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Abstract

Let K and X be compact plane sets such that K € X. Let P(K) be the uniform closure of polynomials
on K, let R(K) be the uniform closure of rational functions on K with no poles in K and let A(K) be
the space of continuous functions on K which are analytic on int(K). Define P(X, K), R(X, K) and
A(X, K) to be the set of functions in C(X) whose restriction to K belongs to P(K), R(K) and A(K),
respectively. Let So(A) denote the set of peak points for the Banach function algebra A on X. Let S and
T be compact subsets of X. We extend the Hartogs—Rosenthal theorem by showing that if the symmetric
difference SAT has planar measure zero, then R(X, S) = R(X, T). Then we show that the following
properties are equivalent:

@) R(X,S)=R(X,T),

i S\T S So(R(X,S8))and T \ S € So(R(X, T));

(iii)) R(K) = C(K) for every compact set K C SAT;

(ivy R(X,SNU)=R(X,TNU) for every open set U in C;

(v)  forevery p € X there exists an open disk D, with centre p such that

R(X,SNDp)=R(X,TNDp).

We prove an extension of Vitushkin’s theorem by showing that the following properties are equivalent:
O AKX, S =RX,T);

(ii) AX,SND)= R(X, TN 5) for every closed disk D in C;
(iii)  forevery p € X there exists an open disk D, with centre p such that
A(X,SNDy)=R(X,TND,).

2000 Mathematics subject classification: 46J10, 46J15.

Keywords and phrases: uniform algebras, polynomial and rational approximation, peak points, planar
measure, Vitushkin’s theorem.

1. Introduction

The algebra of all continuous complex-valued functions on the compact Hausdorff
space X is denoted by C(X). The subalgebra A € C(X) is a Banach function algebra

© 2008 Australian Mathematical Society 0004-9727/08 $A2.00 + 0.00

387

https://doi.org/10.1017/S0004972708000464 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000464

388 T. G. Honary and S. Moradi 2]

on X if A separates the points of X, contains the constants and is complete under an
algebra norm. If the norm of a Banach function algebra is the uniform norm then it is
a uniform algebra.

Let A be a Banach function algebra on X. A point p € X is a peak point for A if
there exists f € A such that f(p) =1 and | f(x)| < 1 for every x € X different from
p- The set of all peak points for A is denoted by Sp(A).

Let K, S, T and X be compact subsets of C such that K, S, T C X, and let Py(K),
Ry (K) be the algebras of all polynomials and rational functions on K with poles off
K, respectively. The uniform closures of Py(K) and Ry(K) are denoted by P(K) and
R(K), respectively, which are uniform algebras on K.

The polynomial convex hull of K is

K= {zeC:|p@2)| < |plk for all polynomials p}.

The set K is polynomially convex if K = K. Let m denote the planar measure and
M (X) denote the space of all regular complex Borel measures on X. A theorem due
to Hartogs and Rosenthal asserts that R(K) = C(K) if K has planar measure zero; see,
for example, [2, I1.8.4] or [4]. It is also known that R(K) = C(K) if and only if every
point of K is a peak point for R(K) [6, 5.3.8]. A stronger result is Bishop’s peak point
criterion for rational approximation, which asserts that if m(K) = m(So(R(K))) then
R(K)=C(K) [2,1I.11.4]. Moreover, P(K) = R(K) if and only if K is polynomially
convex. Also a theorem due to Vitushkin gives criteria for R(K) = C(K); see, for
example, [2, VIIL.5.1] or [7].

In this work we extend the above results to more general algebras in the theory of
uniform algebras. For another extension of Hartogs—Rosenthal to Lipschitz algebras,
see [5].

If we take Po(X, K)={f € C(X): flg € Pop(K)} and Ro(X, K)={f € C(X):
flk € Ro(K)} then it is easy to see that P(X, K) ={f € C(X): f|x € P(K)} and
R(X,K)={f eC(X): flk € R(K)} are, in fact, the uniform closures of Py(X, K)
and Ro(X, K), respectively. We take A(X, K)={f e C(X): flx € A(K)} where
A(K) is the algebra of continuous functions on K, which are analytic on int(K). Note
that if K is finite then Py(X, K) = Ro(X, K) =C(X) andso P(X, K) = R(X, K) =
A(X, K) = C(X). Hence, we may assume that K is infinite.

It is easy to show that P(X, K), R(X, K) and A(X, K) are uniform algebras on X.
Moreover, Py(X, K) = Py(X), Ro(X, K) = Ry(X), P(X, K)=P(X), R(X,K) =
R(X)and A(X, K) = A(X) if K = X.

2. Polynomial and rational approximation in uniform algebras

Throughout this section we always assume that K, S, T and X are compact plane
sets such that K, S, T € X, and u € M(X).

LEMMA 2.1. If A={f e C(X): flxk =0}, then Co(X \ K) = A|x\k.
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PROOF. Clearly, for every f € A, flx\k € Co(X\K).
Let fo € Co(X\K). We extend fy to X by

fox), xeX\K,
reo={f TE
We now show that f € A. Let xg € X. If f(xg) #0 then xg € X\ K. Hence, there
exists 61 > 0 such that B(xp; 1) N K = @. Since fy € Co(X\K) for every ¢ > 0 there
exists 8> > 0 such that for every x € X\K if |x — x| < §> then | f(x) — f(xg)| < e. If
we take 6 = min{d1, 8-}, then forevery x € X if |[x — xg| < § then | f(x) — f(x0)| < ¢.
This shows that f is continuous at xg.

If f(x0) =0 then for every ¢ > 0 the set S = {x € X\K : f(x) > ¢} is compact.
Since xp € X\S there exists § > 0 such that B(xp; §) NS =#. Hence, for every
x € X\S, the inequality | f(x) — f(xg)| <& holds, and this shows that for every
x € B(xg; §) N X, | f(x) — f(xg)| <& and so f is continuous at xg. d

LEMMA 2.2. Let u be a regular complex Borel measure on X. If U is an open set in C
such that for almost all z € U, with respect to planar measure, fx du(¢)/ (¢ —z)=0,
then u =00n U N X.

PROOF. Since pu € M(X) it is enough to show that |u|(Y) =0 for every compact
subset ¥ of UNX. We consider a decreasing sequence of bounded open
neighbourhoods {U,,}Oo 1 of Y such that ﬂn 1 Up=Y and U; C U. It is known that
for every n we can find a continuously differentiable function 4, on the complex plane
such that h, =1 on Y, 0 <h, <1 and E, = supp(h,) is contained in U,. Now let
fe CY(Y), where C1(Y) is the algebra of all continuously differentiable functions on
Y. We can extend f to a function g € C!(C) such that it is bounded on the closure of
U;. Now we define f, = gh,. Clearly f, € C 1(C) and it is, in fact, an extension of f.
By applying Green’s theorem as well as Fubini’s theorem,

—1
/an()\) dﬂ()»)=/{// —(Z—)»)_l(fn)gdx dy}d,u(k)
/f —(fw)z (/ du(k))dxdy:().
n X Z_

Since lim,,_, o0 fr(x) = xy(x)g(x), for every x € X, then fY f ) du(r) =0 by the
dominated convergence theorem. Since the algebra of all such functions f is dense
in C(Y), we conclude that u is the zero measure on Y and hence |u|(Y) = 0. By the
regularity of © we conclude that u =0on U N X. O

THEOREM 2.3. If m(S\T) =0then R(X, T) C R(X, S).

PROOF. Let € (R(X, S))*. We prove that u € (R(X, T))*.
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We first show that supp(u) € S. For every fy € Co(X\S) the function

foo = {(J)‘fﬂx% LN

belongs to R(X, S) by Lemma 2.1, hence [y fdu= fX\S fodu=0. Therefore,

Ilx\s € (Co(X\S))L, that is, 4| x\s = 0. This shows that supp(u) C S.
There exists a bounded open set U such that UNT =@ and X\T € U. For
every o € X\ (S U T), there exists a function f in R(X, S) such that f|s = (z — o)L

Hence,
/(z—a)ldu=/(z—a)ldu=/fdu=/ fdu=0.
X N s X

Since m(S\T) =0, for almost all ¢ € U, fX(Z —a) 'du(z) =0. Hence, by
Lemma 2.2, u =0on X NU = X\T and so supp(u) € T. This shows that supp(u)
cSNT.

Now suppose that « € C\T. Since m(S\T) =0, S\T has no interior. Hence, there
is a sequence {a,} in C\ S such that lim,, ., o o, = .

By hypothesis, f snr(@— o)~ dp = 0 for every n. By the dominated convergence
theorem,

/ (z—a) ldu= lim (z—oan) ldu=0.
sNT

On the other hand, for every g € Ro(X, T), g|r € Ro(T). Since g|7 is the limit of a
sequence of rational functions with poles off S, by the same argument as above we
conclude that | snr & div =0, and hence

/ gduzf gdu=0.
X SNT

Thus for every g € R(X, T), fx gdu=0, that is, u € (R(X, T))*. Therefore,
R(X,T) C R(X,S). O
COROLLARY 2.4. If m(SAT) =0then R(X, S) = R(X, T).

COROLLARY 2.5. If m(K) =0 then R(X, K) =C(X). In particular, if m(X)=0
then R(X) = C(X), which is the Hartogs—Rosenthal theorem.

PROOF. Take S = K and T = {z¢} for some z¢ € X, in Corollary 2.4. O

COROLLARY 2.6. Ifm(X) =m(K) then R(X, K) = R(X).
PROOF. Take S = K and T = X in Corollary 2.4. O

THEOREM 2.7. R(X,T) € R(X, S) if and only if supp(n) € SNT for every n €
R(X, )L
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PROOF. Let R(X, T) C R(X, S) and € R(X, S)*. For every fo € Co(X\S), the
function

fo = {(J)‘?W rens

is continuous on X by Lemma 2.1, and hence f € Ry(X, S). Therefore, fX\S fodun=
fX fdu=0, which shows that u|x\s € Co(X\S)* and so lx\s =0, that is,
supp(u) € S. Since R(X, ST CR(X, T)*, weR(X, T)". Hence, by the same
argument as above, supp(u) € T. Therefore, supp(u) S SN T.

For the converse, we first show that int(S\7) =@ if supp(n) € SNT for all
w € R(X, S)*. Suppose on the contrary that there exists a closed disk D C int(S\T').
Since R(D) # C(D) there exists A € R(D)" such that A # 0. We define the measure
we M(X)by u(E) = A(E N D), which is not the zero measure. If f € R(X, S), then

/deu=[Dfdu=/Dfdk=0

since f|p € R(D). Therefore, u € R(X, §)* while supp(u) € D C S\T, which is in
contradiction with our hypothesis.

Now let f € Ro(X, T) be suchthat f|r = 1/(z — z9) where z9 € C\T. If zg € S\T
then there exists {z,} C X\(S U T) such that lim, ., o, z,, = z0, since int(S\T) = @.
By the dominated convergence theorem,

tim [ -2 du) = [

(z—2z20)"'du(z).
n—00 Jsnr snT

For every n € N there exists g, € Ro(X, S) such that g,|s = (z — zx)~ L. Since

0=/ gndu=f (z—z) Vdp,
X SNT

it follows that [¢(z — z0) ™' du =0 and so

/fduzf (z—2z0) " tdu=0.
X SNT

If f is an arbitrary element of Ro(X, T) then f|rns is the limit of a sequence of
rational functions with poles off SUT. Hence, by the above discussion and the
dominated convergence theorem, |- x J din=0. This shows that u € R(X, T)+ and
so R(X, T)C R(X, S). U

COROLLARY 2.8. R(X, S) = R(X, T) if and only if supp(it) S S N T for every u €
R(X, )T UR(X, T)*.

THEOREM 2.9. R(X, T) € R(X, S) ifand only if S\ T  So(R(X, S)).
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PROOF. Let R(X,T)C R(X,S) and z9e S\T. Let U be an arbitrary
neighbourhood of zg and let V be a bounded neighbourhood of zy which is contained
in U and moreover, V N T = {. There exists a neighbourhood W of zg such that its
closure is contained in V. By Urysohn’s lemma there exists a continuous function f

on X such that
xeW,

L,
f= {o, xeC\V.
Since f is zero on T it follows that f € Ry(X, T). Moreover, |f| < 1/4 on X\U
and f(zo) =||f|l =1. Thus zg is a peak point for R(X, T), by [6, 4.7.22]. Hence,
S\T C So(R(X, S)).

For the converse, we first note that int(S\7") = ¥ by the hypothesis. By Theorem 2.7
it is sufficient to show that supp(u) € SN T for every u € R(X, S)*t. By the same
argument as in the proof of Theorem 2.7, it follows that supp(u) € S. We now
show that u|s\r =0. For every compact subset Y of S\T there exists a bounded
neighbourhood U of Y such that U NT =¢. For every zo € U\S there exists an
f € Ro(X, S) such that f|s =1/(z — z0). Since supp(u) < S,

[
X Z—X20

If m(S\T) = 0 then for almost all zg € U,

/ dn@ _
X 2= 20

Hence, by Lemma 2.2, n =0 on UNX and so =0 on Y. This implies that
uls\r = 0.

Now let m(S\T) > 0. There is a bounded neighbourhood U of S\T such that
UNT =4@. For every

d
20 € U\S, / wa
X Z—20

d
20 €U, / e g
X Z—20

then, by Lemma 2.2, u =0 on U N X and hence u|s\7 = 0. Suppose, on the contrary,
there exists a compact subset Y of U such that m(Y) > 0 and for every

d
e, / m@ Ly,
X Z2—20

If for almost all

Hence, by [6, 5.3. Lemma 1], there exists zg € S\7 such that
/ |z — 2017 'dlul(z) < oo and /(z—m)‘ldu(z)#o-
X X

We may assume that fX(z —z0)! du(z) =1.
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For every

FeRyx.s), TOZS@ g
Z— 20

By the Tietze extension theorem there exists F' € Ry(X, §) such that for every z € S,

f @) — f(zo)

Z—20

F(2) =

and hence

1O 4= /
X

X 2 =20

J&) 42 = fzo).
-

Z

Therefore, for every

feRX,S), J@ du(z) = f(z0)
X < —20

by the density of Ro(X, S) in R(X, S). Since zg is a peak point for R(X, §), there
exists g € R(X, §S) such that g(zo) =1 and |g| < 1 on X\{zp}. Foreveryn € N,

f Q) @) =g"o) = 1.

X <—X20

Since for every z € X\{zo}, lim,—~ g"(z) =0, by the dominated convergence
theorem,

i g"(2)
1m
n—oo Jy 7 — 70

du(z) =0,

which is a contradiction. Hence, u|s\7 = 0, which implies that supp(u) €SN T. O
COROLLARY 2.10. R(X, S)=R(X,T) if and only if S\T C So(R(X, S)) and
T\SCSo(R(X, T)).

COROLLARY 2.11. R(X, K) =R(X) ifand only if X \ K C Sp(R(X)).

PROOF. In Corollary 2.10 we take S = K and T = X. U
COROLLARY 2.12. R(X, K)=C(X) ifand only if K € So(R(X, K)). In particular,
R(X) = C(X) ifand only if X = Sp(R(X)).

PROOF. In Corollary 2.10 we take S = K and T = #. |

COROLLARY 2.13. IfR(X, S)=R(X,T)then R(X, S)=R(X, T)=R(X,SNT).

PROOEF. This is immediate. |
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THEOREM 2.14. P(X, T) € P(X, S) if and only if supp(u) € SNT for every u €
P(X, ST

PROOF. Let P(X, T) € P(X, S). By the same method as in the proof of Theorem 2.7,
supp(n) €S SN T forevery u € P(X, S+

For the converse, let 1 € P(X, S)*. By hypothesis, supp() €S N T. For every
fePyX,T), flsnr = p where p € Po(SNT). If we consider p as an element of
Py(X, S) then

/fdu= fdu=/ pdu=/pdu=0-
X SNT sSNT X

This shows that © € P (X, T)L. Hence, P(X, T) C P(X, S). O

COROLLARY 2.15. P(X,S)=P(X,T) if and only if supp(n) S SNT for every
nwePX,H*TuUPX, T,

COROLLARY 2.16. P(X, K)=P(X) if and only if supp(n) € K for every
we P(X)*t.

PROOF. In Corollary 2.15 take S = K and T = X. O

COROLLARY 2.17. If P(X, S) =P(X, T) then P(X, S)=P(X, T)=P(X,SNT).

PROOF. We prove that P(X, S) = P(X, SN T). Obviously P(X, S) C P(X,SNT).
Let 4 € P(X, S)*. By Corollary 2.15, supp() € S N T. Forevery f € Po(X, SNT),
flsnt = p where p € Po(S N T). If we consider p as an element of Py(X, S), then
Jx fdw=[sor fdn= [sor pdu= [y pdu=0.

This shows that u € P(X, SN T)+ and hence P(X, SNT) C P(X, S). O

THEOREM 2.18. P(X, S)=R(X, T) if and only if SNT is polynomially convex,
T\S C So(R(X, T)) and supp(n) € SN T forevery u € P(X, )+,

PROOF. Let P(X,S)=R(X,T). So T\SCS(P(X,S))=S(R(X,T)). If
w e P(X, S)* then supp(u) C S and, since P(X, S) = R(X, T), then u € R(X, T)*,
which implies that supp(u) € SNT. By Corollaries 2.15 and 2.8, P(X, S)
=P(X,SNT) and R(X,T)=R(X,SNT) so that P(X,SNT)=R(X,SNT)
and hence P(SNT) = R(SNT). Therefore S N T is polynomially convex.
Conversely, by Corollaries 2.15 and 2.10, P(X, S)=P(X,SNT) and R(X, T)
=R(X,SNT). Since SN T is polynomially convex, P(X, SNT) =R(X,SNT)
and hence P(X, S)=R(X, T). O

COROLLARY 2.19. P(X, K) = R(X) if and only ifI?: K and X\K C So(R(X)).
PROOF. In Theorem 2.18 take S= K and T = X. O
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COROLLARY 2.20. P(X)=R(X, K) if and only if K=K, and for every
we P(X)%, supp(n) C K.

PROOF. This is immediate. g

COROLLARY 2.21 .AIf P(X, K)=R(X) and S is a compact subset of K such that
m(S) =m(K) then § = S.

PrROOF. By Corollary 2.19, K=K. So P(X, K)=R(X, K). By Corollary 2.4,
R(X, K)=R(X, S), hence P(X, K)=R(X, S). Therefore, by Theorem 2.18,
S=(KNSH=KNS=S. O

LEMMA 2.22. If P(X, S) = P(X, T) then R(X, S) = R(X, T).

PrOOF. If P(X,S)= P(X,T) then, by the same argument as in the first part
of the proof of Theorem 2.9, S\T C So(P(X, S)) € So(R(X, S)) and T\S C
So(P(X, T)) € So(R(X, T)). By Corollary 2.10, R(X, S) = R(X, T). O

However, the converse of the above lemma is not true. For example,
if X={zeC:|zl=1} and S={z€X:Rez>0} and T =X then R(X,S) =
R(X,T),but P(X,S)=C(X)#P(X)=P(X, T).

3. Extension of Vitushkin’s theorem

In 1967 Vitushkin obtained criteria for the equality R(X)= C(X) involving
analytic capacity. See [7] or, for example, [2, VIIL.5.1]. In this section we extend
Vitushkin’s theorem.

The following lemma is known; see, for example, [2, p. 64].

LEMMA 3.1. If {K,};2, is a sequence of compact plane sets such that R(Kp)

=C(K,) foralln, and K = Uflozl K, is compact, then R(K) = C(K).

THEOREM 3.2. The following assertions are equivalent:

i) R(X,S=RIX,T);

(i) R(K) = C(K) for every compact subset K C SAT;

(iii) for every compact subset K € SAT, and for every open set D, y(D \ K)
= y (D), where y is the analytic capacity;

(iv) for every compact subset K C SAT, and for almost all z € K (with respect to
the planar measure),

5 y(A(z; 1)\ K)
imsup ——= >

r—0t r

0’

where A(z; r) is the closed disk with centre 7 and radius r.
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PROOF. (i) —> (ii)) Let R(X, S)=R(X,T) and K be a compact subset of
SAT. Then S\T C So(R(X, S)) and T\S C So(R(X, T)). We take K1 =K NS
and Kp =K NT. Then K| C So(R(X, S)) C So(R(X, Ky)) and K € So(R(X, T))
C So(R(X, K»)). Therefore, Ki C So(R(K1)) and Kp C So(R(K»7)). Hence,
R(K1) = C(K1) and R(K;) = C(K>) by Corollaries 2.10 and 2.12. By the above
lemma, R(K) = C(K).

(i) — (iii) and (iii) — (iv) are immediate by Vitushkin’s theorem [7].

(iv) —> (i) We prove that R(X, S) = R(X, SN T). So it is sufficient to show
that R(S) = R(S, SN T). Let zo0 € S\T and U be a neighbourhood of zp such that
UNT=4@.If wetake K = U N S then

i Y(A(zo; ) \ K)
imsuyp ——— >

r—0t r

0.

There exists rg > 0 such that for every 0 < r <rg, A(zo; r) C U, so A(zg; r)\K =
A(zp; r)\S. Hence,
i Y (A(zo; )\ S)
imsuyp ———mM8M8MM >
r—0t r

By Curtis’s criterion [2, VIIL4.1], zo is a peak point for R(S). Hence, S\T C
So(R(S)). Therefore, R(S) = R(S, SN T) by Corollary 2.11. By the same argument
as above R(X, T) = R(X, SN T) and hence (i) follows. O

0.

In the above theorem we proved that R(X, S) = R(X, T) if and only if for every
compact subset K € SAT, R(K) = C(K). The following example shows that this
result and Corollary 2.10 are not true if we replace R by P.

EXAMPLE 3.3. Let S=C(0; 1), T=C(2;1) be two circles in the plane and
X=SUT. For every compact subset K of SAT, K is polynomially convex
and m(K)=0. Hence P(K)= C(K). Moreover, S\T C So(P(X, S)) and T\S C
So(P(X, T)). If P(X,S)=P(X, T) then P(X, $)=P(X,SNT)=R(X,SNT)
= R(X, S). This implies that S =S, which is not true. Therefore, P(X, S)
#P(X, T).

COROLLARY 3.4. R(X, K) = R(X) if and only if R(Y) = C(Y) for every compact
plane set Y where Y € X\K.

PROOF. In Theorem 3.2 take S = K and T = X. O

The next result is, in fact, an extension of a theorem due to Gauthier for compact
plane sets; see [3] or [1].
THEOREM 3.5. The following conditions are equivalent:
i) RX,S=RX,T),
(i) for every f € R(X, S)(R(X, T)) and for each ¢ > 0 there exists a function

g € Ro(X, T)(Ro(X, S)) such that || f — glisur <& _
(iii) for every openset U inC, R(X, SNU)=R(X, T NU);
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(iv) for every open disk D in C, R(X, SN D)= R(X, T N D);
(v) forevery p € X there exists an open disk D, with centre p such that

R(X,SND,)=R(X,TND,).

PROOF. (i) —> (ii) is immediate.

(il)) — (i) Let f € R(X, S) and ¢ > 0. There exists g € Rg(X, T) such that
lf — gllsur <&/2. We can extend (f — g)|sur to a continuous function # on X
such that ||h||x <e. We define G=f —h. Then G € Ry(X, T) and || f — G||x
= |lk|lx <e&. So f € R(X, T) and hence R(X, S) C R(X, T). By a similar method,
R(X,T) C R(X, S).

(i) — (i) (SNU)\(TNU)CS\T and (TNU)\(SNU)CT\S. But S\ T
C So(R(X, ) C So(R(X,SNTU)) and T\ S C So(R(X, T)) € So(R(X, T NT)).
By Corollary 2.10, R(X, SNU) = R(X, T N U).

(iii) — (iv) and (iv) —> (v) are immediate.

(v) —> (1) We first assume that K is a compact plane set in S\7 and then show
that R(K) = C(K). For every p € K there exists D, with a small radius such
that R(K,) = C(K,) where K, =K N 5[,. Hence, there are points p1, p2, ..., Pn
in K such that K € J;_, D), and so K ={J/_, Kp,. Since R(Kp,) =C(Kp,)
fori=1,2,...,n, by Lemma 3.1, R(K) = C(K). Therefore, by Theorem 3.2,
R(X,S)=R(X,SNT). By the same argument as in the first part of the proof,
R(X,T)=R(X, SNT). Therefore, R(X, S) = R(X, T). d

THEOREM 3.6. A(X, S) = R(X, T) ifand only ifint(S\T) =0, T\S C So(R(X, T))
and A(SNT)=R(SNT).

PROOF. Let A(X, S) = R(X, T). Clearly T\S C So(R(X, T)) by Theorem 2.9. If
int(S\T) # ¢ then there exists an open disk D such that D C S\T. For every
f € C(D) there exists an extension F € C(X) of f such that F =0 on T. Clearly
F e R(X,T)= A(X, S) and hence f € A(D), which is not true.

Since int(S\7) =0 and T\S C So(R(X, T)), then A(X, S)=A(X,SNT) and
RX, T)=R(X,SNT). So AX,SNT)=R(X,SNT), which implies that
ASNT)=R(SNT).

Conversely, since int(S\7) =1, then A(X, S)=A(X, SNT), and moreover,
R(X,T)=R(X,SNT) by Corollary 2.10. Since A(SNT)= R(SNT) it follows
that A(X, SNT) = R(X, SN T). Therefore, A(X, S) = R(X, T). O

COROLLARY 3.7. A(X, S) =R(X, T) if and only if for every compact set K C
T\S, R(K) = C(K), for every compact set K C S\T, A(K) =C(K) and A(SNT)
=R(SNT).

PROOF. By Theorem 3.2, R(X,SNT)=R(X,T) if and only if R(K)=C(K)
for all compact sets K € T\S. On the other hand R(X, SNT)=R(X, T) if and
only if T\S C So(R(X, T)), by Corollary 2.10. Since int(S\7T)=¢ if and only
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if A(K)=C(K) for all compact sets K € S\7, the result follows from the above
theorem. O

We are now ready to extend a result due to Boivin and Jiang [1, Theorem 2] for
compact plane sets.

THEOREM 3.8. The following assertions are equivalent.

() AKX, S)=RX.T) B B

(ii) for every closed disk D in C, A(X, SN D) =_R(X, T N D);

(iii) for every p € X there exists a closed disk D, in C with centre p such that
A(X,SND,)=R(X,TND),).

PROOF. i) — (ii)) By Theorem 3.6, int((SN D)\(T 0_5)) = (25,_ and by
Corollary 3.7, R(K) = C(K) for every compact set K (T N D)\(S N D). Since
A(SNT)=R(SNT),it follows from [1, Theorem 2] that

AW(SND)N(T ND))=R{(SND)N (T ND)).

So by Corollary 3.7, A(X, S N D) = R(X, T N D).

(i) — (iii) is immediate.

(i) — (i) By Theorem 3.6, for each pe X, A((SND,) N(T NDp))
=R((SN D) N (T N D)) for a closed disk D, in C with centre p. So A((SNT)
ND,) =R(SNT)ND,). By [2,11.10.5], AGCSNT) = R(SNT).

Now we prove that int(S\7T)=0. If p €int(S\T) then there exists a closed
disk 5[, in C with centre p such that A(X, SN Bp) =R(X,T ﬂﬁp). Therefore,
nt((SN Bp)\(T N Ep)) =) by Theorem 3.6. We may take D, with small enough
radius such that D, € S\T so that D, C (SN D,)\(T N D,), which is in con-
tradiction with int((SN D,)\(T N D,)) =@. Hence, A(X,S)=A(X,SNT).
By AX,(SNT)ND,) =A(X,SNDy)=R(X,TNDp), it follows that
R(X,(SNT)ND,) CR(X,TND,), so RXX,(SNT)ND,)=R(X,TNDp).
Hence, R(X, SNT)= R(X, T) by Theorem 3.5. On the other hand, A(X, SNT)
=R(X,SNT)since A(SNT)=R(SNT). Therefore, A(X, S) = R(X, T). O
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