UNIFORM APPROXIMATION BY POLYNOMIAL, RATIONAL AND ANALYTIC FUNCTIONS

T. G. HONARY \boxtimes and S. MORADI

(Received 25 June 2007)

Abstract

Let *K* and *X* be compact plane sets such that $K \subseteq X$. Let P(K) be the uniform closure of polynomials on *K*, let R(K) be the uniform closure of rational functions on *K* with no poles in *K* and let A(K) be the space of continuous functions on *K* which are analytic on int(*K*). Define P(X, K), R(X, K) and A(X, K) to be the set of functions in C(X) whose restriction to *K* belongs to P(K), R(K) and A(K), respectively. Let $S_0(A)$ denote the set of peak points for the Banach function algebra *A* on *X*. Let *S* and *T* be compact subsets of *X*. We extend the Hartogs–Rosenthal theorem by showing that if the symmetric difference $S\Delta T$ has planar measure zero, then R(X, S) = R(X, T). Then we show that the following properties are equivalent:

- (i) R(X, S) = R(X, T);
- (ii) $S \setminus T \subseteq S_0(R(X, S))$ and $T \setminus S \subseteq S_0(R(X, T))$;
- (iii) R(K) = C(K) for every compact set $K \subseteq S \Delta T$;
- (iv) $R(X, S \cap \overline{U}) = R(X, T \cap \overline{U})$ for every open set U in \mathbb{C} ;
- (v) for every $p \in X$ there exists an open disk D_p with centre p such that

 $R(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p).$

We prove an extension of Vitushkin's theorem by showing that the following properties are equivalent:

- (i) A(X, S) = R(X, T);
- (ii) $A(X, S \cap \overline{D}) = R(X, T \cap \overline{D})$ for every closed disk \overline{D} in \mathbb{C} ;
- (iii) for every $p \in X$ there exists an open disk D_p with centre p such that

$$A(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p).$$

2000 Mathematics subject classification: 46J10, 46J15.

Keywords and phrases: uniform algebras, polynomial and rational approximation, peak points, planar measure, Vitushkin's theorem.

1. Introduction

The algebra of all continuous complex-valued functions on the compact Hausdorff space X is denoted by C(X). The subalgebra $A \subseteq C(X)$ is a Banach function algebra

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

on X if A separates the points of X, contains the constants and is complete under an algebra norm. If the norm of a Banach function algebra is the uniform norm then it is a uniform algebra.

Let *A* be a Banach function algebra on *X*. A point $p \in X$ is a peak point for *A* if there exists $f \in A$ such that f(p) = 1 and |f(x)| < 1 for every $x \in X$ different from *p*. The set of all peak points for *A* is denoted by $S_0(A)$.

Let *K*, *S*, *T* and *X* be compact subsets of \mathbb{C} such that *K*, *S*, $T \subseteq X$, and let $P_0(K)$, $R_0(K)$ be the algebras of all polynomials and rational functions on *K* with poles off *K*, respectively. The uniform closures of $P_0(K)$ and $R_0(K)$ are denoted by P(K) and R(K), respectively, which are uniform algebras on *K*.

The polynomial convex hull of K is

 $\widehat{K} = \{ z \in \mathbb{C} : |p(z)| \le \|p\|_K \text{ for all polynomials } p \}.$

The set *K* is polynomially convex if $\widehat{K} = K$. Let *m* denote the planar measure and M(X) denote the space of all regular complex Borel measures on *X*. A theorem due to Hartogs and Rosenthal asserts that R(K) = C(K) if *K* has planar measure zero; see, for example, [2, II.8.4] or [4]. It is also known that R(K) = C(K) if and only if every point of *K* is a peak point for R(K) [6, 5.3.8]. A stronger result is Bishop's peak point criterion for rational approximation, which asserts that if $m(K) = m(S_0(R(K)))$ then R(K) = C(K) [2, II.11.4]. Moreover, P(K) = R(K) if and only if *K* is polynomially convex. Also a theorem due to Vitushkin gives criteria for R(K) = C(K); see, for example, [2, VIII.5.1] or [7].

In this work we extend the above results to more general algebras in the theory of uniform algebras. For another extension of Hartogs–Rosenthal to Lipschitz algebras, see [5].

If we take $P_0(X, K) = \{f \in C(X) : f|_K \in P_0(K)\}$ and $R_0(X, K) = \{f \in C(X) : f|_K \in R_0(K)\}$ then it is easy to see that $P(X, K) = \{f \in C(X) : f|_K \in P(K)\}$ and $R(X, K) = \{f \in C(X) : f|_K \in R(K)\}$ are, in fact, the uniform closures of $P_0(X, K)$ and $R_0(X, K)$, respectively. We take $A(X, K) = \{f \in C(X) : f|_K \in A(K)\}$ where A(K) is the algebra of continuous functions on K, which are analytic on int(K). Note that if K is finite then $P_0(X, K) = R_0(X, K) = C(X)$ and so P(X, K) = R(X, K) = A(X, K) = C(X). Hence, we may assume that K is infinite.

It is easy to show that P(X, K), R(X, K) and A(X, K) are uniform algebras on X. Moreover, $P_0(X, K) = P_0(X)$, $R_0(X, K) = R_0(X)$, P(X, K) = P(X), R(X, K) = R(X) and A(X, K) = A(X) if K = X.

2. Polynomial and rational approximation in uniform algebras

Throughout this section we always assume that *K*, *S*, *T* and *X* are compact plane sets such that *K*, *S*, $T \subseteq X$, and $\mu \in M(X)$.

LEMMA 2.1. If $A = \{ f \in C(X) : f |_K = 0 \}$, then $C_0(X \setminus K) = A |_{X \setminus K}$.

PROOF. Clearly, for every $f \in A$, $f|_{X \setminus K} \in C_0(X \setminus K)$. Let $f_0 \in C_0(X \setminus K)$. We extend f_0 to X by

$$f(x) = \begin{cases} f_0(x), & x \in X \setminus K, \\ 0, & x \in K. \end{cases}$$

We now show that $f \in A$. Let $x_0 \in X$. If $f(x_0) \neq 0$ then $x_0 \in X \setminus K$. Hence, there exists $\delta_1 > 0$ such that $B(x_0; \delta_1) \cap K = \emptyset$. Since $f_0 \in C_0(X \setminus K)$ for every $\varepsilon > 0$ there exists $\delta_2 > 0$ such that for every $x \in X \setminus K$ if $|x - x_0| < \delta_2$ then $|f(x) - f(x_0)| < \varepsilon$. If we take $\delta = \min{\{\delta_1, \delta_2\}}$, then for every $x \in X$ if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \varepsilon$. This shows that *f* is continuous at x_0 .

If $f(x_0) = 0$ then for every $\varepsilon > 0$ the set $S = \{x \in X \setminus K : f(x) \ge \varepsilon\}$ is compact. Since $x_0 \in X \setminus S$ there exists $\delta > 0$ such that $B(x_0; \delta) \cap S = \emptyset$. Hence, for every $x \in X \setminus S$, the inequality $|f(x) - f(x_0)| < \varepsilon$ holds, and this shows that for every $x \in B(x_0; \delta) \cap X$, $|f(x) - f(x_0)| < \varepsilon$ and so f is continuous at x_0 .

LEMMA 2.2. Let μ be a regular complex Borel measure on X. If U is an open set in \mathbb{C} such that for almost all $z \in U$, with respect to planar measure, $\int_X d\mu(\zeta)/(\zeta - z) = 0$, then $\mu = 0$ on $U \cap X$.

PROOF. Since $\mu \in M(X)$ it is enough to show that $|\mu|(Y) = 0$ for every compact subset Y of $U \cap X$. We consider a decreasing sequence of bounded open neighbourhoods $\{U_n\}_{n=1}^{\infty}$ of Y such that $\bigcap_{n=1}^{\infty} U_n = Y$ and $U_1 \subseteq U$. It is known that for every n we can find a continuously differentiable function h_n on the complex plane such that $h_n = 1$ on Y, $0 \le h_n \le 1$ and $E_n = \operatorname{supp}(h_n)$ is contained in U_n . Now let $f \in C^1(Y)$, where $C^1(Y)$ is the algebra of all continuously differentiable functions on Y. We can extend f to a function $g \in C^1(\mathbb{C})$ such that it is bounded on the closure of U_1 . Now we define $f_n = gh_n$. Clearly $f_n \in C^1(\mathbb{C})$ and it is, in fact, an extension of f. By applying Green's theorem as well as Fubini's theorem,

$$\int_X f_n(\lambda) \, d\mu(\lambda) = \int_X \left\{ \iint_{E_n} \frac{-1}{\pi} (z - \lambda)^{-1} (f_n)_{\overline{z}} \, dx \, dy \right\} d\mu(\lambda)$$
$$= \iint_{E_n} \frac{-(f_n)_{\overline{z}}}{\pi} \left(\int_X \frac{d\mu(\lambda)}{z - \lambda} \right) dx \, dy = 0.$$

Since $\lim_{n \to \infty} f_n(x) = \chi_Y(x)g(x)$, for every $x \in X$, then $\int_Y f(\lambda) d\mu(\lambda) = 0$ by the dominated convergence theorem. Since the algebra of all such functions f is dense in C(Y), we conclude that μ is the zero measure on Y and hence $|\mu|(Y) = 0$. By the regularity of μ we conclude that $\mu = 0$ on $U \cap X$.

THEOREM 2.3. If $m(S \setminus T) = 0$ then $R(X, T) \subseteq R(X, S)$.

PROOF. Let $\mu \in (R(X, S))^{\perp}$. We prove that $\mu \in (R(X, T))^{\perp}$.

[3]

We first show that $supp(\mu) \subseteq S$. For every $f_0 \in C_0(X \setminus S)$ the function

$$f(x) = \begin{cases} f_0(x), & x \in X \setminus S \\ 0, & x \in S, \end{cases}$$

belongs to R(X, S) by Lemma 2.1, hence $\int_X f d\mu = \int_{X \setminus S} f_0 d\mu = 0$. Therefore, $\mu|_{X \setminus S} \in (C_0(X \setminus S))^{\perp}$, that is, $\mu|_{X \setminus S} = 0$. This shows that $\operatorname{supp}(\mu) \subseteq S$.

There exists a bounded open set U such that $U \cap T = \emptyset$ and $X \setminus T \subseteq U$. For every $\alpha \in X \setminus (S \cup T)$, there exists a function f in R(X, S) such that $f|_S = (z - \alpha)^{-1}$. Hence,

$$\int_X (z-\alpha)^{-1} d\mu = \int_S (z-\alpha)^{-1} d\mu = \int_S f d\mu = \int_X f d\mu = 0.$$

Since $m(S \setminus T) = 0$, for almost all $\alpha \in U$, $\int_X (z - \alpha)^{-1} d\mu(z) = 0$. Hence, by Lemma 2.2, $\mu = 0$ on $X \cap U = X \setminus T$ and so $\operatorname{supp}(\mu) \subseteq T$. This shows that $\operatorname{supp}(\mu) \subseteq S \cap T$.

Now suppose that $\alpha \in \mathbb{C} \setminus T$. Since $m(S \setminus T) = 0$, $S \setminus T$ has no interior. Hence, there is a sequence $\{\alpha_n\}$ in $\mathbb{C} \setminus S$ such that $\lim_{n \to \infty} \alpha_n = \alpha$.

By hypothesis, $\int_{S \cap T} (z - \alpha_n)^{-1} d\mu = 0$ for every *n*. By the dominated convergence theorem,

$$\int_{S\cap T} (z-\alpha)^{-1} d\mu = \lim_{n \to \infty} \int_{S\cap T} (z-\alpha_n)^{-1} d\mu = 0.$$

On the other hand, for every $g \in R_0(X, T)$, $g|_T \in R_0(T)$. Since $g|_T$ is the limit of a sequence of rational functions with poles off *S*, by the same argument as above we conclude that $\int_{S \cap T} g \, d\mu = 0$, and hence

$$\int_X g \, d\mu = \int_{S \cap T} g \, d\mu = 0.$$

Thus for every $g \in R(X, T)$, $\int_X g d\mu = 0$, that is, $\mu \in (R(X, T))^{\perp}$. Therefore, $R(X, T) \subseteq R(X, S)$.

COROLLARY 2.4. If $m(S\Delta T) = 0$ then R(X, S) = R(X, T).

COROLLARY 2.5. If m(K) = 0 then R(X, K) = C(X). In particular, if m(X) = 0 then R(X) = C(X), which is the Hartogs–Rosenthal theorem.

PROOF. Take
$$S = K$$
 and $T = \{z_0\}$ for some $z_0 \in X$, in Corollary 2.4.

COROLLARY 2.6. If m(X) = m(K) then R(X, K) = R(X).

PROOF. Take
$$S = K$$
 and $T = X$ in Corollary 2.4.

THEOREM 2.7. $R(X, T) \subseteq R(X, S)$ if and only if $supp(\mu) \subseteq S \cap T$ for every $\mu \in R(X, S)^{\perp}$.

PROOF. Let $R(X, T) \subseteq R(X, S)$ and $\mu \in R(X, S)^{\perp}$. For every $f_0 \in C_0(X \setminus S)$, the function

$$f(x) = \begin{cases} f_0(x), & x \in X \setminus S, \\ 0, & x \in S, \end{cases}$$

is continuous on X by Lemma 2.1, and hence $f \in R_0(X, S)$. Therefore, $\int_{X \setminus S} f_0 d\mu = \int_X f d\mu = 0$, which shows that $\mu|_{X \setminus S} \in C_0(X \setminus S)^{\perp}$ and so $\mu|_{X \setminus S} = 0$, that is, $\operatorname{supp}(\mu) \subseteq S$. Since $R(X, S)^{\perp} \subseteq R(X, T)^{\perp}$, $\mu \in R(X, T)^{\perp}$. Hence, by the same argument as above, $\operatorname{supp}(\mu) \subseteq T$. Therefore, $\operatorname{supp}(\mu) \subseteq S \cap T$.

For the converse, we first show that $\operatorname{int}(S \setminus T) = \emptyset$ if $\operatorname{supp}(\mu) \subseteq S \cap T$ for all $\mu \in R(X, S)^{\perp}$. Suppose on the contrary that there exists a closed disk $D \subseteq \operatorname{int}(S \setminus T)$. Since $R(D) \neq C(D)$ there exists $\lambda \in R(D)^{\perp}$ such that $\lambda \neq 0$. We define the measure $\mu \in M(X)$ by $\mu(E) = \lambda(E \cap D)$, which is not the zero measure. If $f \in R(X, S)$, then

$$\int_X f \, d\mu = \int_D f \, d\mu = \int_D f \, d\lambda = 0$$

since $f|_D \in R(D)$. Therefore, $\mu \in R(X, S)^{\perp}$ while $\operatorname{supp}(\mu) \subseteq D \subset S \setminus T$, which is in contradiction with our hypothesis.

Now let $f \in R_0(X, T)$ be such that $f|_T = 1/(z - z_0)$ where $z_0 \in \mathbb{C} \setminus T$. If $z_0 \in S \setminus T$ then there exists $\{z_n\} \subset X \setminus (S \cup T)$ such that $\lim_{n \to \infty} z_n = z_0$, since $\operatorname{int}(S \setminus T) = \emptyset$. By the dominated convergence theorem,

$$\lim_{n \to \infty} \int_{S \cap T} (z - z_n)^{-1} d\mu(z) = \int_{S \cap T} (z - z_0)^{-1} d\mu(z).$$

For every $n \in \mathbb{N}$ there exists $g_n \in R_0(X, S)$ such that $g_n|_S = (z - z_n)^{-1}$. Since

$$0 = \int_X g_n \, d\mu = \int_{S \cap T} (z - z_n)^{-1} \, d\mu,$$

it follows that $\int_{S \cap T} (z - z_0)^{-1} d\mu = 0$ and so

$$\int_X f \, d\mu = \int_{S \cap T} (z - z_0)^{-1} \, d\mu = 0.$$

If *f* is an arbitrary element of $R_0(X, T)$ then $f|_{T\cap S}$ is the limit of a sequence of rational functions with poles off $S \cup T$. Hence, by the above discussion and the dominated convergence theorem, $\int_X f d\mu = 0$. This shows that $\mu \in R(X, T)^{\perp}$ and so $R(X, T) \subseteq R(X, S)$.

COROLLARY 2.8. R(X, S) = R(X, T) if and only if $supp(\mu) \subseteq S \cap T$ for every $\mu \in R(X, S)^{\perp} \cup R(X, T)^{\perp}$.

THEOREM 2.9. $R(X, T) \subseteq R(X, S)$ if and only if $S \setminus T \subseteq S_0(R(X, S))$.

PROOF. Let $R(X, T) \subseteq R(X, S)$ and $z_0 \in S \setminus T$. Let U be an arbitrary neighbourhood of z_0 and let V be a bounded neighbourhood of z_0 which is contained in U and moreover, $V \cap T = \emptyset$. There exists a neighbourhood W of z_0 such that its closure is contained in V. By Urysohn's lemma there exists a continuous function f on X such that

$$f(x) = \begin{cases} 1, & x \in W, \\ 0, & x \in \mathbb{C} \setminus V. \end{cases}$$

Since f is zero on T it follows that $f \in R_0(X, T)$. Moreover, |f| < 1/4 on $X \setminus U$ and $f(z_0) = ||f|| = 1$. Thus z_0 is a peak point for R(X, T), by [6, 4.7.22]. Hence, $S \setminus T \subseteq S_0(R(X, S))$.

For the converse, we first note that $int(S \setminus T) = \emptyset$ by the hypothesis. By Theorem 2.7 it is sufficient to show that $supp(\mu) \subseteq S \cap T$ for every $\mu \in R(X, S)^{\perp}$. By the same argument as in the proof of Theorem 2.7, it follows that $supp(\mu) \subseteq S$. We now show that $\mu|_{S \setminus T} = 0$. For every compact subset Y of $S \setminus T$ there exists a bounded neighbourhood U of Y such that $\overline{U} \cap T = \emptyset$. For every $z_0 \in U \setminus S$ there exists an $f \in R_0(X, S)$ such that $f|_S = 1/(z - z_0)$. Since $supp(\mu) \subseteq S$,

$$\int_X \frac{d\mu(z)}{z - z_0} = 0$$

If $m(S \setminus T) = 0$ then for almost all $z_0 \in U$,

$$\int_X \frac{d\mu(z)}{z - z_0} = 0.$$

Hence, by Lemma 2.2, $\mu = 0$ on $U \cap X$ and so $\mu = 0$ on Y. This implies that $\mu|_{S \setminus T} = 0$.

Now let $m(S \setminus T) > 0$. There is a bounded neighbourhood U of $S \setminus T$ such that $U \cap T = \emptyset$. For every

$$z_0 \in U \setminus S$$
, $\int_X \frac{d\mu(z)}{z - z_0} = 0$.

If for almost all

$$z_0 \in U, \quad \int_X \frac{d\mu(z)}{z - z_0} = 0$$

then, by Lemma 2.2, $\mu = 0$ on $U \cap X$ and hence $\mu|_{S \setminus T} = 0$. Suppose, on the contrary, there exists a compact subset *Y* of *U* such that m(Y) > 0 and for every

$$z_0 \in Y, \quad \int_X \frac{d\mu(z)}{z-z_0} \neq 0.$$

Hence, by [6, 5.3. Lemma 1], there exists $z_0 \in S \setminus T$ such that

$$\int_X |z - z_0|^{-1} d|\mu|(z) < \infty \quad \text{and} \quad \int_X (z - z_0)^{-1} d\mu(z) \neq 0.$$

We may assume that $\int_X (z - z_0)^{-1} d\mu(z) = 1$.

For every

$$f \in R_0(X, S), \quad \frac{f(z) - f(z_0)}{z - z_0} \in R_0(S).$$

By the Tietze extension theorem there exists $F \in R_0(X, S)$ such that for every $z \in S$,

$$F(z) = \frac{f(z) - f(z_0)}{z - z_0},$$

and hence

$$\int_X \frac{f(z)}{z - z_0} \, d\mu(z) = \int_X \frac{f(z_0)}{z - z_0} \, d\mu(z) = f(z_0).$$

Therefore, for every

$$f \in R(X, S), \quad \int_X \frac{f(z)}{z - z_0} d\mu(z) = f(z_0)$$

by the density of $R_0(X, S)$ in R(X, S). Since z_0 is a peak point for R(X, S), there exists $g \in R(X, S)$ such that $g(z_0) = 1$ and |g| < 1 on $X \setminus \{z_0\}$. For every $n \in N$,

$$\int_X \frac{g^n(z)}{z - z_0} \, d\mu(z) = g^n(z_0) = 1.$$

Since for every $z \in X \setminus \{z_0\}$, $\lim_{n \to \infty} g^n(z) = 0$, by the dominated convergence theorem,

$$\lim_{n \to \infty} \int_X \frac{g^n(z)}{z - z_0} \, d\mu(z) = 0,$$

which is a contradiction. Hence, $\mu|_{S\setminus T} = 0$, which implies that $\operatorname{supp}(\mu) \subseteq S \cap T$. \Box

COROLLARY 2.10. R(X, S) = R(X, T) if and only if $S \setminus T \subseteq S_0(R(X, S))$ and $T \setminus S \subseteq S_0(R(X, T))$.

COROLLARY 2.11. R(X, K) = R(X) if and only if $X \setminus K \subseteq S_0(R(X))$.

PROOF. In Corollary 2.10 we take S = K and T = X.

COROLLARY 2.12. R(X, K) = C(X) if and only if $K \subseteq S_0(R(X, K))$. In particular, R(X) = C(X) if and only if $X = S_0(R(X))$.

PROOF. In Corollary 2.10 we take
$$S = K$$
 and $T = \emptyset$.

COROLLARY 2.13. If R(X, S) = R(X, T) then $R(X, S) = R(X, T) = R(X, S \cap T)$. PROOF. This is immediate.

393

THEOREM 2.14. $P(X, T) \subseteq P(X, S)$ if and only if $supp(\mu) \subseteq S \cap T$ for every $\mu \in P(X, S)^{\perp}$.

PROOF. Let $P(X, T) \subseteq P(X, S)$. By the same method as in the proof of Theorem 2.7, $\operatorname{supp}(\mu) \subseteq S \cap T$ for every $\mu \in P(X, S)^{\perp}$.

For the converse, let $\mu \in P(X, S)^{\perp}$. By hypothesis, $\operatorname{supp}(\mu) \subseteq S \cap T$. For every $f \in P_0(X, T)$, $f|_{S \cap T} = p$ where $p \in P_0(S \cap T)$. If we consider p as an element of $P_0(X, S)$ then

$$\int_X f d\mu = \int_{S \cap T} f d\mu = \int_{S \cap T} p d\mu = \int_X p d\mu = 0.$$

This shows that $\mu \in P(X, T)^{\perp}$. Hence, $P(X, T) \subseteq P(X, S)$.

COROLLARY 2.15. P(X, S) = P(X, T) if and only if $supp(\mu) \subseteq S \cap T$ for every $\mu \in P(X, S)^{\perp} \cup P(X, T)^{\perp}$.

COROLLARY 2.16. P(X, K) = P(X) if and only if $supp(\mu) \subseteq K$ for every $\mu \in P(X)^{\perp}$.

PROOF. In Corollary 2.15 take S = K and T = X.

COROLLARY 2.17. If P(X, S) = P(X, T) then $P(X, S) = P(X, T) = P(X, S \cap T)$.

PROOF. We prove that $P(X, S) = P(X, S \cap T)$. Obviously $P(X, S) \subseteq P(X, S \cap T)$. Let $\mu \in P(X, S)^{\perp}$. By Corollary 2.15, supp $(\mu) \subseteq S \cap T$. For every $f \in P_0(X, S \cap T)$, $f|_{S \cap T} = p$ where $p \in P_0(S \cap T)$. If we consider p as an element of $P_0(X, S)$, then $\int_X f d\mu = \int_{S \cap T} f d\mu = \int_{S \cap T} p d\mu = \int_X p d\mu = 0$.

This shows that $\mu \in P(X, S \cap T)^{\perp}$ and hence $P(X, S \cap T) \subseteq P(X, S)$.

THEOREM 2.18. P(X, S) = R(X, T) if and only if $S \cap T$ is polynomially convex, $T \setminus S \subseteq S_0(R(X, T))$ and $supp(\mu) \subseteq S \cap T$ for every $\mu \in P(X, S)^{\perp}$.

PROOF. Let P(X, S) = R(X, T). So $T \setminus S \subseteq S_0(P(X, S)) = S_0(R(X, T))$. If $\mu \in P(X, S)^{\perp}$ then $\operatorname{supp}(\mu) \subseteq S$ and, since P(X, S) = R(X, T), then $\mu \in R(X, T)^{\perp}$, which implies that $\operatorname{supp}(\mu) \subseteq S \cap T$. By Corollaries 2.15 and 2.8, $P(X, S) = P(X, S \cap T)$ and $R(X, T) = R(X, S \cap T)$ so that $P(X, S \cap T) = R(X, S \cap T)$ and hence $P(S \cap T) = R(S \cap T)$. Therefore $S \cap T$ is polynomially convex.

Conversely, by Corollaries 2.15 and 2.10, $P(X, S) = P(X, S \cap T)$ and $R(X, T) = R(X, S \cap T)$. Since $S \cap T$ is polynomially convex, $P(X, S \cap T) = R(X, S \cap T)$ and hence P(X, S) = R(X, T).

COROLLARY 2.19. P(X, K) = R(X) if and only if $\widehat{K} = K$ and $X \setminus K \subseteq S_0(R(X))$.

PROOF. In Theorem 2.18 take S = K and T = X.

[8]

Uniform approximation

COROLLARY 2.20. P(X) = R(X, K) if and only if $\widehat{K} = K$, and for every $\mu \in P(X)^{\perp}$, $\operatorname{supp}(\mu) \subseteq K$.

PROOF. This is immediate.

COROLLARY 2.21. If P(X, K) = R(X) and S is a compact subset of K such that m(S) = m(K) then $\widehat{S} = S$.

PROOF. By Corollary 2.19, $\widehat{K} = K$. So P(X, K) = R(X, K). By Corollary 2.4, R(X, K) = R(X, S), hence P(X, K) = R(X, S). Therefore, by Theorem 2.18, $\widehat{S} = (\widehat{K \cap S}) = K \cap S = S$.

LEMMA 2.22. If P(X, S) = P(X, T) then R(X, S) = R(X, T).

PROOF. If P(X, S) = P(X, T) then, by the same argument as in the first part of the proof of Theorem 2.9, $S \setminus T \subseteq S_0(P(X, S)) \subseteq S_0(R(X, S))$ and $T \setminus S \subseteq S_0(P(X, T)) \subseteq S_0(R(X, T))$. By Corollary 2.10, R(X, S) = R(X, T).

However, the converse of the above lemma is not true. For example, if $X = \{z \in \mathbb{C} : |z| = 1\}$ and $S = \{z \in X : \text{Re } z \ge 0\}$ and T = X then R(X, S) = R(X, T), but $P(X, S) = C(X) \neq P(X) = P(X, T)$.

3. Extension of Vitushkin's theorem

In 1967 Vitushkin obtained criteria for the equality R(X) = C(X) involving analytic capacity. See [7] or, for example, [2, VIII.5.1]. In this section we extend Vitushkin's theorem.

The following lemma is known; see, for example, [2, p. 64].

LEMMA 3.1. If $\{K_n\}_{n=1}^{\infty}$ is a sequence of compact plane sets such that $R(K_n) = C(K_n)$ for all n, and $K = \bigcup_{n=1}^{\infty} K_n$ is compact, then R(K) = C(K).

THEOREM 3.2. The following assertions are equivalent:

- (i) R(X, S) = R(X, T);
- (ii) R(K) = C(K) for every compact subset $K \subseteq S \Delta T$;
- (iii) for every compact subset $K \subseteq S \Delta T$, and for every open set D, $\gamma(D \setminus K) = \gamma(D)$, where γ is the analytic capacity;
- (iv) for every compact subset $K \subseteq S \Delta T$, and for almost all $z \in K$ (with respect to the planar measure),

$$\limsup_{r\to 0^+}\frac{\gamma(\Delta(z;r)\setminus K)}{r}>0,$$

where $\Delta(z; r)$ is the closed disk with centre z and radius r.

[9]

PROOF. (i) \longrightarrow (ii) Let R(X, S) = R(X, T) and K be a compact subset of $S \Delta T$. Then $S \setminus T \subseteq S_0(R(X, S))$ and $T \setminus S \subseteq S_0(R(X, T))$. We take $K_1 = K \cap S$ and $K_2 = K \cap T$. Then $K_1 \subseteq S_0(R(X, S)) \subseteq S_0(R(X, K_1))$ and $K_2 \subseteq S_0(R(X, T)) \subseteq S_0(R(X, K_2))$. Therefore, $K_1 \subseteq S_0(R(K_1))$ and $K_2 \subseteq S_0(R(K_2))$. Hence, $R(K_1) = C(K_1)$ and $R(K_2) = C(K_2)$ by Corollaries 2.10 and 2.12. By the above lemma, R(K) = C(K).

(ii) \rightarrow (iii) and (iii) \rightarrow (iv) are immediate by Vitushkin's theorem [7].

(iv) \longrightarrow (i) We prove that $R(X, S) = R(X, S \cap T)$. So it is sufficient to show that $R(S) = R(S, S \cap T)$. Let $z_0 \in S \setminus T$ and U be a neighbourhood of z_0 such that $\overline{U} \cap T = \emptyset$. If we take $K = \overline{U} \cap S$ then

$$\limsup_{r\to 0^+}\frac{\gamma(\Delta(z_0;r)\setminus K)}{r}>0.$$

There exists $r_0 > 0$ such that for every $0 < r \le r_0$, $\Delta(z_0; r) \subseteq U$, so $\Delta(z_0; r) \setminus K = \Delta(z_0; r) \setminus S$. Hence,

$$\limsup_{r\to 0^+} \frac{\gamma(\Delta(z_0; r)\setminus S)}{r} > 0.$$

By Curtis's criterion [2, VIII.4.1], z_0 is a peak point for R(S). Hence, $S \setminus T \subseteq S_0(R(S))$. Therefore, $R(S) = R(S, S \cap T)$ by Corollary 2.11. By the same argument as above $R(X, T) = R(X, S \cap T)$ and hence (i) follows.

In the above theorem we proved that R(X, S) = R(X, T) if and only if for every compact subset $K \subseteq S \Delta T$, R(K) = C(K). The following example shows that this result and Corollary 2.10 are not true if we replace *R* by *P*.

EXAMPLE 3.3. Let S = C(0; 1), T = C(2; 1) be two circles in the plane and $X = S \cup T$. For every compact subset K of $S \Delta T$, K is polynomially convex and m(K) = 0. Hence P(K) = C(K). Moreover, $S \setminus T \subseteq S_0(P(X, S))$ and $T \setminus S \subseteq S_0(P(X, T))$. If P(X, S) = P(X, T) then $P(X, S) = P(X, S \cap T) = R(X, S \cap T)$ = R(X, S). This implies that $\hat{S} = S$, which is not true. Therefore, $P(X, S) \neq P(X, T)$.

COROLLARY 3.4. R(X, K) = R(X) if and only if R(Y) = C(Y) for every compact plane set Y where $Y \subseteq X \setminus K$.

PROOF. In Theorem 3.2 take S = K and T = X.

The next result is, in fact, an extension of a theorem due to Gauthier for compact plane sets; see [3] or [1].

THEOREM 3.5. *The following conditions are equivalent:*

(i)
$$R(X, S) = R(X, T);$$

- (ii) for every $f \in R(X, S)(R(X, T))$ and for each $\varepsilon > 0$ there exists a function $g \in R_0(X, T)(R_0(X, S))$ such that $||f g||_{S \cup T} < \varepsilon$;
- (iii) for every open set U in \mathbb{C} , $R(X, S \cap \overline{U}) = R(X, T \cap \overline{U})$;

Uniform approximation

(iv) for every open disk D in \mathbb{C} , $R(X, S \cap \overline{D}) = R(X, T \cap \overline{D})$;

(v) for every $p \in X$ there exists an open disk D_p with centre p such that

$$R(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p).$$

PROOF. (i) \longrightarrow (ii) is immediate.

(ii) \longrightarrow (i) Let $f \in R(X, S)$ and $\varepsilon > 0$. There exists $g \in R_0(X, T)$ such that $||f - g||_{S \cup T} < \varepsilon/2$. We can extend $(f - g)|_{S \cup T}$ to a continuous function h on X such that $||h||_X < \varepsilon$. We define G = f - h. Then $G \in R_0(X, T)$ and $||f - G||_X = ||h||_X < \varepsilon$. So $f \in R(X, T)$ and hence $R(X, S) \subseteq R(X, T)$. By a similar method, $R(X, T) \subseteq R(X, S)$.

(i) \longrightarrow (iii) $(S \cap \overline{U}) \setminus (T \cap \overline{U}) \subseteq S \setminus T$ and $(T \cap \overline{U}) \setminus (S \cap \overline{U}) \subseteq T \setminus S$. But $S \setminus T$ $\subseteq S_0(R(X, S)) \subseteq S_0(R(X, S \cap \overline{U}))$ and $T \setminus S \subseteq S_0(R(X, T)) \subseteq S_0(R(X, T \cap \overline{U}))$. By Corollary 2.10, $R(X, S \cap \overline{U}) = R(X, T \cap \overline{U})$.

(iii) \longrightarrow (iv) and (iv) \longrightarrow (v) are immediate.

(v) \longrightarrow (i) We first assume that *K* is a compact plane set in $S \setminus T$ and then show that R(K) = C(K). For every $p \in K$ there exists D_p with a small radius such that $R(K_p) = C(K_p)$ where $K_p = K \cap \overline{D}_p$. Hence, there are points p_1, p_2, \ldots, p_n in *K* such that $K \subseteq \bigcup_{i=1}^n D_{p_i}$ and so $K = \bigcup_{i=1}^n K_{p_i}$. Since $R(K_{p_i}) = C(K_{p_i})$ for $i = 1, 2, \ldots, n$, by Lemma 3.1, R(K) = C(K). Therefore, by Theorem 3.2, $R(X, S) = R(X, S \cap T)$. By the same argument as in the first part of the proof, $R(X, T) = R(X, S \cap T)$. Therefore, R(X, S) = R(X, T).

THEOREM 3.6. A(X, S) = R(X, T) if and only if $int(S \setminus T) = \emptyset$, $T \setminus S \subseteq S_0(R(X, T))$ and $A(S \cap T) = R(S \cap T)$.

PROOF. Let A(X, S) = R(X, T). Clearly $T \setminus S \subseteq S_0(R(X, T))$ by Theorem 2.9. If $int(S \setminus T) \neq \emptyset$ then there exists an open disk D such that $\overline{D} \subseteq S \setminus T$. For every $f \in C(\overline{D})$ there exists an extension $F \in C(X)$ of f such that F = 0 on T. Clearly $F \in R(X, T) = A(X, S)$ and hence $f \in A(\overline{D})$, which is not true.

Since $int(S \setminus T) = \emptyset$ and $T \setminus S \subseteq S_0(R(X, T))$, then $A(X, S) = A(X, S \cap T)$ and $R(X, T) = R(X, S \cap T)$. So $A(X, S \cap T) = R(X, S \cap T)$, which implies that $A(S \cap T) = R(S \cap T)$.

Conversely, since $\operatorname{int}(S \setminus T) = \emptyset$, then $A(X, S) = A(X, S \cap T)$, and moreover, $R(X, T) = R(X, S \cap T)$ by Corollary 2.10. Since $A(S \cap T) = R(S \cap T)$ it follows that $A(X, S \cap T) = R(X, S \cap T)$. Therefore, A(X, S) = R(X, T).

COROLLARY 3.7. A(X, S) = R(X, T) if and only if for every compact set $K \subseteq T \setminus S$, R(K) = C(K), for every compact set $K \subseteq S \setminus T$, A(K) = C(K) and $A(S \cap T) = R(S \cap T)$.

PROOF. By Theorem 3.2, $R(X, S \cap T) = R(X, T)$ if and only if R(K) = C(K) for all compact sets $K \subseteq T \setminus S$. On the other hand $R(X, S \cap T) = R(X, T)$ if and only if $T \setminus S \subseteq S_0(R(X, T))$, by Corollary 2.10. Since $int(S \setminus T) = \emptyset$ if and only

https://doi.org/10.1017/S0004972708000464 Published online by Cambridge University Press

[11]

if A(K) = C(K) for all compact sets $K \subseteq S \setminus T$, the result follows from the above theorem.

We are now ready to extend a result due to Boivin and Jiang [1, Theorem 2] for compact plane sets.

THEOREM 3.8. The following assertions are equivalent.

- (i) A(X, S) = R(X, T);
- (ii) for every closed disk \overline{D} in \mathbb{C} , $A(X, S \cap \overline{D}) = R(X, T \cap \overline{D})$;
- (iii) for every $p \in X$ there exists a closed disk \overline{D}_p in \mathbb{C} with centre p such that $A(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p).$

PROOF. (i) \longrightarrow (ii) By Theorem 3.6, $\operatorname{int}((S \cap \overline{D}) \setminus (T \cap \overline{D})) = \emptyset$, and by Corollary 3.7, R(K) = C(K) for every compact set $K \subseteq (T \cap \overline{D}) \setminus (S \cap \overline{D})$. Since $A(S \cap T) = R(S \cap T)$, it follows from [1, Theorem 2] that

$$A((S \cap \overline{D}) \cap (T \cap \overline{D})) = R((S \cap \overline{D}) \cap (T \cap \overline{D})).$$

So by Corollary 3.7, $A(X, S \cap \overline{D}) = R(X, T \cap \overline{D})$.

(ii) \longrightarrow (iii) is immediate.

(iii) \longrightarrow (i) By Theorem 3.6, for each $p \in X$, $A((S \cap \overline{D}_p) \cap (T \cap \overline{D}_p)) = R((S \cap \overline{D}_p) \cap (T \cap \overline{D}_p))$ for a closed disk \overline{D}_p in \mathbb{C} with centre p. So $A((S \cap T) \cap \overline{D}_p) = R((S \cap T) \cap \overline{D}_p)$. By [2, II.10.5], $A(S \cap T) = R(S \cap T)$.

Now we prove that $\operatorname{int}(S \setminus T) = \emptyset$. If $p \in \operatorname{int}(S \setminus T)$ then there exists a closed disk \overline{D}_p in \mathbb{C} with centre p such that $A(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p)$. Therefore, $\operatorname{int}((S \cap \overline{D}_p) \setminus (T \cap \overline{D}_p)) = \emptyset$ by Theorem 3.6. We may take D_p with small enough radius such that $\overline{D}_p \subseteq S \setminus T$ so that $\overline{D}_p \subseteq (S \cap \overline{D}_p) \setminus (T \cap \overline{D}_p)$, which is in contradiction with $\operatorname{int}((S \cap \overline{D}_p) \setminus (T \cap \overline{D}_p)) = \emptyset$. Hence, $A(X, S) = A(X, S \cap T)$. By $A(X, (S \cap T) \cap \overline{D}_p) = A(X, S \cap \overline{D}_p) = R(X, T \cap \overline{D}_p)$, it follows that $R(X, (S \cap T) \cap \overline{D}_p) \subseteq R(X, T \cap \overline{D}_p)$, so $R(X, (S \cap T) \cap \overline{D}_p) = R(X, T \cap \overline{D}_p)$. Hence, $R(X, S \cap T) = R(X, T)$ by Theorem 3.5. On the other hand, $A(X, S \cap T)$ $= R(X, S \cap T)$ since $A(S \cap T) = R(S \cap T)$. Therefore, A(X, S) = R(X, T).

References

- [1] A. Boivin and B. Jiang, 'Uniform approximation by meromorphic functions on Riemann surfaces', *J. Anal. Math.* **93** (2004), 199–214.
- [2] T. W. Gamelin, Uniform Algebras (Chelsea Publishing Company, New York, 1984).
- [3] P. M. Gauthier, 'Meromorphic uniform approximation on closed subsets of open Riemann surfaces', in: *Approximation Theory and Function Analysis, Proc. Conf. Campinas, 1977* (ed. J. B. Prolla) (North-Holland, Amsterdam, 1979), pp. 139–158.
- [4] F. Hartogs and A. Rosenthal, 'Über Folgen analytischer Funktionen', *Math. Ann.* 104 (1931), 606–610.
- [5] T. G. Honary and H. Mahyar, 'Approximation in Lipschitz algebras', *Quaest. Math.* **23**(1) (2000), 13–19.
- [6] G. M. Leibowitz, Lectures on Complex Function Algebras (Scott, Foresman, Glenview, IL, 1970).
- [7] A. G. Vitushkin, 'Analytic capacity of sets and problems in approximation theory', Uspekhi Mat. Nauk. 22 (1967), 141–199 (Engl. Transl. Russian Math. Surveys 22 (1967), 139–200).

[12]

T. G. HONARY, Faculty of Mathematical Sciences and Computer Engineering, Tarbiat Moallem University, 599 Taleghani Avenue, 15618, Tehran e-mail: honary@saba.tmu.ac.ir

S. MORADI, Faculty of Mathematical Sciences and Computer Engineering, Tarbiat Moallem University, 599 Taleghani Avenue, 15618, Tehran e-mail: S_moradi@tmu.ac.ir

[13]