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Abstract

Let K and X be compact plane sets such that K ⊆ X . Let P(K ) be the uniform closure of polynomials
on K , let R(K ) be the uniform closure of rational functions on K with no poles in K and let A(K ) be
the space of continuous functions on K which are analytic on int(K ). Define P(X, K ), R(X, K ) and
A(X, K ) to be the set of functions in C(X) whose restriction to K belongs to P(K ), R(K ) and A(K ),
respectively. Let S0(A) denote the set of peak points for the Banach function algebra A on X . Let S and
T be compact subsets of X . We extend the Hartogs–Rosenthal theorem by showing that if the symmetric
difference S1T has planar measure zero, then R(X, S) = R(X, T ). Then we show that the following
properties are equivalent:

(i) R(X, S) = R(X, T );
(ii) S \ T ⊆ S0(R(X, S)) and T \ S ⊆ S0(R(X, T ));
(iii) R(K ) = C(K ) for every compact set K ⊆ S1T ;
(iv) R(X, S ∩ U ) = R(X, T ∩ U ) for every open set U in C;
(v) for every p ∈ X there exists an open disk Dp with centre p such that

R(X, S ∩ D p) = R(X, T ∩ D p).

We prove an extension of Vitushkin’s theorem by showing that the following properties are equivalent:

(i) A(X, S) = R(X, T );
(ii) A(X, S ∩ D) = R(X, T ∩ D) for every closed disk D in C;
(iii) for every p ∈ X there exists an open disk Dp with centre p such that

A(X, S ∩ D p) = R(X, T ∩ D p).

2000 Mathematics subject classification: 46J10, 46J15.

Keywords and phrases: uniform algebras, polynomial and rational approximation, peak points, planar
measure, Vitushkin’s theorem.

1. Introduction

The algebra of all continuous complex-valued functions on the compact Hausdorff
space X is denoted by C(X). The subalgebra A ⊆ C(X) is a Banach function algebra
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on X if A separates the points of X , contains the constants and is complete under an
algebra norm. If the norm of a Banach function algebra is the uniform norm then it is
a uniform algebra.

Let A be a Banach function algebra on X . A point p ∈ X is a peak point for A if
there exists f ∈ A such that f (p) = 1 and | f (x)| < 1 for every x ∈ X different from
p. The set of all peak points for A is denoted by S0(A).

Let K , S, T and X be compact subsets of C such that K , S, T ⊆ X , and let P0(K ),
R0(K ) be the algebras of all polynomials and rational functions on K with poles off
K , respectively. The uniform closures of P0(K ) and R0(K ) are denoted by P(K ) and
R(K ), respectively, which are uniform algebras on K .

The polynomial convex hull of K is

K̂ = {z ∈ C : |p(z)| ≤ ‖p‖K for all polynomials p}.

The set K is polynomially convex if K̂ = K . Let m denote the planar measure and
M(X) denote the space of all regular complex Borel measures on X . A theorem due
to Hartogs and Rosenthal asserts that R(K ) = C(K ) if K has planar measure zero; see,
for example, [2, II.8.4] or [4]. It is also known that R(K ) = C(K ) if and only if every
point of K is a peak point for R(K ) [6, 5.3.8]. A stronger result is Bishop’s peak point
criterion for rational approximation, which asserts that if m(K ) = m(S0(R(K ))) then
R(K ) = C(K ) [2, II.11.4]. Moreover, P(K ) = R(K ) if and only if K is polynomially
convex. Also a theorem due to Vitushkin gives criteria for R(K ) = C(K ); see, for
example, [2, VIII.5.1] or [7].

In this work we extend the above results to more general algebras in the theory of
uniform algebras. For another extension of Hartogs–Rosenthal to Lipschitz algebras,
see [5].

If we take P0(X, K ) = { f ∈ C(X) : f |K ∈ P0(K )} and R0(X, K ) = { f ∈ C(X) :

f |K ∈ R0(K )} then it is easy to see that P(X, K ) = { f ∈ C(X) : f |K ∈ P(K )} and
R(X, K ) = { f ∈ C(X) : f |K ∈ R(K )} are, in fact, the uniform closures of P0(X, K )

and R0(X, K ), respectively. We take A(X, K ) = { f ∈ C(X) : f |K ∈ A(K )} where
A(K ) is the algebra of continuous functions on K , which are analytic on int(K ). Note
that if K is finite then P0(X, K ) = R0(X, K ) = C(X) and so P(X, K ) = R(X, K ) =

A(X, K ) = C(X). Hence, we may assume that K is infinite.
It is easy to show that P(X, K ), R(X, K ) and A(X, K ) are uniform algebras on X .

Moreover, P0(X, K ) = P0(X), R0(X, K ) = R0(X), P(X, K ) = P(X), R(X, K ) =

R(X) and A(X, K ) = A(X) if K = X .

2. Polynomial and rational approximation in uniform algebras

Throughout this section we always assume that K , S, T and X are compact plane
sets such that K , S, T ⊆ X , and µ ∈ M(X).

LEMMA 2.1. If A = { f ∈ C(X) : f |K = 0}, then C0(X \ K ) = A|X\K .
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PROOF. Clearly, for every f ∈ A, f |X\K ∈ C0(X\K ).
Let f0 ∈ C0(X\K ). We extend f0 to X by

f (x) =

{
f0(x), x ∈ X\K ,

0, x ∈ K .

We now show that f ∈ A. Let x0 ∈ X . If f (x0) 6= 0 then x0 ∈ X\K . Hence, there
exists δ1 > 0 such that B(x0; δ1) ∩ K = ∅. Since f0 ∈ C0(X\K ) for every ε > 0 there
exists δ2 > 0 such that for every x ∈ X\K if |x − x0| < δ2 then | f (x) − f (x0)| < ε. If
we take δ = min{δ1, δ2}, then for every x ∈ X if |x − x0| < δ then | f (x) − f (x0)| < ε.
This shows that f is continuous at x0.

If f (x0) = 0 then for every ε > 0 the set S = {x ∈ X\K : f (x) ≥ ε} is compact.
Since x0 ∈ X\S there exists δ > 0 such that B(x0; δ) ∩ S = ∅. Hence, for every
x ∈ X\S, the inequality | f (x) − f (x0)| < ε holds, and this shows that for every
x ∈ B(x0; δ) ∩ X , | f (x) − f (x0)| < ε and so f is continuous at x0. 2

LEMMA 2.2. Let µ be a regular complex Borel measure on X. If U is an open set in C
such that for almost all z ∈ U, with respect to planar measure,

∫
X dµ(ζ )/(ζ − z) = 0,

then µ = 0 on U ∩ X.

PROOF. Since µ ∈ M(X) it is enough to show that |µ|(Y ) = 0 for every compact
subset Y of U ∩ X . We consider a decreasing sequence of bounded open
neighbourhoods {Un}

∞

n=1 of Y such that
⋂

∞

n=1 Un = Y and U1 ⊆ U . It is known that
for every n we can find a continuously differentiable function hn on the complex plane
such that hn = 1 on Y , 0 ≤ hn ≤ 1 and En = supp(hn) is contained in Un . Now let
f ∈ C1(Y ), where C1(Y ) is the algebra of all continuously differentiable functions on
Y . We can extend f to a function g ∈ C1(C) such that it is bounded on the closure of
U1. Now we define fn = ghn . Clearly fn ∈ C1(C) and it is, in fact, an extension of f .
By applying Green’s theorem as well as Fubini’s theorem,∫

X
fn(λ) dµ(λ) =

∫
X

{∫ ∫
En

−1
π

(z − λ)−1( fn)z dx dy

}
dµ(λ)

=

∫ ∫
En

−( fn)z

π

(∫
X

dµ(λ)

z − λ

)
dx dy = 0.

Since limn−→∞ fn(x) = χY (x)g(x), for every x ∈ X , then
∫

Y f (λ) dµ(λ) = 0 by the
dominated convergence theorem. Since the algebra of all such functions f is dense
in C(Y ), we conclude that µ is the zero measure on Y and hence |µ|(Y ) = 0. By the
regularity of µ we conclude that µ = 0 on U ∩ X . 2

THEOREM 2.3. If m(S\T ) = 0 then R(X, T ) ⊆ R(X, S).

PROOF. Let µ ∈ (R(X, S))⊥. We prove that µ ∈ (R(X, T ))⊥.
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We first show that supp(µ) ⊆ S. For every f0 ∈ C0(X\S) the function

f (x) =

{
f0(x), x ∈ X\S,

0, x ∈ S,

belongs to R(X, S) by Lemma 2.1, hence
∫

X f dµ =
∫

X\S f0 dµ = 0. Therefore,

µ|X\S ∈ (C0(X\S))⊥, that is, µ|X\S = 0. This shows that supp(µ) ⊆ S.
There exists a bounded open set U such that U ∩ T = ∅ and X\T ⊆ U . For

every α ∈ X\(S ∪ T ), there exists a function f in R(X, S) such that f |S = (z − α)−1.
Hence, ∫

X
(z − α)−1 dµ =

∫
S
(z − α)−1 dµ =

∫
S

f dµ =

∫
X

f dµ = 0.

Since m(S\T ) = 0, for almost all α ∈ U ,
∫

X (z − α)−1 dµ(z) = 0. Hence, by
Lemma 2.2, µ = 0 on X ∩ U = X\T and so supp(µ) ⊆ T . This shows that supp(µ)

⊆ S ∩ T .
Now suppose that α ∈ C\T . Since m(S\T ) = 0, S\T has no interior. Hence, there

is a sequence {αn} in C\S such that limn−→∞ αn = α.
By hypothesis,

∫
S∩T (z − αn)

−1 dµ = 0 for every n. By the dominated convergence
theorem, ∫

S∩T
(z − α)−1 dµ = lim

n−→∞

∫
S∩T

(z − αn)
−1 dµ = 0.

On the other hand, for every g ∈ R0(X, T ), g|T ∈ R0(T ). Since g|T is the limit of a
sequence of rational functions with poles off S, by the same argument as above we
conclude that

∫
S∩T g dµ = 0, and hence∫

X
g dµ =

∫
S∩T

g dµ = 0.

Thus for every g ∈ R(X, T ),
∫

X g dµ = 0, that is, µ ∈ (R(X, T ))⊥. Therefore,
R(X, T ) ⊆ R(X, S). 2

COROLLARY 2.4. If m(S1T ) = 0 then R(X, S) = R(X, T ).

COROLLARY 2.5. If m(K ) = 0 then R(X, K ) = C(X). In particular, if m(X) = 0
then R(X) = C(X), which is the Hartogs–Rosenthal theorem.

PROOF. Take S = K and T = {z0} for some z0 ∈ X , in Corollary 2.4. 2

COROLLARY 2.6. If m(X) = m(K ) then R(X, K ) = R(X).

PROOF. Take S = K and T = X in Corollary 2.4. 2

THEOREM 2.7. R(X, T ) ⊆ R(X, S) if and only if supp(µ) ⊆ S ∩ T for every µ ∈

R(X, S)⊥.
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PROOF. Let R(X, T ) ⊆ R(X, S) and µ ∈ R(X, S)⊥. For every f0 ∈ C0(X\S), the
function

f (x) =

{
f0(x), x ∈ X\S,

0, x ∈ S,

is continuous on X by Lemma 2.1, and hence f ∈ R0(X, S). Therefore,
∫

X\S f0 dµ =∫
X f dµ = 0, which shows that µ|X\S ∈ C0(X\S)⊥ and so µ|X\S = 0, that is,

supp(µ) ⊆ S. Since R(X, S)⊥ ⊆ R(X, T )⊥, µ ∈ R(X, T )⊥. Hence, by the same
argument as above, supp(µ) ⊆ T . Therefore, supp(µ) ⊆ S ∩ T .

For the converse, we first show that int(S\T ) = ∅ if supp(µ) ⊆ S ∩ T for all
µ ∈ R(X, S)⊥. Suppose on the contrary that there exists a closed disk D ⊆ int(S\T ).
Since R(D) 6= C(D) there exists λ ∈ R(D)⊥ such that λ 6= 0. We define the measure
µ ∈ M(X) by µ(E) = λ(E ∩ D), which is not the zero measure. If f ∈ R(X, S), then∫

X
f dµ =

∫
D

f dµ =

∫
D

f dλ = 0

since f |D ∈ R(D). Therefore, µ ∈ R(X, S)⊥ while supp(µ) ⊆ D ⊂ S\T , which is in
contradiction with our hypothesis.

Now let f ∈ R0(X, T ) be such that f |T = 1/(z − z0) where z0 ∈ C\T . If z0 ∈ S\T
then there exists {zn} ⊂ X\(S ∪ T ) such that limn−→∞ zn = z0, since int(S\T ) = ∅.
By the dominated convergence theorem,

lim
n−→∞

∫
S∩T

(z − zn)
−1 dµ(z) =

∫
S∩T

(z − z0)
−1 dµ(z).

For every n ∈ N there exists gn ∈ R0(X, S) such that gn|S = (z − zn)
−1. Since

0 =

∫
X

gn dµ =

∫
S∩T

(z − zn)
−1 dµ,

it follows that
∫

S∩T (z − z0)
−1 dµ = 0 and so∫

X
f dµ =

∫
S∩T

(z − z0)
−1 dµ = 0.

If f is an arbitrary element of R0(X, T ) then f |T ∩S is the limit of a sequence of
rational functions with poles off S ∪ T . Hence, by the above discussion and the
dominated convergence theorem,

∫
X f dµ = 0. This shows that µ ∈ R(X, T )⊥ and

so R(X, T ) ⊆ R(X, S). 2

COROLLARY 2.8. R(X, S) = R(X, T ) if and only if supp(µ) ⊆ S ∩ T for every µ ∈

R(X, S)⊥ ∪ R(X, T )⊥.

THEOREM 2.9. R(X, T ) ⊆ R(X, S) if and only if S \ T ⊆ S0(R(X, S)).
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PROOF. Let R(X, T ) ⊆ R(X, S) and z0 ∈ S \ T . Let U be an arbitrary
neighbourhood of z0 and let V be a bounded neighbourhood of z0 which is contained
in U and moreover, V ∩ T = ∅. There exists a neighbourhood W of z0 such that its
closure is contained in V . By Urysohn’s lemma there exists a continuous function f
on X such that

f (x) =

{
1, x ∈ W ,

0, x ∈ C\V .

Since f is zero on T it follows that f ∈ R0(X, T ). Moreover, | f | < 1/4 on X\U
and f (z0) = ‖ f ‖ = 1. Thus z0 is a peak point for R(X, T ), by [6, 4.7.22]. Hence,
S \ T ⊆ S0(R(X, S)).

For the converse, we first note that int(S\T ) = ∅ by the hypothesis. By Theorem 2.7
it is sufficient to show that supp(µ) ⊆ S ∩ T for every µ ∈ R(X, S)⊥. By the same
argument as in the proof of Theorem 2.7, it follows that supp(µ) ⊆ S. We now
show that µ|S\T = 0. For every compact subset Y of S\T there exists a bounded
neighbourhood U of Y such that U ∩ T = ∅. For every z0 ∈ U\S there exists an
f ∈ R0(X, S) such that f |S = 1/(z − z0). Since supp(µ) ⊆ S,∫

X

dµ(z)

z − z0
= 0.

If m(S\T ) = 0 then for almost all z0 ∈ U ,∫
X

dµ(z)

z − z0
= 0.

Hence, by Lemma 2.2, µ = 0 on U ∩ X and so µ = 0 on Y . This implies that
µ|S\T = 0.

Now let m(S\T ) > 0. There is a bounded neighbourhood U of S\T such that
U ∩ T = ∅. For every

z0 ∈ U\S,

∫
X

dµ(z)

z − z0
= 0.

If for almost all

z0 ∈ U,

∫
X

dµ(z)

z − z0
= 0

then, by Lemma 2.2, µ = 0 on U ∩ X and hence µ|S\T = 0. Suppose, on the contrary,
there exists a compact subset Y of U such that m(Y ) > 0 and for every

z0 ∈ Y,

∫
X

dµ(z)

z − z0
6= 0.

Hence, by [6, 5.3. Lemma 1], there exists z0 ∈ S\T such that∫
X

|z − z0|
−1d|µ|(z) < ∞ and

∫
X
(z − z0)

−1 dµ(z) 6= 0.

We may assume that
∫

X (z − z0)
−1 dµ(z) = 1.
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For every

f ∈ R0(X, S),
f (z) − f (z0)

z − z0
∈ R0(S).

By the Tietze extension theorem there exists F ∈ R0(X, S) such that for every z ∈ S,

F(z) =
f (z) − f (z0)

z − z0
,

and hence ∫
X

f (z)

z − z0
dµ(z) =

∫
X

f (z0)

z − z0
dµ(z) = f (z0).

Therefore, for every

f ∈ R(X, S),

∫
X

f (z)

z − z0
dµ(z) = f (z0)

by the density of R0(X, S) in R(X, S). Since z0 is a peak point for R(X, S), there
exists g ∈ R(X, S) such that g(z0) = 1 and |g| < 1 on X\{z0}. For every n ∈ N ,∫

X

gn(z)

z − z0
dµ(z) = gn(z0) = 1.

Since for every z ∈ X\{z0}, limn−→∞ gn(z) = 0, by the dominated convergence
theorem,

lim
n−→∞

∫
X

gn(z)

z − z0
dµ(z) = 0,

which is a contradiction. Hence, µ|S\T = 0, which implies that supp(µ) ⊆ S ∩ T . 2

COROLLARY 2.10. R(X, S) = R(X, T ) if and only if S \ T ⊆ S0(R(X, S)) and
T \ S ⊆ S0(R(X, T )).

COROLLARY 2.11. R(X, K ) = R(X) if and only if X \ K ⊆ S0(R(X)).

PROOF. In Corollary 2.10 we take S = K and T = X . 2

COROLLARY 2.12. R(X, K ) = C(X) if and only if K ⊆ S0(R(X, K )). In particular,
R(X) = C(X) if and only if X = S0(R(X)).

PROOF. In Corollary 2.10 we take S = K and T = ∅. 2

COROLLARY 2.13. If R(X, S) = R(X, T ) then R(X, S) = R(X, T ) = R(X, S ∩ T ).

PROOF. This is immediate. 2
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THEOREM 2.14. P(X, T ) ⊆ P(X, S) if and only if supp(µ) ⊆ S ∩ T for every µ ∈

P(X, S)⊥.

PROOF. Let P(X, T ) ⊆ P(X, S). By the same method as in the proof of Theorem 2.7,
supp(µ) ⊆ S ∩ T for every µ ∈ P(X, S)⊥.

For the converse, let µ ∈ P(X, S)⊥. By hypothesis, supp(µ) ⊆ S ∩ T . For every
f ∈ P0(X, T ), f |S∩T = p where p ∈ P0(S ∩ T ). If we consider p as an element of
P0(X, S) then ∫

X
f dµ =

∫
S∩T

f dµ =

∫
S∩T

p dµ =

∫
X

p dµ = 0.

This shows that µ ∈ P(X, T )⊥. Hence, P(X, T ) ⊆ P(X, S). 2

COROLLARY 2.15. P(X, S) = P(X, T ) if and only if supp(µ) ⊆ S ∩ T for every
µ ∈ P(X, S)⊥ ∪ P(X, T )⊥.

COROLLARY 2.16. P(X, K ) = P(X) if and only if supp(µ) ⊆ K for every
µ ∈ P(X)⊥.

PROOF. In Corollary 2.15 take S = K and T = X . 2

COROLLARY 2.17. If P(X, S) = P(X, T ) then P(X, S) = P(X, T ) = P(X, S ∩ T ).

PROOF. We prove that P(X, S) = P(X, S ∩ T ). Obviously P(X, S) ⊆ P(X, S ∩ T ).
Let µ ∈ P(X, S)⊥. By Corollary 2.15, supp(µ) ⊆ S ∩ T . For every f ∈ P0(X, S ∩T ),
f |S∩T = p where p ∈ P0(S ∩ T ). If we consider p as an element of P0(X, S), then∫
X f dµ =

∫
S∩T f dµ =

∫
S∩T p dµ =

∫
X p dµ = 0.

This shows that µ ∈ P(X, S ∩ T )⊥ and hence P(X, S ∩ T ) ⊆ P(X, S). 2

THEOREM 2.18. P(X, S) = R(X, T ) if and only if S ∩ T is polynomially convex,
T \S ⊆ S0(R(X, T )) and supp(µ) ⊆ S ∩ T for every µ ∈ P(X, S)⊥.

PROOF. Let P(X, S) = R(X, T ). So T \S ⊆ S0(P(X, S)) = S0(R(X, T )). If
µ ∈ P(X, S)⊥ then supp(µ) ⊆ S and, since P(X, S) = R(X, T ), then µ ∈ R(X, T )⊥,
which implies that supp(µ) ⊆ S ∩ T . By Corollaries 2.15 and 2.8, P(X, S)

= P(X, S ∩ T ) and R(X, T ) = R(X, S ∩ T ) so that P(X, S ∩ T ) = R(X, S ∩ T )

and hence P(S ∩ T ) = R(S ∩ T ). Therefore S ∩ T is polynomially convex.
Conversely, by Corollaries 2.15 and 2.10, P(X, S) = P(X, S ∩ T ) and R(X, T )

= R(X, S ∩ T ). Since S ∩ T is polynomially convex, P(X, S ∩ T ) = R(X, S ∩ T )

and hence P(X, S) = R(X, T ). 2

COROLLARY 2.19. P(X, K ) = R(X) if and only if K̂ = K and X\K ⊆ S0(R(X)).

PROOF. In Theorem 2.18 take S = K and T = X . 2
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COROLLARY 2.20. P(X) = R(X, K ) if and only if K̂ = K , and for every
µ ∈ P(X)⊥, supp(µ) ⊆ K .

PROOF. This is immediate. 2

COROLLARY 2.21. If P(X, K ) = R(X) and S is a compact subset of K such that
m(S) = m(K ) then Ŝ = S.

PROOF. By Corollary 2.19, K̂ = K . So P(X, K ) = R(X, K ). By Corollary 2.4,
R(X, K ) = R(X, S), hence P(X, K ) = R(X, S). Therefore, by Theorem 2.18,
Ŝ = ̂(K ∩ S) = K ∩ S = S. 2

LEMMA 2.22. If P(X, S) = P(X, T ) then R(X, S) = R(X, T ).

PROOF. If P(X, S) = P(X, T ) then, by the same argument as in the first part
of the proof of Theorem 2.9, S\T ⊆ S0(P(X, S)) ⊆ S0(R(X, S)) and T \S ⊆

S0(P(X, T )) ⊆ S0(R(X, T )). By Corollary 2.10, R(X, S) = R(X, T ). 2

However, the converse of the above lemma is not true. For example,
if X = {z ∈ C : |z| = 1} and S = {z ∈ X : Re z ≥ 0} and T = X then R(X, S) =

R(X, T ), but P(X, S) = C(X) 6= P(X) = P(X, T ).

3. Extension of Vitushkin’s theorem

In 1967 Vitushkin obtained criteria for the equality R(X) = C(X) involving
analytic capacity. See [7] or, for example, [2, VIII.5.1]. In this section we extend
Vitushkin’s theorem.

The following lemma is known; see, for example, [2, p. 64].

LEMMA 3.1. If {Kn}
∞

n=1 is a sequence of compact plane sets such that R(Kn)

= C(Kn) for all n, and K =
⋃

∞

n=1 Kn is compact, then R(K ) = C(K ).

THEOREM 3.2. The following assertions are equivalent:

(i) R(X, S) = R(X, T );
(ii) R(K ) = C(K ) for every compact subset K ⊆ S1T ;
(iii) for every compact subset K ⊆ S1T , and for every open set D, γ (D \ K )

= γ (D), where γ is the analytic capacity;
(iv) for every compact subset K ⊆ S1T , and for almost all z ∈ K (with respect to

the planar measure),

lim sup
r→0+

γ (1(z; r) \ K )

r
> 0,

where 1(z; r) is the closed disk with centre z and radius r .
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PROOF. (i) −→ (ii) Let R(X, S) = R(X, T ) and K be a compact subset of
S1T . Then S\T ⊆ S0(R(X, S)) and T \S ⊆ S0(R(X, T )). We take K1 = K ∩ S
and K2 = K ∩ T . Then K1 ⊆ S0(R(X, S)) ⊆ S0(R(X, K1)) and K2 ⊆ S0(R(X, T ))

⊆ S0(R(X, K2)). Therefore, K1 ⊆ S0(R(K1)) and K2 ⊆ S0(R(K2)). Hence,
R(K1) = C(K1) and R(K2) = C(K2) by Corollaries 2.10 and 2.12. By the above
lemma, R(K ) = C(K ).

(ii) −→ (iii) and (iii) −→ (iv) are immediate by Vitushkin’s theorem [7].
(iv) −→ (i) We prove that R(X, S) = R(X, S ∩ T ). So it is sufficient to show

that R(S) = R(S, S ∩ T ). Let z0 ∈ S\T and U be a neighbourhood of z0 such that
U ∩ T = ∅. If we take K = U ∩ S then

lim sup
r→0+

γ (1(z0; r) \ K )

r
> 0.

There exists r0 > 0 such that for every 0 < r ≤ r0, 1(z0; r) ⊆ U , so 1(z0; r)\K =

1(z0; r)\S. Hence,

lim sup
r→0+

γ (1(z0; r) \ S)

r
> 0.

By Curtis’s criterion [2, VIII.4.1], z0 is a peak point for R(S). Hence, S\T ⊆

S0(R(S)). Therefore, R(S) = R(S, S ∩ T ) by Corollary 2.11. By the same argument
as above R(X, T ) = R(X, S ∩ T ) and hence (i) follows. 2

In the above theorem we proved that R(X, S) = R(X, T ) if and only if for every
compact subset K ⊆ S1T , R(K ) = C(K ). The following example shows that this
result and Corollary 2.10 are not true if we replace R by P .

EXAMPLE 3.3. Let S = C(0; 1), T = C(2; 1) be two circles in the plane and
X = S ∪ T . For every compact subset K of S1T , K is polynomially convex
and m(K ) = 0. Hence P(K ) = C(K ). Moreover, S\T ⊆ S0(P(X, S)) and T \S ⊆

S0(P(X, T )). If P(X, S) = P(X, T ) then P(X, S) = P(X, S ∩ T ) = R(X, S ∩ T )

= R(X, S). This implies that Ŝ = S, which is not true. Therefore, P(X, S)

6= P(X, T ).

COROLLARY 3.4. R(X, K ) = R(X) if and only if R(Y ) = C(Y ) for every compact
plane set Y where Y ⊆ X\K .

PROOF. In Theorem 3.2 take S = K and T = X . 2

The next result is, in fact, an extension of a theorem due to Gauthier for compact
plane sets; see [3] or [1].

THEOREM 3.5. The following conditions are equivalent:

(i) R(X, S) = R(X, T );
(ii) for every f ∈ R(X, S)(R(X, T )) and for each ε > 0 there exists a function

g ∈ R0(X, T )(R0(X, S)) such that ‖ f − g‖S∪T < ε;
(iii) for every open set U in C, R(X, S ∩ U ) = R(X, T ∩ U );
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(iv) for every open disk D in C, R(X, S ∩ D) = R(X, T ∩ D);
(v) for every p ∈ X there exists an open disk Dp with centre p such that

R(X, S ∩ D p) = R(X, T ∩ D p).

PROOF. (i) −→ (ii) is immediate.
(ii) −→ (i) Let f ∈ R(X, S) and ε > 0. There exists g ∈ R0(X, T ) such that

‖ f − g‖S∪T < ε/2. We can extend ( f − g)|S∪T to a continuous function h on X
such that ‖h‖X < ε. We define G = f − h. Then G ∈ R0(X, T ) and ‖ f − G‖X
= ‖h‖X < ε. So f ∈ R(X, T ) and hence R(X, S) ⊆ R(X, T ). By a similar method,
R(X, T ) ⊆ R(X, S).

(i) −→ (iii) (S ∩ U )\(T ∩ U ) ⊆ S\T and (T ∩ U )\(S ∩ U ) ⊆ T \S. But S \ T
⊆ S0(R(X, S)) ⊆ S0(R(X, S ∩ U )) and T \ S ⊆ S0(R(X, T )) ⊆ S0(R(X, T ∩ U )).
By Corollary 2.10, R(X, S ∩ U ) = R(X, T ∩ U ).

(iii) −→ (iv) and (iv) −→ (v) are immediate.
(v) −→ (i) We first assume that K is a compact plane set in S\T and then show

that R(K ) = C(K ). For every p ∈ K there exists Dp with a small radius such
that R(K p) = C(K p) where K p = K ∩ D p. Hence, there are points p1, p2, . . . , pn
in K such that K ⊆

⋃n
i=1 Dpi and so K =

⋃n
i=1 K pi . Since R(K pi ) = C(K pi )

for i = 1, 2, . . . , n, by Lemma 3.1, R(K ) = C(K ). Therefore, by Theorem 3.2,
R(X, S) = R(X, S ∩ T ). By the same argument as in the first part of the proof,
R(X, T ) = R(X, S ∩ T ). Therefore, R(X, S) = R(X, T ). 2

THEOREM 3.6. A(X, S) = R(X, T ) if and only if int(S\T ) = ∅, T \S ⊆ S0(R(X, T ))

and A(S ∩ T ) = R(S ∩ T ).

PROOF. Let A(X, S) = R(X, T ). Clearly T \S ⊆ S0(R(X, T )) by Theorem 2.9. If
int(S\T ) 6= ∅ then there exists an open disk D such that D ⊆ S\T . For every
f ∈ C(D) there exists an extension F ∈ C(X) of f such that F = 0 on T . Clearly
F ∈ R(X, T ) = A(X, S) and hence f ∈ A(D), which is not true.

Since int(S\T ) = ∅ and T \S ⊆ S0(R(X, T )), then A(X, S) = A(X, S ∩ T ) and
R(X, T ) = R(X, S ∩ T ). So A(X, S ∩ T ) = R(X, S ∩ T ), which implies that
A(S ∩ T ) = R(S ∩ T ).

Conversely, since int(S\T ) = ∅, then A(X, S) = A(X, S ∩ T ), and moreover,
R(X, T ) = R(X, S ∩ T ) by Corollary 2.10. Since A(S ∩ T ) = R(S ∩ T ) it follows
that A(X, S ∩ T ) = R(X, S ∩ T ). Therefore, A(X, S) = R(X, T ). 2

COROLLARY 3.7. A(X, S) = R(X, T ) if and only if for every compact set K ⊆

T \S, R(K ) = C(K ), for every compact set K ⊆ S\T , A(K ) = C(K ) and A(S ∩ T )

= R(S ∩ T ).

PROOF. By Theorem 3.2, R(X, S ∩ T ) = R(X, T ) if and only if R(K ) = C(K )

for all compact sets K ⊆ T \S. On the other hand R(X, S ∩ T ) = R(X, T ) if and
only if T \S ⊆ S0(R(X, T )), by Corollary 2.10. Since int(S\T ) = ∅ if and only
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if A(K ) = C(K ) for all compact sets K ⊆ S\T , the result follows from the above
theorem. 2

We are now ready to extend a result due to Boivin and Jiang [1, Theorem 2] for
compact plane sets.

THEOREM 3.8. The following assertions are equivalent.

(i) A(X, S) = R(X, T );
(ii) for every closed disk D in C, A(X, S ∩ D) = R(X, T ∩ D);
(iii) for every p ∈ X there exists a closed disk D p in C with centre p such that

A(X, S ∩ D p) = R(X, T ∩ D p).

PROOF. (i) −→ (ii) By Theorem 3.6, int((S ∩ D)\(T ∩ D)) = ∅, and by
Corollary 3.7, R(K ) = C(K ) for every compact set K ⊆ (T ∩ D)\(S ∩ D). Since
A(S ∩ T ) = R(S ∩ T ), it follows from [1, Theorem 2] that

A((S ∩ D) ∩ (T ∩ D)) = R((S ∩ D) ∩ (T ∩ D)).

So by Corollary 3.7, A(X, S ∩ D) = R(X, T ∩ D).
(ii) −→ (iii) is immediate.
(iii) −→ (i) By Theorem 3.6, for each p ∈ X , A((S ∩ D p) ∩ (T ∩ D p))

= R((S ∩ D p) ∩ (T ∩ D p)) for a closed disk D p in C with centre p. So A((S ∩ T )

∩ D p) = R((S ∩ T ) ∩ D p). By [2, II.10.5], A(S ∩ T ) = R(S ∩ T ).
Now we prove that int(S\T ) = ∅. If p ∈ int(S\T ) then there exists a closed

disk D p in C with centre p such that A(X, S ∩ D p) = R(X, T ∩ D p). Therefore,
int((S ∩ D p)\(T ∩ D p)) = ∅ by Theorem 3.6. We may take Dp with small enough
radius such that D p ⊆ S\T so that D p ⊆ (S ∩ D p)\(T ∩ D p), which is in con-
tradiction with int((S ∩ D p)\(T ∩ D p)) = ∅. Hence, A(X, S) = A(X, S ∩ T ).
By A(X, (S ∩ T ) ∩ D p) = A(X, S ∩ D p) = R(X, T ∩ D p), it follows that
R(X, (S ∩ T ) ∩ D p) ⊆ R(X, T ∩ D p), so R(X, (S ∩ T ) ∩ D p) = R(X, T ∩ D p).
Hence, R(X, S ∩ T ) = R(X, T ) by Theorem 3.5. On the other hand, A(X, S ∩ T )

= R(X, S ∩ T ) since A(S ∩ T ) = R(S ∩ T ). Therefore, A(X, S) = R(X, T ). 2

References
[1] A. Boivin and B. Jiang, ‘Uniform approximation by meromorphic functions on Riemann surfaces’,

J. Anal. Math. 93 (2004), 199–214.
[2] T. W. Gamelin, Uniform Algebras (Chelsea Publishing Company, New York, 1984).
[3] P. M. Gauthier, ‘Meromorphic uniform approximation on closed subsets of open Riemann surfaces’,

in: Approximation Theory and Function Analysis, Proc. Conf. Campinas, 1977 (ed. J. B. Prolla)
(North-Holland, Amsterdam, 1979), pp. 139–158.
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