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LOCAL RINGS WITH ELEMENTARY 
ABELIAN UNITS 

BY 

W. K. NICHOLSON AND H. J. SPRINGER 

In [2] the structure of all semiperfect rings with abelian group of units has 
been obtained in terms of commutative local rings. It follows easily that the 
structure of semiperfect rings with elementary abelian group of units is deter
mined by commutative local rings whose unit groups are elementary abelian. 
In this note such local rings are completely characterized. It is shown that a 
local ring having an elementary abelian group of units has characteristic two, 
four or eight and is a homomorphic image of ZkG/E(ZkG) where G is some 
elementary 2-group and E(ZkG) is the ideal of ZkG generated by { 1 - u2:ue 
(ZkG)*}. 

Throughout, all rings will be associative with identity and all subrings shall 
have the same identity as the original ring. If n ̂  1 is an integer, Zn will denote 
the ring of integers modulo n. If R is a ring, we denote the group of units by 
R* and the Jacobson radical by J(R). A ring R is called local if R/J(R) is a 
division ring. Alternatively, JR is local if R = J(R)UR* or if R has a unique 
maximal left ideal. If p is a prime integer, a group G is an elementary p-group 
if ap = 1 for every aeG. In particular, we regard the trivial group with one 
element as an elementary p-group for each prime p. 

PROPOSITION 1. Let R be a local ring with R* an elementary abelian p-group 
for p an odd prime. Then R = Z2 or R is a field of characteristic 2 such that 
|jR| = 2k and p = 2 k - l , k > 2 . 

Proof. Char R = 2 since (-1)2 = 1 and p is odd. If a e J(R), then (1 + a)p = 
1 + pa + ba = 1 + a + ba, b e J(R). Hence (1 + b)a = 0 and so a = 0. Thus J(R) = 
0 and R is a field. Since R is a field and R* is elementary p-group, R* is a 
group of at most p elements. Since p is a prime, R* is the group with one 
element or R* is the cyclic group of order p. The result follows. 

COROLLARY 2. If F is a field such that F* is an elementary p-group for p 
prime, then F=Z2 or F = Z3 or F has characteristic 2 and |F| = 2k where 
p = 2 k - l , k > 2 . 
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Proof. If p # 2, this is Proposition 1. If p = 2, then F* is a group of at most 2 
elements, so |F| = 2 or 3. Thus, F=Z2 or F=Z3. 

The preceding proposition reduces the problem to considering the case 
where p = 2 and R is not a field. The next result collects some basic facts. 

PROPOSITION 3. Let R be a local ring such that JR* is an elementary 2-group. 
Then 

(1) R is commutative and either R = Z3 or R/J(R) = Z2. 
(2) If R^Z3 then char R = 2, 4 or 8. 
(3) If ae J(R) then a2 = 2a and 4a = 0. 

Proof. Let a, be J(R) and ueR*. Then 1 + a, 1 + beR* and so ab = ba and 
au = ua follow since JR* is abelian. Hence R is commutative. Furthermore 
(l + a ) 2 = l = ( l - a ) 2 and so a2 = 2a = -2a. This proves (3). Now R/J(R) is a 
field and so is isomorphic to Z 2 or Z 3 by Corollary 2. If R/J(R) = Z2 then 
2 G J(R) so 8 = 0 by (3). This means char J? = 2, 4 or 8 and it remains to show 
that R/J(R) = Z3 implies J(R) = 0. But R/J(R) = Z3 means 3e J(R) and hence 
121* = 0. Since R is local this means char R = 3 and so if a G / (R) , a = 4a = 0 
by (3). 

We now define elementary 2-rings and devote the remainder of this note to 
characterizing these rings. 

DEFINITION 4. A ring R is an elementary 2-ring if and only if R is local, R* is 
an elementary 2-group and R^Z3. 

COROLLARY 5. Every subring and homomorphic image of an elementary 
2-ring is again an elementary 2-ring. 

Proof. If R is an elementary 2-ring and aeJ(R) then a3 = (2a)a = 2a2 = 
4a = 0. Hence r2= 1 or r3 = 0 for each reR and the result follows. 

The next result is our first step towards a complete characterization of these 
elementary 2-rings. 

PROPOSITION 6. Let R be an elementary 2-ring of characteristic two (respec
tively four, eight). Then R is a homomorphic image of a group ring Z2G 
(respectively Z4G, Z8G) where G is an elementary 2-group. 

Proof. Let G = JR* and let L be the subring of R generated by the identity. 
Then L = Zk where fc = chari^. If cr:Zk^>L is an isomorphism, the map 
a:ZkG-+ R defined by a(£ /gg)==Z°"('g)g is clearly a homomorphism and is 
onto since 1 + J(R) = G. 

COROLLARY 7. A ring R is an elementary 2-ring of characteristic 2 if and only 
if R is a homomorphic image of Z2G for some elementary 2-group G. 
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Proof. Let gteG, 1 < i < n. Then g? = 1 for each i and so (gi + • • • + gn)2 = 
Zr=i g?= m where m = 1 or 0 accordingly as n is odd or even. Hence Z2G is 
an elementary 2-ring and the result follows. 

If R denotes Z4G or Z8G and <p .\R -» S is a ring surjection, then S need not 
be an elementary 2-ring. For example, Z4G is not an elementary 2-ring if 
G = C2xC2xC2. However, we can define an ideal E(R)^R such that S is an 
elementary 2-ring if and only if E ( K ) ç k e r <p. 

DEFINITION 8. If R is a ring, let E(R) denote the two-sided ideal of R 
generated by {1 ~u2:u G JR*}. 

LEMMA 9. Let R be local with 1 + 1 e J(R) and let A g R be a two-sided ideal 
Then R/A is an elementary 2-ring if and only if E(R)^A. 

Proof. Suppose E(R)^A. Then, for every M G R * , l-u2eA. Let u + Ae 
(R/A)*. Then 1-uveA for some veR. Hence uéJ(R) so, since R is local, 
U G R * . This means that l-u2eA and so (R/A)* is an elementary 2-group. 
Moreover R/A^Z3 (since 1 + l e J(R)) and so R/A is an elementary 2-ring. 
The converse is obvious. 

This result together with Propositions 3 and 6 yields the following result. 

THEOREM 10. Let R be a ring. R is an elementary 2-ring if and only if 
char R = k where k = 2, 4 or 8 and R is a homomorphic image of ZkG/E(ZkG) 
for some elementary 2-group G. 

If RG is a group ring, 8.RG-+R denotes the augmentation homomorph-
ism. That is if r = aigi + * * ' + angn then 8(r) = a1 + - • - + an. We now charac
terize the ideal E(R) in the cases of interest. 

THEOREM 11. Let R = LG when L is one of Z2, Z 4 or Z 8 and when G is an 
elementary 2-group. Let A denote the two-sided ideal of R generated by all 
elements 2(1 + g + h 4- gh) when 1, g and h are distinct elements of G. (If \G\ < 2 
take A = 0). Then E(R) = A +4J(R). 

Proof. If g, h G G then (g + h)3 = 0 and so 1 + g + h e JR*. Thus 
2(l + g + h + gh) = (l + g x h ) 2 - l G E ( J R ) and so A g E ( R ) . Moreover 4 / ( K ) e 
E(R) by Proposition 3 so A + 4 J ( K ) ç E ( J ^ ) . To obtain the reverse inclusion 
let u = Xr=o atgi G -R* where at e L, g4 G G. Then 8(u) = YA=O at e L* and so 
1 = (Sr=o ai)2 = Zi</ flity- Since gf = 1 for each i this gives 

u 2 - l = ( X a2 1-1 + 2 £ aja/gig/ 

= 2 ^ a»Of(&&-l). 
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Now, if either at or a, is even then, since 4 = - 4 in L we obtain 

2aia,(&gi-l) = 2aiai(l + gl + g, + gigi) + 2aia,(gi + gl)eA+4J(R). 

Hence, if we write v - a0go + fligi + • • • + akgk where a0, au...,ak are the 
odd coefficients, then ( u 2 - l ) - ( u 2 - l ) e A+4/(1?). Now it follows by [1] 
that JR is local and J(R) = {reR \ S(r)eJ(L)}. Thus u is a unit and it 
suffices to show that v2-le A+4J(1?). We have v = 
(±go±---±gh) + 3(±gh+i±-- -±gk), &eG and so, since (x + 3y)2 = (x-y) 2 in 
R, we may assume all the coefficients are ±1. Because (±gv)2 = v2 for all g G G 
we may assume v = 1 + rx + • • • + rk where rt e G or -rt e G for each i. If |G|^2, 
then u = l and so u 2 - l = 0e A+4J(R). But the k + l~i? = l!c=i (l-rO and, if 
this is squared the result simplifies to 

(t;2-l)-k(2t;-fc) = Z 2(1-10(1-1)). 

The right side is in A +4/(1?) since, if 1, g and h are distinct elements of G, we 
have 

2 ( l - g ) ( l - h ) = 2(l + g + h + gh)-4(g + ft), 

2( l -g)( l + h) = 2(l + g + fe + gh)-4g(l + fe). 

2(l + g)(l + h) = 2(l + g + fi + gh). 

Finally k is even (since v is a unit) and so, if k = 2m, we have k(2v-k) = 
4m(i)-m). This is zero if m is even and is in 4J(R) if m is odd and it follows 
that v2-leA + 4J(R), as required. 
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