δf such that α′ � α.

Proof sketch

By assumption and rules Stable and Stabilize, there exists evaluation sequences

of the form

E t,P
φ [e],Δ

α′

=⇒ ∗ P1,Δ1
ss

=⇒ P2,Δ2

and

P ′,Δ′ st
=⇒ P1,Δ1

β

=⇒ ∗ P ′′‖t[v],Δf

Moreover, α′ � α because the state recorded by the Stable operation must precede

the evaluation of the stabilize action that reverts to that state. �

5 Incremental construction

While easily defined, the semantics is highly conservative because there maybe

checkpoints that involve less unrolling that the semantics does not identify. Consider

again the example given in Figure 9. The global checkpoint calculation reverts exe-

cution to the program state prior to execution of f even if f successfully completed.

Furthermore, communication events that establish inter-thread dependencies are not

considered in the checkpoint calculation. Thus, all threads, even those unaffected

by effects that occur between the intervals when the checkpoint is established and

is restored, are unrolled. A better alternative would restore thread state based on

the actions witnessed by threads within checkpoint intervals. If a thread T observes

action α performed by thread T ′ and T is restored to a state that precedes the

execution of α, T ′ can be restored to its latest local checkpoint state that precedes

its observance of α. If T witnesses no actions of other threads, it is unaffected by

any stabilize calls those threads might make. This strategy leads to an improved

checkpoint algorithm by reducing the severity of restoring a checkpoint, limiting

the impact to only those threads that witness global effects, and establishing their

rollback point to be as temporally close as possible to their current state.

Figures 11 and 12 present a refinement to the semantics that incrementally

constructs a dependency graph as part of program execution. Checkpointing is now

defined with respect to the capture of the communication, spawn, and stable actions

performed by threads within a graph data structure. This structure consists of a set

of nodes representing interesting program points, and edges that connect nodes that

have shared dependencies. Nodes are indexed by ordered node identifiers, and hold

thread state and record the actions that resulted in their creation. We also define

maps to associate threads with nodes (η), and stable section identifiers with nodes

(σ) in the graph.

Informally, the actions of each thread in the graph are represented by a chain

of nodes that defines temporal ordering on thread-local actions. Back-edges are

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 153

Fig. 11. Incremental checkpoint construction.

established to nodes representing stable sections; these nodes define possible per-

thread checkpoints. Sources of back-edges are communication actions that occur

within a stable section, or the exit of a nested stable section. Edges also connect

nodes belonging to different threads to capture inter-thread communication events.

The evaluation relation P ,G
α
� P ′, G′ evaluates a process P executing action

α with respect to a communication graph G to yield a new process P ′ and new

graph G′. As usual,
α
�∗ denotes the reflexive, transitive closure of this relation.

Programs initially begin evaluation with respect to an empty graph. The auxiliary

relation t[e], G ⇓ G′ models intra-thread actions within the graph (see rules Build).

It establishes a new node to capture thread-local state, and sets the current node

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

154 L. Ziarek and S. Jagannathan

Fig. 12. Incremental checkpoint construction (cont.).

marker for the thread to this node. In addition, if the action occurs within a stable

section, a back-edge is established from that node to this section. This back-edge is

used to identify a potential rollback point. If a node has a back-edge the restoration

point will be determined by traversing these back-edges; thus, it is safe to not store

thread contexts with such nodes (⊥ is stored in the node in that case). New nodes

added to the graph are created with a node identifier guaranteed to be greater than

any existing node.

When a new thread is spawned (rule Spawn), a new node and a new stack for

the thread are created. An edge is established from the parent to the child thread

in the graph. When a communication action occurs (rule Comm) a bidirectional

edge is added between the current nodes of the two threads participating in the

communication.

When a cut action is evaluated (rule cut), a new node is added to the graph that

records the action. A subsequent stabilization action that traverses the graph must

not visit this node, which acts as a barrier to prevent restoration of thread state

that existed before it. When a stable section is entered (rule Stable), a new stable

section identifier and a new node are created. A new graph that contains this node is

constructed, and an association between the thread and this node is recorded. When

a stable section exits (rule Stable-Exit), this association is discarded, although a

node is also added to the graph.

Graph reachability is used to ascertain a global checkpoint when a stabilize

action is performed (rule Stabilize): when thread T performs a stabilize call, all

nodes reachable from T ’s current node in the graph are examined, and the context

associated with the least such reachable node (as defined by the node’s index) for

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 155

each thread is used as the thread-local checkpoint for that thread. If a thread is

not affected (transitively) by the actions of the thread performing the rollback, it is

not reverted to any earlier state. The collective set of such checkpoints constitutes

a global state. The graph resulting from a stabilize action does not contain

these reachable nodes; the expression G/n defines the graph in which all nodes

reachable from node n are removed from G. Here, n is the node indexed by the most

recent stable section (δ) in the thread performing the stabilization. An important

consistency condition imposed on the resulting graph is that it does not contain a

cut node. This prevents stabilization from incorrectly reverting control to a stable

section established prior to a cut. Besides threads that are affected by a stabilize

action because of dependencies, there maybe other threads that are unaffected. If

P ′ is the set of processes affected by a stabilize call, then Ps = P � P ′, the set

difference between P and P ′, represents the set of threads unaffected by a stabilize

action; the set P ′ ⊕ Ps is, therefore, the set that, in addition to unaffected threads,

also includes those thread states representing globally consistent local checkpoints

among threads affected by a stabilize call.

5.1 Example

To illustrate the semantics, consider the sequence of actions shown in Figure 13

that is based on the example given in Figure 9. Initially thread t1 spawns the thread

t2, creating a new node n2 for thread t2 and connecting it to node n1 with a directed

edge. The node n3 represents the start of the stable section monitoring function f

with identifier δ1. Next, a monitored instantiation of h is called, and a new node

(n4) associated with this context is allocated in the graph and a new identifier is

generated (δ2). No changes need to be made to the graph when f exits its stable

section; however, because δ1 cannot be restored by a stabilize call within this thread,

it is mapped to φ in σ. Monitoring of function g results in a new node (n5) added

to the graph. A back-edge between n5 and n3 is not established because control has

exited from the stable section corresponding to n3. Similarly, as before, we generate

a new identifier δ3 that becomes associated with n5. Lastly, consider the exchange of

a value on channel c by two threads. Nodes corresponding to the communication

actions are created, along with back-edges to their respective stable sections. In

addition, a bidirectional edge is created between the two nodes.

Recall that the global checkpointing scheme would restore to a global checkpoint

created at the point the monitored version of f was produced, regardless of where a

stabilization action took place. In contrast, a stabilize call occurring within the

execution of either g or h using this incremental scheme would restore the first thread

to the continuation stored in node n3 (corresponding to the context immediately

preceding the call to g), and would restore the second thread to the continuation

stored in node n2 (corresponding to the context immediately preceding the call to h).

6 Efficiency

We have demonstrated the safety of stabilization actions for global checkpoints:

The state restored from a global checkpoint must have been previously encountered

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

156 L. Ziarek and S. Jagannathan

Fig. 13. An example of incremental checkpoint construction.

during the execution of the program. We now introduce the notion of efficiency.

Informally, incremental checkpoints are more efficient than global ones because

the amount of computation that must be performed following restoration of

an incremental checkpoint is less than the computation that must be performed

following restoration of a global one. To prove this, we show that from the state

restored by a global checkpoint, we can take a sequence of evaluation steps that

leads to the same state restored by an incremental checkpoint. Note that efficiency

also implies safety: because the state restored by a global checkpoint can eventually

lead to the state produced by an incremental one, and global checkpoints are safe

(by Theorem [Safety]), it follows that incremental ones must be safe as well.

The following lemma states that if a sequence of actions does not modify the

dependency graph, then all those actions must have been LR.

Lemma 1 [Safety of LR]

If

E t,P
φ [e], G

α
�∗ E t,P

φ [e′], G

then α = LR.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 157

The proof follows from the structure of the rules as only global rules augments

G, and local reductions do not. �

A thread’s execution, as defined by the semantics, corresponds to an ordered series

of nodes within the communication graph. As an example, consider Figure 13 which

illustrates how a graph is constructed from a series of evaluation steps. Threads t1
and t2 are represented as paths [n1, n3, n5, n7] for t1 and [n2, n4, n6] for t2 in the graph

depicted in Figure 13(f).

We define a path in the graph G for a thread as a sequence of nodes, where (a)

the first node in the sequence either has no incoming edges, or a single spawn edge

whose source is a node from a different thread, and (b) the last node either has no

outgoing edges, or a single communication back-edge to another node. Thus, a path

is a chain of nodes with the same thread identifier. Then a graph is a set of paths

connected with communication and spawn edges. A well-formed graph is a set of

unique paths, one for each thread. Each edge in this path corresponds to a global

action.

Let PG
t be a path extracted from graph G for thread t. By the definition of ⇓,

every node in this path contains (a) the identity of the thread which performed the

action that led to the insertion of the node in the graph; (b) the action performed by

the thread that triggered the insertion; and (c) the remaining computation for the

thread at the point where the action was performed. An action can be of the form

sp(e, t′) indicating that a new thread t′ was spawned with label (e, t′), comm(t, t′)

indicating that a communication action between the current thread (t) and another

thread (t′) has occurred, or ss reflecting the entry of a stable section by the executing

thread. A schedule SG
t is a temporally ordered sequence of tuples extracted from PG

t

that represents all actions performed by t on G.

We now proceed to define a new semantic relation → (see Figure 14) that takes

a graph G, a set of schedules T , and a given program state P and produces a new

set of thread schedules T ′, and a new program state P ′. Informally, → examines

the continuations in schedules obtained from the communication graph to define

a specific evaluation sequence. It operates over schedules based on the following

observation: given an element π = (t, α, e) in a schedule in which an expression

e represents the computation still to be performed by t, the next element in the

schedule π′ can be derived by performing the action α, and some number of thread

local reductions.

The rule for spawn in Figure 14 holds when a thread t whose first action

in its recorded schedule within the communication graph is a spawn action. The

rule performs this action by yielding a new process state that includes the new

thread, and a new schedule that reflects the execution of the action. The rule for

communication (rule comm) takes the schedules of two threads that were waiting

for initiating a communication with one another, and yields a new process state in

which the effects of the communication are recorded. Entry into a stable section

(rule stable) establishes a thread local checkpoint. Rules Exit Stable, and cut

install the operation’s continuation and remove the action from the schedule.

These rules skip local reductions. This is safe because if there existed a reduction

that augmented the graph, it would be present in some schedule (such a reduction

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

158 L. Ziarek and S. Jagannathan

Fig. 14. The relation → defines how to evaluate a schedule T derived from a graph G.

obviously does not include stabilize). The following lemma formalizes this

intuition. (If N is the set of nodes reachable from the roots of G′, then G/G′

denotes the graph that results from removing N and nodes reachable from N from

G.)

Lemma 2 [Schedule soundness]

Suppose there exists G and G′ such that P ,G
α

�∗ P ′, G′ and st � ∈ α. Let T be the

schedule derived from G′′, where G′′ = G′/G, then T , P →∗
G′′ φ, P ′.

The proof is by induction on the size of G′/G. The base case has G = G′,

and therefore |G′′| = 0. By Lemma 1, α = lr, which implies P = P ′. Because a

schedule only includes actions derived from the graph G′/G, which is empty, T = φ.

Suppose the theorem holds for |G′′| = n. To prove the inductive step, consider

P ,G
α
� P1, G1

α
� P ′, G′ where |G1/G| = n. By the induction hypothesis, we know

T , P
α→G′′ T ′, P1 and T , P

α→G1/G φ, P1. Now, if α = lr, then by Lemma 1, G1 = G′,

thus |G1/G| = n, and T ′ = φ. Otherwise, α ∈ {ss,es,comm(t, t′), sp(t, e)}. As all the

rules add a node to the graph, we know by the definition of →, there is a transition

for each of these actions that guarantees T ′, P1
α→G′′ φ, P ′.

Lemma 3 [Adequacy]

Let Gs and Gf be two well-formed graphs, G = Gf/Gs, and let P and P ′ be

process states. If T is the schedule derived from G, and if T , P
α

→∗
G T ′, P ′, then

P ,Gs
α′
� P ′, G′

f and |α| � |α′|.

By definition of Gf , Gs, and →, all tags in α are contained in α′. By lemma 1, this

implies that α � α′. �

Furthermore, both global and incremental checkpointing yield the same process

states in the absence of a stabilize action.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 159

Lemma 4 [Correspondence]

If P ,G
α
� P ′, G′ and st /∈ α, then P ,Δ

α
=⇒ P ′,Δ.

The proof follows trivially from the definition of � and =⇒ . �

Using these lemmas, we can formally characterize our notion of efficiency.

Theorem [Efficiency]

If

E t,P
φ [e],Δ

α.st

=⇒ ∗ P ′,Δ′

and

E t,P
φ [e], G0

α.st
� ∗ P ′′, G′′

then there exists β such that P ′,Δ′
β

=⇒ ∗ P ′′,Δ′′.

The proof is by induction on the length of α. The base case considers sequences

of length one as a stabilize action can only occur within the dynamic context of

a stable section (tag ss). Then, P = P ′ = P ′′, β = φ, and the theorem holds trivially.

Assume the theorem holds for sequences of length n − 1. Let α = β1.β2 and

|β1| = n − m, |β2| = m. By our hypothesis, we know

E t,P
φ [e],Δ

β1

=⇒ ∗ Pn−m,Δn−m

β2 .st

=⇒ ∗ P ′,Δ′

and

E t,P
φ [e], G0

β1

�∗ Pn−m, Gn−m
β2 .st
� ∗ P ′′, G′′

Without loss of generality, assume Pn−m = P ′. Intuitively, any checkpoint restored

by the global checkpointing semantics corresponds to a state previously seen during

evaluation. As both evaluations begin with the same α sequence, they must share

the same program states, thus we know Pn−m exists in both sequences.

By the definition of �, we know G′′ and Gn−m are well formed. Let G = G′′/Gn−m.

G is well formed because Gn−m and G′′ are also well formed. Thus, there is a path

PG
t associated with every thread t, and a schedule SG

t that can be constructed from

this path; let T be the set of schedules derived from G.

By Lemma 2, we know there is some sequence of actions α′ such that T , P ′
α′

→∗
G

φ, P ′′. By Lemma 3, we know P ′, Gn−m

β

�∗ P ′′, G′′, and | α′ |�| β |. By definition

of →, �, and by Lemma 2, we know that st �∈ β as it differs from α′ only with

respect to lr actions, and α′ does not contain any st tags. By Lemma 4, we know

P ′,Δ′
β

=⇒ ∗ P ′′,Δ′′. �

7 Implementation

Our implementation is incorporated within MLton (http://www.mlton.org), a whole-

program optimizing compiler for Standard ML. The main changes to the underlying

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

160 L. Ziarek and S. Jagannathan

infrastructure were the insertion of write barriers to track shared memory updates,

and hooks to the CML (Reppy 1999) library to update the communication graph.

State restoration is thus a combination of restoring continuations as well as reverting

references. The implementation is roughly 2K lines of code to support our data

structures, checkpointing, and restoration code, as well as roughly 200 lines of

changes to CML.

7.1 Supporting first-class events

Because our implementation is an extension of the core CML library, it supports first-

class events (Reppy 1999) as well as channel-based communication. The handling of

events is no different from our treatment of messages. If a thread is blocked on an

event with an associated channel, we insert an edge from that thread’s current node

to the channel. We support CML’s selective communication with no change to the

basic algorithm – recall that our operations only update the checkpoint graph on

base events; complex events such as choose , wrap , or guard are thus unaffected.

Since CML imposes a strict ordering of communication events, each channel must be

purged of spurious or dead data after a stabilize action. We leverage the same process

CML uses for clearing channels of spurious data after a selective communication,

to deal with stabilize actions that roll back channel state.

7.2 Handling references

We have thus far elided details on how to track shared memory access to properly

support state restoration actions in the presence of references. Naively tracking

each read and write separately would be inefficient. There are two problems that

must be addressed: (1) unnecessary writes should not be logged; and (2) spurious

dependencies induced by reads should be avoided.

Notice that for a given stable section, it is enough to monitor the first write to

a given memory location because each stable section is unrolled as a single unit.

To monitor writes, we create a log in which we store reference/value pairs. For

each reference in the list, its matching value corresponds to the value held in the

reference prior to the execution of the stable section. When the program enters a

stable section, we create an empty log for this section. When a write is encountered

within a monitored procedure, a write barrier is executed that checks if the reference

being written is in the log maintained by the section. If there is no entry for the

reference, one has created, the current value of the reference is recorded; otherwise,

no action is required. To handle references occurring outside stable sections, we

create a log for the most recently taken checkpoint for the writing thread.

Until a nested stable section exits, it is possible for a call to stabilize to unroll to

the start of this section. A nested section is created when a monitored procedure

is defined within the dynamic context of another monitored procedure. Nested

sections require maintaining their own logs. Log information in these sections

must be propagated to the outer section upon exit. However, the propagation of

information from nested sections to outer ones is not trivial; if the outer section has

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 161

monitored a particular memory location that has also been updated by the inner

one, we only need to store the outer section’s log, and the value preserved by the

inner one can be discarded.

Efficiently monitoring read dependencies requires us to adopt a different methodol-

ogy. We assume read operations occur much more frequently that writes, and thus it

would be impractical to have barriers on all read operations that record dependency

information in the communication graph. Our solution assumes race-free programs:

every shared reference is assumed to be consistently protected by the same set of

locks. We believe, this assumption is not particularly onerous in a language like

CML, where references are generally used sparingly. Under this assumption, it is

sufficient to monitor lock acquires/releases to infer shared memory dependencies.

By incorporating happens-before dependency edges on lock operations (Manson

et al. 2005), stabilize actions initiated by a writer to a shared location can be

effectively propagated to readers that mediate access to that location via a common

lock. A lock acquire is dependent on the previous acquisition of the lock.

7.3 Graph representation

The main challenge in the implementation was developing a compact representation

of the communication graph. We have implemented a number of node/edge

compaction algorithms allowing for fast culling of redundant information. For

instance, any two nodes that share a back-edge can be collapsed into a single node.

We also ensure that there is at most one edge between any pair of nodes. Any

addition to the graph affects at most two threads. We use thread-local metadata

to find the most recent node for each thread. The graph is thus never traversed

in its entirety. The size of the communication graph grows with the number of

communication events, thread creation actions, lock acquires, and stable sections

entered. However, we do not need to store the entire graph for the duration of

program execution. The leaves of the graph data structure are distributed among

threads. Specifically, a thread has a reference to its current node (which is always a

leaf). When a new node is added, the reference is updated. Any node created within

a stable section establishes a back-edge to the node that represents that section.

Thus, any unreachable node can be safely reclaimed by the garbage collector. As

we describe below, memory overheads are thus minimal.

A stabilize action has complexity linear in the number of nodes and edges

in the graph. Our implementation utilizes a combination of depth-first search and

bucket sorting to calculate the resulting graph after a stabilize call in linear time.

Depth-first search (DFS) identifies the part of the graph which will be removed after

the stabilize call. Only sections of the graph reachable from the stabilize call are

traversed, resulting in a fast restoration procedure.

7.4 Handling exceptions

Special care must be taken to deal with exceptions because they can propagate

out of stable sections. When an exception is raised within a stable section but its

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

162 L. Ziarek and S. Jagannathan

Fig. 15. Sample code utilizing exceptions and stabilizers.

handler’s scope encompasses the stable section itself, we must record this event in

our graph. When an exception propagates out of stable section, the stable section is

no longer active. To illustrate why such tracking is required, consider the following

example code given in Figure 15.

The example program consists of two functions f and g, both of which execute

within stable sections. Functions f’s execution is also wrapped in an exception

handler, which catches the error exception. Notice that this handler is outside

the scope of the stable section for f. During execution, two checkpoints will be

taken, one at the call site of g and the other at f’s call site. When the exception

error is raised and handled, the program executes a call to stabilize . The correct

checkpoint which should be restored is the captured checkpoint at g’s call site.

Without exception tracking, f’s checkpoint would be incorrectly restored.

To implement exception tracking, we wrap stable sections with generic exception

handlers. Such handlers catch all exceptions, modify our run-time graph, and finally

reraise the exception to allow it to propagate to appropriate handler. Exceptions

that have handlers local to the stable section in which they occur are not affected.

Modifications required to the dependency graph are limited – they are just a stable

section exit. Because an exception propagating out of stable section is modeled as a

stable section exit, nesting does not introduce additional complexity.

7.5 The rest of CML

Besides channel and event communication, the CML library offers many other

primitives for thread communication and synchronization. The most notable of

these are synchronous variables (M-vars, I-vars, and sync vars), which support put

and get operations. We instrumented stabilizers to monitor synchronous variables

in much the same manner as shared references. The rest of the CML primitives,

such as IVars and MVars, are created from either the basic channel and event

building blocks or synchronous variables and do not need special support in the

context of stabilizers.3 CML also provides various communication protocols, such

as multicast, which are constructed from a specified collection of channels and a

series of communication actions. Again, by instrumenting the fundamental building

blocks of CML, no special hooks or monitoring infrastructure must be inserted.

3 If an application relies heavily on such constructs, it maybe more efficient to make stabilizers aware
of the abstraction itself instead of its component building blocks.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 163

8 Performance results

To measure the cost of stabilizers with respect to various concurrent programming

paradigms, we present a synthetic benchmark to quantify pure memory and time

overheads, and examine several server-based open-source CML benchmarks to

illustrate average overheads in real programs. The benchmarks were run on an Intel

P4 2.4 GHz machine with 1 GB of RAM running Gentoo Linux, compiled and

executed using MLton release 20041109.

To measure the costs of our abstraction, our benchmarks are executed in three

different ways: first, in which the benchmark is executed with no actions monitored,

and no checkpoints constructed; second, in which the entire program is monitored,

effectively wrapped within a stable section, but in which no checkpoints are actually

restored; and third, in which relevant sections of code are wrapped within stable

sections, exception handlers dealing with transient faults are augmented to invoke

stabilize, and faults are dynamically injected to trigger restoration.

8.1 Synthetic benchmarks

Our first benchmark, Asynchronous Communication, measures the costs of building

and maintaining our graph structure, as well as the cost of stabilize actions in

the presence of asynchronous communication. The benchmark spawns two threads,

a source and a sink, that communicate asynchronously. We measure the cost of our

abstraction with regard to an ever increasing load of asynchronous communications.

To measure overheads for recording checkpoints, the source and sink threads are

wrapped within a stable section. The source thread spawns a number of new threads,

all of which send values on a predefined channel. The sink thread loops until all

messages are received and then performs a stabilize action. Since both threads

are wrapped in stable sections, the effect of stabilization is to unroll the entire

program, when stabilize is called from the source thread. Notice that if we called

stabilize from the sink, every worker thread that was spawned would be unrolled,

but the source thread would not because it does not directly communicate with the

sink.

The second benchmark, Communication Pipeline, measures similar effects as the

first, but captures the behavior of computations that generates threads which

communicate in a synchronous pipeline fashion. The benchmark spawns a series of

threads, each of which defines a channel used to communicate with its predecessor.

Each thread blocks until it receives a value on its input channel and then sends

an acknowledgment to the thread spawned before it. The first and the last threads

in the chain are connected to form a circular pipeline. This structure establishes a

chain of communications over a number of channels, all of which must be unrolled

if a stabilize action is initiated. To correctly reach a consistent checkpoint state,

an initial thread, responsible for creating the threads in the pipeline, is wrapped

within a stable section. Because the initial thread begins by spawning worker threads,

unrolling it will lead to a state that does not reflect any communication events or

thread creation actions.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

164 L. Ziarek and S. Jagannathan

Fig. 16. Asynchronous communication overheads.

Fig. 17. Communication pipeline overheads.

These benchmarks measure the overhead of logging program state and com-

munication dependencies with no opportunity for amortizing these costs among

other non-stabilizer-related operations. These numbers therefore represent worst

case overheads for monitoring thread interactions. The versions of the benchmarks

with injected stabilizers were compared to a vanilla MLton implementation of CML

with no additional instrumentation. On average, the programs take about 15%–20%

longer to run and consume about 50% more memory.

The runtime overheads for the synthetic benchmarks are presented in Figures 16(a)

and 17(a), and the total allocation overheads are presented in Figures 16(b) and

17(b). As expected, the cost to simply maintain the graph grows linearly with the

number of communications performed and runtime overheads remain constant.

There is a significant initial memory and runtime cost because we preallocate hash

tables used by the graph.

The protocols inherent in these benchmarks are captured at runtime via the

communication graph. We present two sample graphs, one for each of the mi-

crobenchmarks, in Figure 18. In the graph for asynchronous communication we

notice a complex tree-like communication structure generated from the single thread

source communicating asynchronously with the sink. The branching structure occurs

from the spawning of new threads, each of which communicates once with the sink.

In the communication pipeline we see a much different communication structure.

The threads communicate in a predefined order creating a simple stream. Both

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 165

Fig. 18. Communication graphs for asynchronous communication (a); and communication

pipeline (b).

graphs were generated from the stabilizer communication graph and fed to DOT to

generate the visual representation.4

8.2 Open-source benchmarks

Our other benchmarks include several eXene (Gray & Reuter 1993) benchmarks:

Triangles and Nbody, mostly display programs that create threads to draw objects;

and Pretty, a pretty printing library written on top of eXene. The eXene toolkit is

a library for X Windows that implements the functionality of xlib, written in CML

and comprises roughly 16K lines of Standard ML. Events from the X server and

control messages between widgets are distributed in streams (coded as CML event

values) through the window hierarchy. eXene manages the X calls through a series of

servers, dynamically spawned for each connection and screen. The last benchmark we

consider is Swerve, a web server written in CML whose major modules communicate

with one another using message-passing channel communication; it makes no use

of eXene. All the benchmarks create various CML threads to handle various

events; communication occurs mainly through a combination of message-passing

on channels, with occasional updates to the shared data.

For these benchmarks, stabilizers exhibit a runtime slowdown up to 6% over a

CML program, in which monitoring is not performed (see Tables 1–2). For a highly

concurrent application like Swerve, the overheads are even smaller, of the order of

3%. The cost of using stabilizers is only dependent on the number of inter-thread

4 We have discovered that utilizing the visualization of the communication graph is a useful tool for
software development and debugging CML programs. We believe stabilizers can be utilized during
testing and development to assist the programmer in constructing complex communication protocols.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

166 L. Ziarek and S. Jagannathan

Table 1. Benchmark characteristics and dynamic counts

Shared
Comm.

Benchmark LOC incl. eXene Threads Channels events writes reads

Triangles 16,501 205 79 187 88 88

N-Body 16,326 240 99 224 224 273

Pretty 18,400 801 340 950 602 840

Swerve 9,915 10,532 231 902 9,339 80,293

Table 2. Benchmark graph sizes and normalized overheads

Graph Overheads (%)

Benchmark size (MB) runtime memory

Triangles .19 0.59 8.62

N-Body .29 0.81 12.19

Pretty .74 6.23 20.00

Swerve 5.43 2.85 4.08

actions and the shared data dependencies that are logged. These overheads are well

amortized over program execution.

Memory overheads to maintain the communication graph are larger, although

in absolute terms, they are quite small. Because we capture continuations prior to

executing communication events and entering stable sections, part of the memory

cost is influenced by representation choices made by the underlying compiler.

Nonetheless, benchmarks such as Swerve that create over 10 K threads, and employ

nontrivial communication patterns, require only 5 MB to store the communication

graph, a roughly 4% overhead over the memory consumption of the original

program.

To measure the cost of calculating and restoring a globally consistent checkpoint,

we consider three experiments. The first is a simple unrolling of Swerve (see Table 3),

in which a call to stabilize is inserted during the processing of a varying number

of concurrent web requests. This measurement illustrates the cost of restoring to

a consistent global state that can potentially affect a large number of threads.

Although we expect large checkpoints to be rare, we note that restoration of such

Table 3. Restoration of the entire web server

Graph Channels Threads Runtime

reqs size Num cleared affected (milliseconds)

20 1,130 85 42 470 5

40 2,193 147 64 928 19

60 3,231 207 84 1,376 53

80 4,251 256 93 1,792 94

100 5,027 296 95 2,194 13

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 167

Table 4. Instrumented recovery

Channels Threads Runtime

Benchmark num cleared total affected (milliseconds)

Swerve 38 4 896 8 3

eXene 158 27 1,023 236 19

checkpoints is nonetheless quite fast. The graph size is presented as the total number

of nodes. Channels can be affected by an unrolling in two different ways: a channel

may contain a value sent on it by a communicating thread but that has not been

consumed by a receiver, or a channel may connect two threads that have successfully

exchanged a value. In the first case we must clear the channel of the value if the

thread which placed the value on the channel is unrolled; in the latter case no direct

processing on the channel is required. The table also shows the total number of

affected channels and those which must be cleared.

8.3 Injecting stabilizers

To quantify the cost of using stabilizers in practice, we extended Swerve and eXene

and replaced some of their error-handling mechanisms with stabilizers (see Table 4).

For Swerve, the implementation details are given in Section 3. Our benchmark

manually injects a timeout every 10 requests, stabilizes the program, and rerequests

the page.

For eXene, we augment a scrollbar widget used by the pretty printer. In eXene,

the state of a widget is defined by the state of its communicating threads, and

no state is stored in the shared data. The scroll bar widget is composed of three

threads which communicate over a set of channels. The widget’s processing is split

between two helper threads and one main controller thread. Any error handled by

the controller thread must be communicated to the helper threads and vice versa.

We manually inject the loss of packets into the X server, stabilize the widget, and

wait for new interaction events. The loss of packets is injected by simply dropping

every tenth packet which is received from the X server. Ordinarily, if eXene ever

loses an X server packet, its default behavior is to terminate execution because

there is no easy mechanism available to restore the state of the widget to a globally

consistent point. Using stabilizers, however, packet loss exceptions can be safely

handled by the widget. By stabilizing the widget, we return it to a state prior to

the failed request. Subsequent requests will redraw the widget as we would expect;

thus, stabilizers permit the scroll bar widget to recover from a lost packet without

pervasive modification to the underlying eXene implementation.

Finally, to measure the sensitivity of stabilization to application-specific parame-

ters, we compare our stabilizer-enabled version of Swerve to the stock configuration

by varying two program attributes: file size and quantum. Since stabilizers eliminate

the need for polling during file processing, runtime costs would improve as file sizes

increase. Our tests were run on both versions of Swerve; for a given file size, 20

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

168 L. Ziarek and S. Jagannathan

Fig. 19. Swerve benchmark overheads.

requests are processed. The results (see Figure 19(a)) indicate that for large file sizes

(upward of 256 KB) our implementation is slightly more efficient than the original.

Our slowdown for small file sizes (of the order of 10 KB) is proportional to our

earlier benchmark results.

Since our graph algorithm requires monitoring of various communication events,

lowering the time quantum allocated to each thread may adversely affect perfor-

mance, because the overhead for monitoring the graph consumes a greater fraction

of a thread’s computation per quantum. Our tests compared the two versions of

Swerve, keeping file size constant at 10 KB, but varying the allocated quantum

(see Figure 19(b)). Surprisingly, the results indicate that stabilizer overheads become

significant only when the quantum is less than 5 ms. As a point of comparison,

CML’s default quantum is 20 ms.

9 Related work

Being able to checkpoint and rollback parts or the entirety of an execution has been

the focus of notable research in the database (Chrysanthis & Ramamritham 1992), as

well as the parallel and distributed computing communities (Li et al. 1990; Kasbekar

& Das 2001; Elnozahy et al. 2002). Checkpoints have been used to provide fault

tolerance for long-lived applications, for example, in scientific computing (Tantawi

& Ruschitzka 1984; Agarwal et al. 2004), but have been typically regarded as

heavyweight entities to construct and maintain.

Existing checkpoint approaches can be classified into four broad categories: (a)

schemes that require applications to provide their own specialized checkpoint and

recovery mechanisms (Bronevetsky et al. 2003; Bronevetsky et al. 2004); (b) schemes

in which the compiler determines where checkpoints can be safely inserted (Beck et al.

1994); (c) techniques that require operating system or hardware monitoring of thread

state (Li et al. 1990; Hulse 1995; Chen et al. 1997); and (d) library implementations

that capture and restore state (Dieter & Lumpp 1999). Checkpointing functionality

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 169

provided by an application or a library relies on the programmer to define meaningful

checkpoints. For many multithreaded applications, determining these points is

nontrivial because it requires reasoning about global, rather than thread-local

invariants. Compiler and operating system-injected checkpoints are transparent to

the programmer. However, transparency comes at a notable cost: checkpoints may

not be semantically meaningful or efficient to construct.

The ability to revert to a prior point within a concurrent execution is essential to

transaction systems (Kung & Robinson 1981; Gray & Reuter 1993; Adya et al. 1995);

outside their role for database concurrency control, such approaches can improve

parallel program performance by profitably exploiting speculative execution (Rinard

1999; Welc et al. 2005). Harris et al. (2005) proposes a transactional memory system

for Haskell that introduces a retry primitive to allow a transactional execution

to safely abort and be reexecuted, if desired resources are unavailable. However,

this work does not propose to track or revert effectful thread interactions within

a transaction. In fact, such interactions are explicitly rejected by the Haskell-type

system. There has also been recent interest in providing transactional infrastructures

for ML (Ringenburg & Grossman 2005), and in exploring the interaction between

transactional semantics and first-class synchronous operations (Donnelly & Fluet

2008). Our work shares obvious similarities with all these efforts insofar as stabilizers

also require support for logging and revert program state.

In addition to stabilizers, functional language implementations have utilized

continuations for similar tasks. For example, Tolmach and Appel (1990) de-

scribed a debugging mechanism for SML/NJ that utilized captured continuations

to checkpoint the target program at given time intervals. This work was later

extended (Tolmach & Appel 1991) to support multithreading, and was used to log

nondeterministic thread events to provide replay abilities.

Another possibility for fault recovery is micro-reboot (Candea et al. 2004), a fine-

grained technique for surgically recovering faulty application components, which

relies critically on the separation of data and application recovery. Micro-reboot

allows for a system to be restarted without ever being shut down by rebooting

separate components. Unlike checkpointing schemes, which attempt to restore a

program to a consistent state within the running application, micro-reboot quickly

restarts an application component, but the technique itself is oblivious to program

semantics.

Recent work in the programming languages community has explored abstractions

and mechanisms closely related to stabilizers and their implementation for main-

taining consistent state in distributed environments (Field & Varela 2005), detecting

deadlocks (Christiansen & Huch 2004), and gracefully dealing with unexpected

termination of communicating tasks in a concurrent environment (Flatt & Findler

2004). For example, kill-safe thread abstractions (Flatt & Findler 2004) provide

a mechanism to allow cooperating threads to operate even in the presence of

abnormal termination. Stabilizers can be used for a similar goal, although the

means by which this goal is achieved is quite different. Stabilizers rely on unrolling

thread dependencies of affected threads to ensure consistency instead of employing

specific runtime mechanisms to reclaim resources.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

170 L. Ziarek and S. Jagannathan

Safe futures (Welc et al. 2005) bear some similarity to the speculative abstraction

defined here as both provide a revocation mechanism based on tracking dynamic

data and control-flow. However, safe futures do not easily compose with other Java

concurrency primitives, and the criteria for revocation is automatically determined

based on dependency violations, and is thus not under user control.

Transactional events (Donnelly & Fluet 2008; Effinger-Dean et al. 2008) are

emerging trends in concurrent with functional language design. They rely on a dy-

namic search thread strategy to explore communication patterns, thus guaranteeing

atomicity of communication protocols. We believe stabilizers could be utilized by

transactional events to implement optimistic search thread strategies. The monitoring

and rollback properties of stabilizers could be leveraged to create an adaptive search

mechanism that utilizes monitored information from previous searches to guide

future ones.

10 Conclusions and future work

Stabilizers are a novel modular checkpointing abstraction for concurrent functional

programs. Unlike other checkpointing schemes, stabilizers are not only able to

identify the smallest subset of threads which must be unrolled but also provide

useful safety guarantees. As a language abstraction, stabilizers can be used to

simplify program structure, especially with respect to error handling, debugging, and

consistency management. Our results indicate that stabilizers can be implemented

with small overhead and thus serve as an effective and promising checkpointing

abstraction for high-level concurrent programs.

There are several important directions we expect to pursue in the future. While

the use of cut can delimit the extent to which control is reverted as a result of

a stabilize call, a more general and robust approach would be to integrate a

rational compensation semantics (Bruni et al. 2005) for stabilizers in the presence of

stateful operations. We also plan to explore richer ways to describe the interaction

between stable sections and their restoration, for example, by providing a facility

to have threads restore program state in other executing threads, and to investigate

the interaction of stabilizers with other transaction-based concurrency control

mechanisms. In addition, we would like to extend stabilizers to carry values much

like exceptions do in ML. This would allow programs to adjust based on the faults

or exceptions that caused the reversion to take place.

Although our benchmarks indicate that stabilizers are a lightweight checkpointing

mechanism, there are a number of optimizations we wish to pursue to limit the

overheads of logging and reexecution. Our logging infrastructure would benefit

from partial or incremental continuation grabbing to limit memory overheads.

During a stabilize action many threads and computations maybe reverted. However,

only a small number of such computations may actually change during their

subsequent reexecution. Identifying such sections of code could greatly reduce

the cost of reexecution after a checkpoint is restored. Function memoization in

a multithreaded program with channel-based communication requires additional

monitoring of thread interactions. Such information is already present within our

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 171

communication graph and can be leveraged to assist function memoization (Ziarek

et al. 2009).

Acknowledgments

We thank the reviewers for their careful reading and valuable suggestions. This work

is supported by the National Science Foundation under grants CCF-0701832 and

CCF-0811631.

References

Adya, A., Gruber, R., Liskov, B. & Maheshwari, U. (1995) Efficient optimistic concurrency

control using loosely synchronized clocks, SIGMOD Rec., 24 (2): 23–34.

Agarwal, S., Garg, R., Gupta, M. S. & Moreira, J. E. (2004) Adaptive incremental

checkpointing for massively parallel systems. In Proceedings of the 18th Annual International

Conference on Supercomputing. Malo, France, ACM, pp. 277–286.

Beck, M., Plank, J. S. & Kingsley, G. (1994) Compiler-Assisted Checkpointing . Tech. rept.

Knoxville, TN: University of Tennessee.

Bronevetsky, G., Marques, D., Pingali, K. & Stodghill, P. (2003) Automated application-level

checkpointing of MPI programs. In Proceedings of the 9th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming . San Diego, California, USA, ACM,

pp. 84–94.

Bronevetsky, G., Marques, D., Pingali, K., Szwed, P. & Schulz, M. (2004) Application-

level checkpointing for shared memory programs. In Proceedings of the 11th International

Conference on Architectural Support for Programming Languages And Operating Systems.

Boston, MA, USA, ACM, pp. 235–247.

Bruni, R., Melgratti, H. & Montanari, U. (2005) Theoretical Foundations for compensations

in flow composition languages. In Proceedings of the 32nd ACM SIGPLAN Symposium on

Principles of Programming Languages. Long Beach, CA, USA, ACM, pp. 209–220.

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G. & Fox, A. (2004). Microreboot – A

technique for cheap recovery. In Proceedings of the 6th ACM Symposium on Operating

Systems Design and Implementation. San Francisco, CA, USA, USENIX Association, p. 3.

Chen, Y., Plank, J. S. & Li, K. (1997) CLIP: A checkpointing tool for message-passing parallel

programs. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing. San Jose,

CA, USA, ACM, pp. 1–11.

Christiansen, J. & Huch, F. (2004) Searching for deadlocks while debugging concurrent

Haskell programs. In Proceedings of the 9th ACM SIGPLAN International Conference on

Functional Programming. Snow Bird, UT, USA, ACM, pp. 28–39.

Chrysanthis, P. K. & Ramamritham, K. (1992) ACTA: the SAGA continues. In Database

Transaction Models for Advanced Applications. Morgan-Kaufmann Publishers Inc., San

Francisco, CA, USA, pp. 349–397.

Dieter, W. R. & Lumpp, Jr., J. E. (1999) A user-level checkpointing library for POSIX threads

programs. In Proceedings of the 29th Annual International Symposium on Fault-Tolerant

Computing. Madison, WI, USA, IEEE Computer Society, p. 224.

Donnelly, K. & Fluet, M. (2008) Transactional events, J. Funct. Program., 18, 649–706.

Effinger-Dean, L., Kehrt, M. & Grossman, D. (2008) Transactional events for ML.

In Proceedings of the 13th ACM SIGPLAN International Conference on Functional

Programming. Victoria, BC, Canada, ACM, pp. 103–114.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

172 L. Ziarek and S. Jagannathan

Elnozahy, E. N. (Mootaz), Alvisi, L., Wang, Y-M & Johnson, D. B. (2002) A survey of

rollback-recovery protocols in message-passing systems. Acm Comput. Surv., 34 (3): 375–

408.

Field, J. & Varela, C. A. (2005) Transactors: A programming model for maintaining globally

consistent distributed state in unreliable environments. In Proceedings of the 32nd ACM

SIGPLAN Symposium on Principles of Programming Languages. Long Beach, CA, USA,

ACM, pp. 195–208.

Flatt, M. & Findler, R. B. (2004) Kill-safe synchronization abstractions. In Proceedings of the

ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation.

Washington DC, USA, ACM, pp. 47–58.

Gray, J. & Reuter, A. (1993) Transaction Processing. Morgan-Kaufmann. Publishers Inc., San

Francisco, CA, USA.

Harris, T. & Fraser, K. (2003). Language support for lightweight transactions. In Proceedings

of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,

and Applications. Anaheim, CA, USA, ACM, pp. 388–402.

Harris, T., Marlow, S., Simon, P. J. , & Herlihy, M. (2005) Composable memory transactions.

In Proceedings of the 10th ACM SIGPLAN Conference on Principles and Practice of Parallel

Programming. Chicago, IL, USA, ACM, pp. 48–60.

Herlihy, M., Luchangco, V., Moir, M. & Scherer, III, W. N. (2003). Software transactional

memory for dynamic-sized data structures. In Proceedings of the ACM Conference on

Principles of Distributed Computing. Boston, MA, USA, ACM, pp. 92–101.

Hulse, D. (1995) On page-based optimistic process checkpointing. In Proceedings of the 4th

International Workshop on Object-Orientation in Operating Systems. Lund, Sweden, IEEE

Computer Society, p. 24.

Kasbekar, M. & Das, C. (2001) Selective checkpointing and rollback in multithreaded

distributed systems. In Proceedings of the 21st International Conference on Distributed

Computing Systems. Mesa, AZ, USA, IEEE Computer Society.

Kung, H. T. & Robinson, J. T. (1981) On optimistic methods for concurrency control, ACM

Trans. Database Syst., 6 (2), 213–226.

Li, K., Naughton, J. & Plank, J. (1990) Real-time concurrent checkpoint for parallel programs.

In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming. Seattle, WA, USA, ACM, pp. 79–88.

Manson, J., Pugh, W. & Adve, S. V. (2005) The Java memory model. In Proceedings of the

32nd ACM SIGPLAN Symposium on Principles of Programming Languages. Long Beach,

CA, USA, ACM, pp. 378–391.

Reppy, J. (1999). Concurrent Programming in ML. Cambridge University Press.

Rinard, M. (1999) Effective fine-grained synchronization for automatically parallelized

programs using optimistic synchronization primitives, ACM Trans. Comput. Syst., 17 (4),

337–371.

Ringenburg, M. F. & Grossman, D. (2005) AtomCaml: First-class atomicity via rollback.

In Proceedings of the 10th ACM SIGPLAN International Conference on Functional Pro-

gramming. Tallinn, Estonia, ACM, pp. 92–104.

Tantawi, A. N. & Ruschitzka, M. (1984). Performance analysis of checkpointing strategies,

ACM Trans. Comput. Syst., 2 (2), 123–144.

Tolmach, A. P. & Appel, A. W. (1990) Debugging standard ML without reverse engineering.

In Proceedings of the 1990 ACM Conference on LISP and Functional Programming.

Nice, Francs, ACM, pp. 1–12.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

Lightweight checkpointing for concurrent ML 173

Tolmach, A. P. & Appel, A. W. (1991) Debuggable concurrency extensions for standard

ML. Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed Debugging.

Santa Cruz, CA, USA, ACM, pp. 120–131.

Welc, A., Jagannathan, S. & Hosking, A. L. (2004) Transactional monitors for concurrent

objects. In Proceedings of the European Conference on Object-Oriented Programming.

Oslo, Norway, Springer Berlin/Heidelberg, pp. 519–542.

Welc, A., Jagannathan, S. & Hosking, A. (2005) Safe futures for Java. In Proceedings of the

20th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and

Applications. San Diego, CA, USA, ACM, pp. 439–453.

Ziarek, L., Sivaramakrishnan, K. C. & Jagannathan, S. (2009) Partial memoization of

concurrency and communication. In Proceedings of the 14th ACM SIGPLAN International

Conference on Functional Programming. Edinburgh, Scotland, ACM, pp. 161–172.

https://doi.org/10.1017/S0956796810000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000067

