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IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS
OF THE POINCARE GROUP WITH RESPECT TO THE
POINCARE SUBSEMIGROUP, 1

HITOSHI KANETA

§1. Introduction

Since E. Wigner set up a framework of the relativistically covariant
quantum mechanics, several aspects of unitary representations of the
Poincaré group have been investigated (see [8], [16]). In this paper it
will be shown that some unitary representations of the Poincaré group
are irreducible, even if they are restricted to the Poincaré semigroup
(Theorem 1,2 and 3). As a result of the argument we shall also give

the irreducible decomposition of induced representations Indz (see§3,
SU1,1) 1 SL(2,C)

cf. [3]). Here the Poincaré group P means a semi-direct product between
R, and SL(2, C) with the multiplication
(x,8)(x',8") = (x +- g7 "x'g™", gg’)  for x,x"€ R, and g,8" € SL(2,C),

Xy — X3 X, — ixl)
%, + ix X, + %,
and g* shows the adjoint of the matrix g. The Poincaré semigroup P,
is the subsemigroup {(x, g) e P: xj — x} — x} — x2 > 0, x, > O}.

We have not yet succeeded in proving that any irreducible unitary
representations of P are irreducible with respect to P,, but in a lower

where x = (x,, x,, %, x;) is identified with the matrix (

dimensional case we have the following.

THEOREM 1. [Every irreducible unitary representation of the 2-
dimensional space-time Poincaré group P(2) is irreducible too as the
representation restricted to its Poincaré subsemigroup. Here P(2) is the

/2
semi-direct product between R, and {(eo eo_m)i teR} with the same

multiplication as P under the identification (x,, x,) — % —~% 0 .
0 Xy + Xy
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The semigroup is just {(x, g): x} — x2 > 0, x, > 0}.

§2. Main theorems

Let us define a bilinear form (, ) between R, and R, by (x,&) =
XXy — X%y — X%, — x,%;. By abuse of symbol, {, ) stands also for the
similar bilinear form on R, or R, Defining the action of G = SL(2, C)
on R, by x-g = g*xg (recall the identification), we obtain the well known
diagram:

G-orbits fixed points little groups

Vi = (& &) = M, £, = 0} iM((l) ‘1’) SUE@)

Vi = {(&,%) = 0, x,= 0} i((l) 8) E@) = {(2” e“g)}

V=& =-my | M("g Q)| suan={(§2)lar—1sr =1}

V, = {(& & = 0, £, = 0} (8 0) SL(, C)

M: positive number.

Furthermore there exists a well known correspondence between an
irreducible unitary representation of P and a triplet (v,G, x), where o
stands for one of G-orbits and = denotes an irreducible unitary representa-
tion of the little group G,. More precisely, denote §, the representation
space of = and v, the G-invariant measure on the homogeneous space
= G,\G and let $*~ be a Hilbert space consisting of $.-valued measurable
functions on P such that

(1) f(x, 8)(¥',8")) = e On(g)f(x',8")  for g e G,

where % is a fixed point with the little group G,,

(2) [ epds. < oo .

Then the irreducible unitary representation of P corresponding to the
triplet (0, G,,z) say U** is realized on $** by the formula

(3) U~(x, &)f(«', 8") = f((x', &')(x, 8)) .
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THEOREM 2. Irreducible unitary representations of the Poincaré group
corresponding to one of the orbits Vi, V& and V, are irreducible as the
representation of the Poincaré subsemigroup.

Proof. Let (U, 9) be an irreducible unitary representation of P. If
it is reducible with respect to P,, there exists a non-trivial closed sub-
space DC $ such that UD S D for any ¢t >0, where U, denotes
U((t,0,0,0),e). Put D, =DO QO U.D and 9, ———m Then D, is

an outgoing subspace of , in the sense that

(i) UD,c D, for all ¢ >0,

(ii) () UD, =0,

(ii1) L{l_IJz—D: =9, # {0}
In view of Sinai’s theorem (Theorem 3.1 in chap. 2 [11]) the restriction
(U,, 9,), which is a unitary representation of R, is unitarily equivalent to
some multiple of the regular representation of R. Consequently the

representation (U, §) of R must contain at least one regular representa-
tion of R. On the other hand, making use of (1) and (3) and putting

g = (;‘f g), we can verify easily that

Uf(, 8) = et 30, )

where ¢ denotes one of constants 41, +M~' and 0. This implies that
the spectrum of the selfadjoint operator iU/|,., has either upper or lower
bounds. In particular the representation U, never contains the regular
representation. Q.E.D.

We turn now to the representations corresponding to the orbit V.
Since each of them is specified by an irreducible unitary representation
of the little group G, = SU(1,1), we summarize those representations
after Vilenkin (§ 2 in chap. VI [17]). All of them can be obtained from
algebraic representations on closed subspaces D of C~-functions C=(T)
on the 1-dimensional torus 7. We denote the inner product by (, ).

THEOREM 3. Irreducible unitary representations of the Poincaré group
P given by the so-called discrete series representations n*(¢,0) and n*(¢, 1/2)
of G, = 8SU(1,1) and the orbit V,; are also irreducible even if they are
restricted to the subsemigroup P,.

We shall give the proof of Theorem 3 as well as Theorem 1 in the
following §5.
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the values of
representations » n(g)f(e") for g, = (% g) D gj:’w 9:3,?)‘"
;:) -+ ipp>0 | I =g +a l”f( e’ j: 7) cx(T) 1
Towm L= =124+ ip,0>0 | I, =|Be + aP-i(Be’ + u)f(——-gzw i g) c=(T) 1
Tew  —1<E< —1/2 I C~(T) E;i:—.;:ﬂ“%)
why (= —1, i; e I, 3 ae lzg%i;-:;‘;}'
B | R
e T Tl, e ; VST @ Elsij:;—:_v;)
Ty £ 7:(4—1/2, =302, -+ | I y>§_m“v3_w T{%

§3. Decomposition of unitary representations of SL(2, C)

We begin with reviewing the irreducible unitary representations of
SL(2,C) after Naimark [12]. Throughout this section G stands for
SL(2,C). For an integer m denote by L2(SU(2)) a subspace of L*(SU(2))
consisting of functions ¢ satisfying

im +it/2 0
o) = gty forr =" 0, ).

The irreducible representations S, (meZ, pcR) has a realization on

L:L(SU(©2):
ViR = —HE ptum)
where a(g) = | ™ %g»™ and ug denotes a unitary representative of the

coset Kug with K = {(2; 1): 1>0,pe C}. Meanwhile the irreducible

representation D, (0 < ¢ < 2) has a realization on the Hilbert space 9,
in which a subspace B, of bounded functions belonging to L}{(SU(2)) is
dense:

V(o) = — Zgzg o(ug) for peB,,

where a(g) = |g»|°% We put
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REPRESENTATIONS OF THE POINCARE GROUP 117

cost/2 isin t/Z) (cos t/2 —sin t/2)
t) = of) = .
) (i sin#/2 cos ¢/2 @(®) sin ¢/2 cos £/2

oyt) = (ei(;/z e(—)it/2> ol = (z}}i zl/g :lli Zg)

__{cht/2 i sh t/2 (e 0
olt) = (—i sht/2 ch t/2> @) = ( 0 e"m) '

We now introduce linear operators associated with a unitary representa-
tion (T, 9) of G. Define

0, =4 T forj=12--,6,
dt |e=0
H, =iv, +w,, H=iv,, F,=iv+o 6B F,=Iio,,
4, = —(H,H. + H.H, + 2H)/2,
Ad=({F,F. +F.F, +2F)2+ 4,— 1,
4 =HF +HF, +FH +FH,+4HF)[2.

More precisely, since the operator 4, (resp. 4 and 4') is essentially

selfadjoint with domain {ﬁnite sum of f oW TWf.du: ¢, e C(SUQ)),
SU(2)

fie @} (resp. {ﬁnite sum of L o(&)T(2)fdg: ¢ € Co(G), fe @}) ([14]), we

shall use the same letters for their selfadjoint extensions. We denote
the domain of an operator A by D,. Then D, (resp. D;.) is the
intersection D, N D,, (resp. D, N D,). Clearly iw, is a selfadjoint
operator with domain Do,.

Remark. A homomomorphism 4 from G onto the proper Lorentz
group defined by A(g)x = g*'xg~! for xe R, (recall the identification in
§ 1) satisfies

Moy (t) = a(—1t), Mw(t) = alt), Awy(8)) = a\t) ,

Mo @) = b(—1), Mw®) = b(@), A(ws(t)) = by .
We refer subgroups a,(t) and b,(¢) to [12] where a homomorphism Ag)x
= gxg* is used.

We write down explicitly a canonical basis of the representations

Sn,, and D,.

LEmMMA 1. A canonical basis of the representation S, is given by
{hm,p=—k —k+1---,kand k=m/2,m/2 + 1, ---}, where
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& .
2 = VBT @iv + 0) \cor .
Sop.mm(u) '\/ k + 1 (ygn/z ,\/41"2 _|__ p2>Cm/zyp(u)

A canonical basis of the répresentation D, is given by {¢},:p = —k, —k + 1,
vk and k=0,1, ---}, where

k(W) = V2R + 1 1('c zg’; +9) )J—Co A1) -

The function Cf, on SU(2) is defined by

v (G DIET DT < (kY[ k4
Gl = (=D (=) (k+ v)! Z;( a >(k—p—a)

X uuly g ug e,
where a ranges from max (0, —p — v) up to min (k — g, k — v).

Proof. See §11 and §12 of [12]. Since we use the homomophism
4, the canonical basis above differs a little from the one cited in [12].

It seems convenient to reparametrize these representations of G as
follows:

S, form>1

Sievy form=0,2>0

Dy form=0, —-1<21<0

unit representation for m =0, 1 = —1.

(Tm,b Sém,l) =

Thus the representation (T, 9., has the canonical basis ff, , in
accordance with Lemma 1 and it holds that

2
4= —(I’L) 2, a=-T3,
2 + 2
Furthermore, putting ¢, = {(0,2): -1 <4} and ¢, = {(m,2):2¢R} for
positive integer m, we can identify the dual space G with a Borel subset
S nzo b in R, (18.9.13 [4]).

LemMmA 2. Denote {ff,,.} the canonical basis of the representation
(T, 1y Om,2) then it holds that

( 1) Aoﬂim,x = _’k(k + l)ff,m,z

(11) Hafuk,m,i = vak,m,z

(i) F,ffm:= vk + D2k + 2)C,,1m fEitn, where
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i {Ck+ 1 - () e+ 12+ 2} St + 17 - i + 1)

for m > 1

k+l,m —

i{(k+ 1+ {4k + 1) —1} for m=0

(iv) Put ff,.=0 for R=0,1/2,1,8/2,--- and |v|=0,1/2,1,---
unless v= —k,—k+1,---,kand k = m[2,m[2 + 1, - - -. Then the function
(T @) s [¥ mdmz 0 G X G is measurable.

(v) As t— 0, the norm

H T A0 s — Fiim.a
t

= 0yffn

m,2
converges to zero uniformly on any compact set of {(0,2): —1< 2<0},
{(0,2): 2 > 0} and ¢, with positive integer m.

Proof. A canonical basis has properties (i), (ii) and (iii). Assume

that g = (g)e G, weSUE), (_%‘ ‘B)eSU(Z), (5(;1 g)eK and that

a
(_% g)g - (5(;1 g)u, then we have (see §11.1 in [12])

Uy = (_ng + C_(gzz){l_pgn + agul + I—ngz + agy, [} .
Hence a(ug)/a(ug) is given by

{ —Fgu + agul + |—Bg12 + gy, [} e for S’m.,p ’
{I—Bgu + agul + 1_/—38'12 + agy,ff}tor for D, .

Consequently V(g)¢t . ,(v) and V(g)¢t ,(u) are C~-functions on G X SU(2)
X R and G X SU(2) X (0,2) respectively. Recalling that the inner pro-
ducts of the representation space of S,, and D, are of the form

(@, Om,p = _[ lp(w)|! du
SU(2)
0. =] O 'yl Yo ) du”
SU@)XSU(2)

respectively, where @(u) = |u,|™**°, we easily verify (iv). Since V(g)p(w)
is smooth, (v) is clear. Q.E.D.

Thanks to Lemma 2 (especially to (iv)), for a o-finite measure on G

we can define a unitary representation j@ T, do on the Hilbert space
G
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f:S;')m,ldo. To decompose a unitary representation of G is, by definition,

to determine a sequence of mutually singular ¢-finite measures {oy,d,,
-++,0,} on the measurable space G so that the representation is unitarily
equivalent to the representation (7, H) defined by

7= ff T, do, ®[2] f T, .de,® - ®[R] fj T, do.

on the Hilbert space

6= ﬁ 60 ,do, ®[2] fj G A ® - D [3Re] jf Sn.ido.. |

where the cardinal number in the bracket indicates the multiplicity. We
shall search for a procedure to determine the measure ¢, up to the usual
equivalence.

LEmMa 3. For k=0,1/2,1,---, let W, be the space of solutions of
the equations

(4) Hf =kf, Af= —kk+ Df

with respect to the representation (T, D) above. Denote o™ the restriction
0:|6n. Then we have unitary equivalences among selfadjoint operators:

A}WO:J@ 2do® @ [2] J@ 2do® @ - - - @[go]f@ 2da®
[~1,00) [=1,00) [=1,e)

LW, OF W, ~ Ji (—R)idel @ [2] fi (— k) ada@

® - @I [ (~Bido.

Proof. Without loss of generality we may assume that all measures
except for ¢, are zero measures. Rewrite ¢, = 0. We claim

1° W, = {[} o2k, Dftn.do: [ lat do < oo}
G
Indeed, set
W, = { ] i‘ a,(m, ,2)}‘,,’f,,mda:.[A|a,|2 do < o for each v} .
(] [

y=—kK

We will show that the restriction A,,[Wk is equal to —k(k + 1). To this
end define f(g) for f= J@ fodocW, and ¢ in C=(SU®) by f(o) =
G
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I o(w)T(w)fdu W,. Denoting 47 and 4™* the operator 4, correspond-
sT®
ing to the left regular representation of SU(2) and the restriction 7', ,|SU(2)

®
respectively, for h = ‘[A hn,do we have
G

Afenh) = | duldig) T, b
= [, do |, dudsp@N T @ Do

- f L 40 o @), B Y
= —k(k + D)(f(p), h) ,

as desired. Since the set {ff,.:v=—k, —k+1,---,k and k = m/2, m/2
+ 1, ...} is an orthonormal basis in the Hilbert space 9., 9 is a direct
sum of W/s. Thus W, is a subspace of W,. From (v) of Lemma 2 f =

k o~
> a(m, fF,. . do in W, satisfies
G v=—k

Bf = 3 vafin.do=kf,

Grv=—k

which implies that @, is equal to zero a.e. unless v = k, proving 1°.
Next step is to show

20 W, OF. W, = {j@ (2, Df e do: L laf do < oo} .

2.

To see this, define W, , = {J@ a(m, Z)fk’im,ldozf lafde < oo}. Since W,
4m im

is a direct sum of W, ,’s with non-negative integers m = 2%,2k — 2, - - -

and since the closure ¥, W,_, , coincides with W, , due to (iii) and (v)
of Lemma 2, 2° is now clear. Finally we verify

3° 4 ‘ a(0, Do, do = l 2a(0, Dfy,do
4o &o
4 ‘ a2k, Dfionido = ‘ (—R)Aa(2k, DfLs, do ,
1213 b2k

provided the members on the right side belong to . Indeed we can
argue as we showed that 4,|W, = —k(k + 1) in 1°. Now 1°, 2° and 3°
yield the Lemma. Q.E.D.

The following lemma is also useful.
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Lemma 4. The restriction 4|W, and 4'|F, W, are unitarily equivalent
selfadjoint operators.

Proof. As mentioned in the proof of Lemma 38, the closure F,W, is
a direct sum of W, ,’s with non-negative integers m = 2k,2k — 2, ---.

The following isometry from W, onto F,W, transforms the first operator
to the second one:

[ atm dtwsdo—~ 5 (7 atm, Dfttado
m m 4m

M=2K,2k—2ye e =2k, 2k —2,++

Q.E.D.

To sum up, given a unitary representation of SL(2,C), one can
decompose it into irreducible ones if one could specify the space W,
(call it the space of the k-th heighest weight vectors) and carry out the
spectral decomposition of selfadjoint operators 4| W, and 4'|W, O F, W,_..

§4. The space of the k-th heighest weight vectors W,

Let U™* denote an irreducible wunitary representation of the
Poincaré group P associated with the hyperboloid of one sheet V,, and
an irreducible unitary representation = of SU(1,1) (see §2). In this
section we shall first solve the equation (4), then determine the spectral
type of selfadjoint operators 4| W, and 4’| W, of the restriction U***|SL(2, C).
From now on G and G, stand for SL(2,C) and SU(1,1) respectively.

We begin with specifying the representation U™ of P. V=
{y = (z :-i—- l?;jl y;o__l_li ;):det y = —Mz} in R, is a G-homogeneous space
with the invariant measure du(y) = dy,dy.dy./|y,]. Let p be the projection
from G onto V,, defined by p(g) = g*%g, where & denotes the fixed point

M ((1) _(1)) For u in SU(2) let s, be a measurable section from V,,
into G such that pos, = identity and that
(5)  sy,op(z,0,0)) =<z,0,ppu  for (z,0,¢) € RX(0, )X (0, 27) ,

where {z,0,¢) stands for the matrix w,(c)w,(f)wp). We fix s, once for
all. Then the representation U*" has the following realization U** on
the Hilbert space $° = L(V,y, 9., ) for each ue SU(2):

(6) U=*(x, 8)f(y) = e ®a(g)f(y-8) »
( 7) su(y)(x: g) = (x,’ go)su(y'g) with & € G, .
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By the aid of the isometry I,: 9(G) = {fe IXG, $., p): f(g.8) = n(g)f(g)
for g e G;} — 9" such that f(s.(») = Lf(y), U~* is transformed to U=®
by LI

We proceed, assuming the representation = to be =n(;,. Other cases
can be treated in the same way. Setting

Y = {p(oyz)o(0)ol)): (z,0,9) € R X (0,7) X (0, 20)} C V.,
for ue SU(2) define a dense subspace 97 of H":

0 = {fe Cr(¥u x D:f(r, e = 3 £} .

We note that for f in $3* (6) takes the form

, 9y — (et + apef(y.q @€+ B
(6) U (O’g)f(y,eﬂ’)_LBe"'-l—al f<y g’ ‘Beﬂr_l__c—()

provided s,(y)g = gs.(y-g) with g, = (% g) e G,. Since the section s, is
smooth on Y-u as well as the map (y, g) — y-g, there exists a relatively
compact neighborhood U of the unit element of G such that for fe 97,
the function U**(0, g)f(y, e*) belong to C*(U X Y-u X T). This observa-
tion leads to

Lemma 5. The domain of o}* includes $5* for all j and the restric-
tion 03" |95" is a differential operator with C=-coefficients.

Now that wj* is a continuous transformation of $§>* with the relative
topology of Cy(Y-u X T), we define the dual operator #3* by the follow-
ing

@5 f, £y = <F o3 f)

where fe (%Y and fe $i*. Regarding ©° as a subspace of the dual
space (97*), we claim

Lemma 6.

(1) wy*C —aojp™

(ii) Assume that f belongs to $i* and SuppfC Y-v for some
ve SUQ). Then f* = II;'f belongs to 5 and satisfies

(@3*f, h) = (05°f*, h*)  for any he & .
(@iii) The intersection Dy, N Dy N Dy includes $i*. Further-
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more, it holds that (the indexes = and u are omitted)

3 3 6
4,c 36y, dcy6r-3@r-1,
i= i= ji=

4 c _(‘;)16)4 + @4(?)1 + 0")2(?’5 + 4)5(?)2 + 26?)36’0) .

Proof. Since w?* is antihermitian, (i) follows. We note that f*(y)

= ®(8)f(5) provided ,(5) = gs.(») with & = (§ £) e G,, namely
(8) Fnen = g + ap f(y S5t L)

Since g, is smooth on Y-u N Y-v, f* has a representative in $7'>. Now
(ii) is evident. As to (iii) we deal only with 4** It suffices to prove

[ @)U 0, )1dg
- L oAg)U=(0, g)[zi; 1) = % 07" - 1] fde

for g€ C;(G) and fe H7* [14]. To this end we will show that for + € C;*(G)
and he 5

(4 [ ste)U=0, &)1 dg, [ (&)U, g)hdg’)
(9) = ([ eov+@)|z @iy — 3 @y — 1 e,
[ wervm,e7ndg’) .

A diffeomorphism ¢q: V,,;, —» R X S, defined by

10 q(3) = WuX/(WY + R+ 25, %IVE+ X+, VY + R+ 5)

maps Y-u onto R X S¥. We note that each S? is dense and open in
the unit sphere S, and that the union U,espe S¥ covers the sphere.
Observing that for given a,a’e€ G and y,y e V,, there exists we SU(2)
such that {y,y,y-d’'a} C Y-w, we can show inductively that there
exist a finite covering {U,} of Supp ¢, finite covering {U,,} of Supp,
finite covering {Y,,} of Suppf, finite covering {Y,,,} of Supph and
W,ps € SU(2) such that each member is relatively compact and that

Yaﬁr U Yaﬁrﬁ U Yaﬁr"' Ua_;?an CYw.
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Denote ., feps Lopr aNd x.5s the partition of unity associated with the
coverings above. Now the left side of (9) is equal to

[ dgete(f, U(e-ya [ (&)U (g)hdg’)
— [ dgete)(f, 4 Um(e™) [ (&)U hde’)
~ [dgte)(f, 2+ [ (e U (e g )dg)
= I P2y f dgsoxa(fxaﬁn 4 f Ve U”’“(g“g’)hxamdg’> -

Putting w = w,,,; we rewrite the apyd-term above as
[ dgon((Frar, 20 [wrUn (g g tr.p ) de)

Since xa(g)J.x[rxaﬁU *(Ry.s5)"dg’ belongs to 9i“, it holds that

£°18) [ ¥1a U (hirp)“dg’
= &) 2 @ = 2y — 1 [ ¥, U

On account of Lemma 5 and (ii) of Lemma 6 the afyé-term is equal to

[ dgon (|3 @ = = @ = 1 frasn [V, U torndde’)
from which (9) follows. Q.E.D.

We now derive the concrete forms of the restrictions to £p¢ of
o, H, F;, 4,,4 and 4 with respect to the representation (U™¢, 7). After
tedious computation we obtain the following. The underlined terms
disappear for nonspinor irreducible unitary representations z,, and
r.q of SU(1,1).

—e cos’ /2 + e *sin’0/2 chrsinfde
w,(0)w = ( € cos ) ) ) ’
pl@)oO)ede) ch 7 sin fe** —e sin’ 0/2 + e * cos? /2
(Yo Y15 ¥2, ¥s) = (—sh 7, ch z sin @ sin 4, ch 7 sin 6 cos ¢, ch 7 cos ) ,
dyp = ch*csinfd dzdbde

cos ¢ o icos o
sinf * ' 2sing

w, = sin ¢d, 4+ cot @ cos ¢, —

’
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singoa __ ising

w, = €Os ¢d, — cot  sin ¢o R
: e #0, sing ¥ 2sin 6

w; =0,,
o, = —sin 6 cos g3, — th r cos § cos ¢d, + M&,
sin @
n (—thrcotﬁsingo __ cos @ cos ¢sin + sin ¢ cos )a
chz v
n 4(cos 6 cos ¢ cos J» — sin ¢ sin )
chz
n i(cos 6 cos ¢ sin Y + sin ¢ cos ) n thz cot fsin ¢
2chz 2 ’
s = sin 0 sin @9, + th ¢ cos 0 sin ¢d, + Mﬂa,,
sin 0
+ (—thr cot 6 cos ¢ + cos 6 sin ¢ sin y» — cos ¢ cos )%
chrz
+ 4(—cos 0 sin ¢ cos y» — cOS ¢ sin )
chz
T i(—cos @ sin ¢ sin » + cos ¢ cos ) th z cot 6 cos ¢
+ s
2chr 2
0, = cos 09, — th ¢ sin 68, — smﬁsm«p% + £ sin 6 cos
chrz chz
isin @ sin
+ 2chrz
. 1 i
H, =e'”’<za cot 9, — ——0, + . ),
ot * sind ' 2sin6
. 1 i
H. = e”‘"(za — cot 60 — 0, — . ) ,
! ot sind ' 2siné
H,=1id,,
F, = e""’[—sin 0. — th z cos 09, + l,thr o,
sin 6

n (—ithrcotﬁ _ cosfsiny + icos«p)aﬂ/

chrz
4(cos 6 cos Y — isin ) icosfsiny — cos
+ —+
chr 2chz
_ thrcoté’]
2 b
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ithr
sin 4

F_ = e”[sinﬁ 0, + th z cos 69, + a, + (—ithr cot g

cos @ sin — i cosq icos@siny -+ cos
+ 0y —

chr 2chr
__thrcotd i é(—cosﬁcos«[f—isinxlr)]
2 chz ’
F, = i[cos 09, — th r sin 60, — sin 6 sin 9y + ¢sinfgcosy
chr chr
isinﬁsin«[f]
+
2chr
g=0+ g 2a5 1 L_g 4 cotsd,
sin® 4 sin 6 sin® §
icotd , i 1

2sind °  2sin’d °  4sin’0

4= —233, + 20081”6,,&,,4— 2sin'«[r 3,0, — 2cot0s1n1,lfaﬁ'
chr chzsinéd chr

+(£sinw!r . icoswﬁ)ao+(_m_ﬂﬂ_)ap

+ 0.

chz che chzsing chzsind
+2(£cotﬁcos«\p —the + icotﬁsin«[r)aqr
chz che
I (__ 14 cot 6 cos n cot @ sin —|—ithz-> ,
chr chr

A= —<az+2thfa,+l(.ﬂil_)+ 1)+s.
ch’z

We remark that the differential operator S does not contain any
terms of the form S(z, 8, ¢, )37 (j = 0, 1, 2).

We are ready to solve the equation (4). Consider the following
equation

D) —iaf =k, Yaf=—kk+Df, feg (b=—0,—L+1 )

and denote W, the space of solutions (in (11) we omitted the indexes =
and e for the sake of simplicity). Lemma 6 implies that W, is the inter-
section of W,, Dy, and D,

LEMMA 7. An f belongs to W, if and only if f is of the form:

(12) f(‘l', 0, ®, eixlf) — Zk Z f»,i(T)Qp,i(COS 0)e—ikgo+1‘,m]r ,
V>~ {=1,2
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where f,; belongs to LR, ch®zdz) and {Q, (2):i = 1,2} span the space of
solutions in L*(—1, 1)) of the equation:

(13) [(1 — 9 — 220, — K +1”2_+222k”z + k(b + 1)] Q@) =0 on(—11).

For the proof we need

LEmmA 8. Assume that k ranges 0,1/2,1,.-- and that k+ v is an
integer. Then the equation (13) has no solutions in L' for |v| > k, while
the bounded solution of (13) is proportional to P% _[2) for |v|< k. P%, is
defined by

jb-v k)! _

P ! \/ (2 1 — 2)®-»712(1 G+n)/2

g1 ey T A A

Proof of Lemma 8. A similar statement can be found in chap. 3,

sec. 4 [17]. That P _, is a bounded solution of (13) is known. By the
change of variable ¢ = (z + 1)/2, the solution of (13) may be written as

/

—1 1 oo —1 1 oo
Pl —k—vj2 —|lk+v)2 -k 2z2|=Pla 7y B =z
|k — vl/2 |k + v]/2 k+1 o v F

0 1 o 0 1 o)

=Plae v B tj=tA—-tyP| O 0 a+B+7r ¢
o 7 F @ —a =7 at+f+y

0 1 0o
=t(1—¢P| 0 0 a tf.

1—c ¢c—a—b b

If ¢ <1, equivalently %k +# v, then *1 — §)F(a,b,a + b —c,1 —t) and
t*AQ — 9 *°F(c—a,¢ — b,c—a— b+ 1,1 — t) are linearly independent
solutions around ¢ =1, where F(a, b,c, t) denotes the hypergeometric
function. Checking the behavior of them around =0 and 1 [5], one
verifies the lemma for 2 #v. If c=1, w, = P _, is a solution. As is
well known, a linearly independent solution w, has the form

cow(@)log(z+ 1)+ > ez + D" with ¢_.c, = 0.
n=0

This function is unbounded around z = —1. Q.E.D.
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Proof of Lemma 7. Expand f:f(y,e™) = > F(»)e**. For h(z, 8, 0,V)
v=-~4
= hy(c)h,(O)h(p)e™’ with h,e C;y we have
(—if,0h) = k(f, ),

from which it follows that f,(y) is of the form f(r,8)e *** with f, e L} R
X (0,7): ch®z sin § dzdf). Furthermore f satisfies

0= (£ 14+ (e + D) = (1, |3 + coton, + L a3 — 2200
sin® @ sin 6

— Y+ k(k + D)
sin® ¢

= eI e, h)(£,, [ + cot oo, — KA+ Zevcosd
sin® 6

+ ke + D]k

Putting G,(z, cos §) = f,(z,6), we conclude that G,/(r, 2) is a weak solution,
consequently, a smooth solution of (13) for a.e.r. Thus f must have the
desired expression. Conversely if f is of the form (10), it satisfies (11)
because A’s finite linear combinations form a dense set in . Q.E.D.

LemMmA 9. Assume f in " to be of the form
k
(19 f(z,0,¢,e") = 3 f(2)P%, _.(cos fe e oY
v>-4
for some integer k and f, in C3(R). Then f belongs to domains of w;, 4,, 4
and 4 (j=1,2,---,6). F belongs to W,, too.

Proof. We may suppose f = f,Pf _e "**»*  We will show that there
exists an f in $(G) such that

(15) foiDu, e) = f()t:, _we*, Lf=f

(see below (7) for the definition of $*(G) and I,), where ¢, (1) is the
(m, n) matrix element corresponding to an irreducible unitary representa-
tion of SU(2) (chap. 3 [17]). It suffices to prove

(16) FANE,, - (u)e™t = n(g)fAD)EE,, - (w)e™)

assuming that wc)u’ = gw(r)u. As one verifies easily, the condition
implies that 7/ = = and g, = w,(¢) for some ¢. Thus it holds that

(W) = et (W),  m(g)ert = env

https://doi.org/10.1017/5S0027763000018833 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000018833

130 HITOSHI KANETA

which proves (16). Take a compact set B of the hyperboloid V,, so that
any fos, (ue SU(2)) vanishes on the complement B¢ then find a finite
covering {Y,}, the partition of unity and a finite set {u,} C SU(2) satisfy-
ing Suppy. C Y-u,. Since I, I 'fy.= (f “Su )X« belongs to £7“s, Dy .,
for example, contains it due to Lemma 6. This in turn implies that fy,,
hence f itself, belongs to the domain of 4*¢. Recalling W, = W, N D,
N D,, we complete the proof. Q.E.D.

Finally we solve the equations (4).

ProposiTiON 1. The space of k-th heighest weight vectors W, for the
representation U™*|SL(2, C) with = = n{,, is as follows:

W = { 23 AOPE (cos )e~r+4¥: f,e IR, ch' o))
=4
for k= —4,—4+1,--.
= {0} otherwise .
Proof. Since U™%0, —e) = I, W, is a null space provided %k is a half

integer. On account of Lemma 9 and closedness of H, and 4,, W, includes
the right side above. Keeping Lemma 7 in mind and assuming that

k
Fe,0,p,6%) = 3. f2)Qucos B)etie i,
v>-¢

where @Q,(2) is a L’-solution of (13) which is independent of Pf _(2), we
will show the opposite inclusion. By Lemma 8, @, is either identically
zero or unbounded arround —1 or 1. From (8) we see that f*=1I,0I'f
has the form:

k
fu(,[’ 09 (‘2 e”’) = Z fu(T)Qy(COS 0/)6_“‘5" +ivt+ivy
v=2—4

provided o/r)o,(Qolp)u = wlr)o(Dod)o¢). Since f* belongs to W,
it satisfies

n > @r e = — ke + Df*.

Put @4, ¢) = Q. cos #)et*'**!,  Assume that @,(2) is unbounded around 1
and that for a positive constant a ¢! < |f(c)| < ¢ on a non-null set B,.
In other words we assume that f,(r)Q,(cos f)e ***, as a function on Y, is
not essentially bounded around y = (—sh,0,0,1). Let uwe SU(2) be so
chosen that q o p(wy(t)o,(#/2wr)u) = y (see (10) for g). By the assumption
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f(z) @6, ¢) is not essentially bounded on B, X (#/2 — ¢, 7/2 + &) X (z — ¢,
n+¢). We will conclude the proof showing that sin Q¥(4,¢) must be a
smooth function on (z/2 — ¢, 7/2 +¢) X (x — ¢, ® + ¢). To this end choose
an open neighborhood U, of a point of (0,7) X (0,2x) X T and an open
neighborhood U, of the unit element of SU(2) so that the map: (4, ¢, e”, u,)
— (6, o, e”¥*P) defined by w.(8)w,(p)u,=w,(t)w(0)wlg) is smooth on U, X U,
and that for each (4, ¢, e**) e U, the map: u, — (¢, ¢, **?) from U, into
(0,7) X (0, 27) X T is a diffeomorphism. It turns out that the restriction
0P| 95 is of the form

07" = (@ndy + A, + aidy) ,

where a;; (,j =1,2,3) are real-valued C~-functions depending only on
(6, ¢) with det (a;;) # 0. Now it is not difficult to see that > (47*)* is an

elliptic differential operator with C=-coefficient and that each f,Q%e""
satisfies (17), from which the smoothness of sin 8Q»(4, ¢) follows. Q.E.D.

We summarise the k-th heighest weight vectors W, for the representa-
tions U™

™ ¢ W, (+{0}) k
Tie0 b= —1/241ip,p =0 v:Zk_:k [P_e ety 0,1, -- ‘-
oy | L= —1/2+ip,p>0 fk fP_e-teeriorimy | 19 319 ...
Ty | —1<0< —1)2 }'jk £P_ e tkevine 0.1,
thy | b= —1,-2 - ﬁ_g f.P_ e theriv —l, —041,
T 4= —1/2, —3/2,--- uizf,Px,e‘“‘“’”(”“/m’ as above
T {=—-1,-2, .- gﬂP_ye‘““"””"’ as above
Tauys | £=—1/2,—3/2, - ZiﬁP_,e‘“‘“’”‘”“/”‘” as above

(Here we put P_, = P% _)
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Denote W) a subspace of W, consisting of functions expressible as
(14). Making use of formulas (chap. 3, sec 4 [17])

300t (cos 0)= (V& F 1 F D(k = m) P, (cos 6)
(18) 2

++(k + n)(k — n + DP; ,_(cosB)),

sin 6

i(m — n cos 0)P% ,(cos §) = Wk + n)(k — n + 1) P% ,_, (cos )

(19)

—v(k — n)(k + n + 1P} ,.(cos 0)),

and calculating formally, we see that

@) 4D AP ) = 3 [ -2, + thof,

v=—¢ v>—¢

—(+v+DVE+y+ Dk —) gﬁl‘:

+ (¢ — v+ DV = v F Dl T )L [P e,
chr

Similarly, applying the formulas (18) (19) and

sin 6Pf _, = —2i\/(k —v+ D +v+ 1)Pk+%
E,-v (2k + 1)(2k T 2) k+1, -vy

sin® —Pk o= — [AV(E+ Y+ Dpin
2k + 1)(2k + 2)

cos® ___PI;,_V = (k — v)(k — v+ I)Pkﬂ .
2 2k + )2k + 2)

1,-vs

we obtain

F.( 35 £P5 e o)

v=>-4

1
~ V@R + D@Ek + 2) yZ-‘J [2"/("’ — v+ DE+rv+1)
(21) X @, — ktho)f, + (£ +v + DV — o)k — v + 1)_({?_
T

+<e—u+1w(k+u><k+u+1)f+h-;—]

X Pllg+i =ikt Dpt+ivy
+ v

Since f in W is C~-function on V,,, the formal calculus can be justified.
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Set ¢, = ||e**||.. The isometry J, from W, onto kZ ® LY R) defined
v>—4

by
(22 3 P et | 2o che)

»>~¢ 2k + 1
transforms 4’| W? to Lz:
23) Li = —2i()0, + —1—V,

chr
(R

k—1

where (v) = K and V is an hermitian matrix whose

¢
(v, v + 1) component is equal to —v(—£ + v)(¢ +v + 1)(k + 1 + 1). Since

. k
the symmetric operator L; is essentially selfadjoint with domain > C{(R)

v
[7], we denote L its selfadjoint extension. Now the following proposition
is selfexplanatory.

ProPOSITION 2. For the representation m = w(,, the restriction 4’| W,
is unitarily equivalent to L provided k = —{, —¢ + 1, - - -.

Similarly we have

ProrosiTioN 3. For the representation = = r,,, either with { = —1/2
+ip (p = 0) or with —1 < ¢ <—1/2, the restriction 4¢|W, is unitarily
equivalent to L which is the selfadjoint extension of a symmetric operator
Lz on LXR) with domain C3(R):

(4) L= —a— +D
: ch*z

For a Borel set B of R and o-finite measure ¢ on B, let J@ Adoe denote
B

the A-multiplication operator in L*(B, o).

ProrosiTioN 4. (i) For the representation = = r},,L; is unitarily

equivalent to [k + ¢ + 1]1@ AdA. (1) For the representation & = r,,, either
R
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b= —1/2+ip(p = 0) or with —1< ¢ < —1/2, L; is unitarily equivalent
o [
By

Proof. Applying the result of [7], we obtain (i). We note that L? is
a Schrédinger operator with a so-called short range potential. So (ii) is
a direct consequence of Agmon [1] and Kato [9]. Q.E.D.

ProrositioN 5. For the representation © = n}q, 4| WOF*W,_, is
®
unitarily equivalent to J 2dA provided k= —4,—£ + 1, ---.
R

Proof. Lemma 4 and (i) of Proposition 4 yield the proposition.
Q.E.D.

For the representation = = n,, with £ = —1/2 4+ ip (o > 0) or with
—1< ¢ < —1/2 L; is unitarily equivalent to [2E] ﬁzdl @ [3R] ﬁ) 26(d2)
for any positive integer k, where J denotes the Dirac measure. (11}1 order
to show that 4'¢|W,OF=*W,_, is unitarily equivalent to [2] ﬁldl we

must check that 4'=¢|W, & F=*W,_, has no eigenvectors with eigenvalue
zero. This requires some calculation which we do not cite here. In this
way we can manage to decompose the induced representations Indnz

SU1,1) t SL2,0)
(cf. 3] [13)).

§5. Proof of Theorem 1 and 3
We begin with

LeMMA 10. Let T, and S, be one-parameter unitary groups on L*(R):

Tif(x) = e f(z), Sf(x)=flz+s) (M+0).
Then a closed subspace D of L*R) which is invariant with respect to

{T,:t > 0} and {S,: s€ R} is either L*(R) or the null space {0}.

Proof. Denote f the Fourier transform of f. Since D is S,-invariant,
there exists a Borel set B such that D = {f ¢ L(R): f(2) = 0 on the com-
plement B¢}, If the Lebesgue measure |B| is equal to zero, we have
nothing to do. Otherwise, from the fact that Laplace transform G, =

f e *T,dt is just the multiplication 1/(a« — iM sh z) it follows that for
Ry
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non-zero element f of D Fourier transform of G,fe D is a non-zero
holomorphic function on the strip |Im 2| < 1. Thus |B¢| = 0. Q.E.D.

Proof of Theorem 1. First note that Theorem 2 also holds for the 2-
dimensional space-time Poincaré group. Irreducible unitary representations
corresponding to space-like orbits V*#(2) = {£) — £ = —M*: %, = 0} have
the realization in L*(R):

U (%5, %5), 0(8)f(z) = exp (£iM(x, shz + x5 ch))f(z + 9) .

Now Lemma 10 yields the theorem. Q.E.D.

Let us turn to the proof of Theorem 3. As in §4, W, stands for the
k-th heighest weight vectors corresponding to the representation (U*¢| G, )
of G = SL(2,C). Denote &, the minimum of {k: W, = {0}}. We observe

LemmA 11. If there exists an invariant non-trivial closed subspace D,
of ©* with respect to the Poincaré subsemigroup P,., then there exists a
non-trivial closed subspace D of W, which is invariant with respect to
{T, = et 2. ¢ > 0} and {e", e“’:se R}.

Proof. Our reasoning depends on the results of §3. Denoting the
orthogonal complement of D, by Di, it holds that

(25) W, = (W,, N D,)®(W,, N D).

We know that W, N D, (resp. D+) is invariant with respect to T, (¢ > 0)
resp. t < 0), 4 and 4. Thus both components on the right side of (25)
have the same property. We claim none of them is a null space. We
will show this for W,, N D,. The proof for the another component is
similar. If W,, N D, is a null space, some k, & > k, attains the maximum
of {£': W,. N D, = {0}}. Since the decomposition (25) holds for any k&, W,
is a subspace of D+. Thus F,W? and F,G,W} are orthogonal to W,,, N
D+,‘Where G, denotes Laplace transform fR e T ,dt = 1/(@ + iM sh 7).

An fe d,,(W,,, N D,) satisfies
(26) (fs Jk+1F+J;1h) =0 . (Gaf, Jk+1F+J;1h) =0 for any he JkWIg
(see (22) for J,). From the second equality it follows that

@7) (A(a__mé%%;? f ;2) + (f, Ju . F.J7G.h) =0  for any he WP,

where A is a constant diagonal matrix whose (v,v) component is equal to

2iV(E— v+ D& + v + D/V©CE + 2)@2k + 3) and £ denotes (0, hY) € J,,, W2
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Since the second term of (27) vanishes, f, is zero except f..,. Together
with the first equality of (26) f vanishes. This completes the proof.
Q.E.D.

Proof of Theorem 3. For the representation U=° (see (6)) with, say

T = T, Wy, coincides with W_,. Since J,, transforms T, and 4’ to T,
and 2i49, respectively, the theorem follows from Lemma 10 and 11.

Q.E.D.
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