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Abstract. We define an ergodic Z-foliation and show that it can be realized as a
quotient space of the 'covering space'. The covering space has two actions, T and
S, where T is a Z-action, S is a map of order two, and S and T skew-commute;
that is, STS = T~l. We study the isometry between two foliations via the isomorphism
between two bigger group actions in the covering spaces. Properties of an ergodic
foliation are studied in a way similar to the study of an ergodic action. We construct
a counterexample of a K -automorphism to show that, unlike Bernoulli automorph-
isms, Z-actions do not completely determine Z-foliations.

0. Introduction
It is well known that the horocycles on the Poincare disk have 'exotic' properties
such as minimal self-joinings and being isomorphic to any rescaling of itself [7].
However, when we consider the Poincare sphere, the horospherical foliation defines
an equivalence relation in the sphere such that all equivalence classes are isometric.
The difference between the disk and the sphere is that in the disk there is an ergodic
action, denoted by T,, such that the horocycles become orbits of the action, but in
the case of the sphere the equivalence relation does not admit a measurable action
such that equivalence classes become orbits of the action.

Before we define a measurable foliation rigorously, we want to discuss a concrete
example of a measurable Z-foliation constructed by D. Rudolph. A sketch of the
construction is as follows:

Let X be a set [0, l)x{0,1} where [0,1) is an interval with Lebesgue measure.
We denote the space with the obvious measure by (X, 3F, fi). We say two points in
X, x = (a, (o) and x' = (a', ID'), are equivalent if their first coordinates are the same.
Divide this set into two subsets B0A = [0, \) x {0,1} and Bo 2 = [5,1) x {0,1}. That is,
B0.i is the left half and B0,2 is the right half. We place Boa upside down above BOjl •
(See figure 1.) We call this block Bx. This block can be regarded as [0,5) x {0,1,2, 3}.
We say that two points in B, are equivalent if their first coordinates are the same.
We note that the equivalence in B2 respects that in £ t . If x and x' are equivalent,
we define the distance d(x, x') = \w- w'\ where w and &>' denote the second coordin-
ates of x and x', respectively, in B, = [0, |)x{0,1, 2,3}. To construct Bn+i block
from Bn, divide Bn into two subsets, Bn l and Bn2 where Bnl is the left half of Bn

and Bn2 is the right half of Bn. Place the right half Bn2 upside down above the left
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half B n l . This Bn+1 block can be considered as [0, (j)"+1)x{0,1,2,... , 2 " + 2 - l } .
We define two points in Bn+1 to be equivalent if their first coordinates are the same.
If x and x' are equivalent in Bn+1, then we define the distance between these two
points to be |w-w'|. It is clear that the equivalence relation and the metric in an
equivalence class in Bn+1 is consistent with those in Bn, respectively. Let (X, %, 2F, fi)
be the limit space of this construction. There is an obvious equivalence relation,
denoted by %, on X such that each equivalence class with the metric measuring the
gaps between any two points in the class is isometric to Z. Hence we call this a
Z-foliation on X.

What we will see is that this Z-foliation can not be 'realized' by a measurable
action. That is, there is no measurable action T in (X,W,^,fi) so that each
equivalence class is an orbit under the action. We note that a Z-action on a measure
space defines an equivalence relation and each equivalence class (called an orbit)
has not only a metric but a natural direction (an order). Suppose we have a
measurable action T on (X, %, &, n) such that T preserves the metric within an
equivalence class. Hence every point (t, i) in a level set of Bn is mapped by T to
{t, « + l) or (t, i -1) . Since the level sets of the Bn's generate the tr-algebra, there
exists a level set B'k = [0, (\)k+l) x {i} for some k and for some i e {0,1,2,. . . , 2k+2 -1}
such that fi{U, i); T(t, i) = (t, / + 1)}>0.99MB1.

Hence we can say that at least 98% of each of the right and the left halves of B'k
are mapped by T to the points just above themselves. Since the right half of B'k is
placed upside down above the left half at the next step, we have

T(T2k+1-2i-\t,i))=T(t,2k->-i-l) = (t,2k+2-i) (1)

for the 98% of (t, i)'s in the left half of B'k. Since T2lt+1"2i"'(/, i) is the right half
of B'k, we have

r(r2*+1-2'-'(r,i)) = ( r ,2 t + l -2 i -2 ) (2)

for the 98% of (/, i)'s in the left half of Bk. Certainly (1) and (2) lead to a
contradiction.

It is clear from our argument that if we start to place the right half of Bn above
the left half (not upside down), then there exists a Z-action T (an adding machine)
such that each equivalence class becomes an orbit of T. The example of an ergodic
foliation in the Poincare sphere which is mentioned at the beginning of our introduc-
tion has been further studied by L. Flaminio.[2]
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We will divide the paper into two parts. In part I, we study an ergodic foliation;
in part II, we construct an example of a K-automorphism which shows that, unlike
a Bernoulli automorphism, a Z-action does not completely determine a foliation.

I would like to thank Professor D. Ornstein and D. Rudolph for their helpful
discussions.

This research was supported in part by a Bryn Mawr Faculty Research Grant and
NSF Grant DMS-8604202.

Part I. An ergodic foliation.

1. Definitions and Preliminaries.
Let (X, &>, /A) be a Lebesgue space. An ergodic foliation can be regarded as a
generalized ergodic action in the sense that we require an action to be denned on
a proper subset (that is, locally) instead of on the whole set X to itself. An ergodic
action in (X, 3F, /i) obviously gives rise to an ergodic foliation.

Let £ be a subset of X. We define a measure v on the product <r-algebra of
£ x {-1,0,1} so that v(Fx{l}) = fiF for all measurable subset F<=£ and / = - l ,
Oor 1.

Definition 1. We define a local action T, sometimes denoted by TE, on a subset
£ <= X to be a one-to-one, bimeasurable and measure perserving map from E x
{-1,0,1} to X, satisfying T(E x {0}) = E.

We denote T(x, 1) by T'(x). Since TE is measure preserving, {T~XE, E, TE} are
pairwise disjoint and we call this a local chart. We also call the set {T"1*, x, Tx} a
leaf of x e E generated by TE.

We may remark that we used the term 'local' in two seemingly different meanings.
The first is in the sense that T is defined on a proper subset £ of X and the second
is in the sense that it is defined on {-1,0,1}, a proper subset of Z.

Definition 2. We say that a Lebesgue space (X, 9, fi) has a foliation (X, %, 9, n)
if there exists a countable collection of subsets {£,} such that

(i) \JE, = X
(ii) There exists a local action TEi for each Et. (We will write Tf(x) for TE.(x)

for convenience of notation.)
(iii) If xe £, n EJy then two leaves of x generated by Tt and 7} are the same.

If x 6 £j n Tj(Ej) for some £, and some / = -1 or 1, then there exists some /' = —1
or 1 such that TJ(TJ'(x)) = x.

We denote by [/, the local chart generated by £,. We remark here that this definition
of an ergodic foliation is similar to the one given by R. Zimmer. [11]

Definition 3. We say x is equivalent to y (x~y) in (X, %,&, n) if and only if there
exists a finite subset {x = x0, x,, x 2 , . . . , xn_,, xn = y) such that

x, = Tj»(x0), x2 = T{;(x,), ...,y = xn = T^:;(xn_,) where lt = 1 or -1

It is clear that this is an equivalence relation in (X, 9, /*). We call the set L(x) =
{y\y~x} the leaf of x.
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Definition 4. A foliation (X, %, 3>, M) is called an ergodic Z-foliation if and only if
UxeA L(x) = X for every subset A of positive measure.

Clearly an ergodic Z-action (X, T, &, fi) gives rise to an ergodic foliation. We define
a metric, d, in each leaf of an ergodic Z-foliation such that if x and y are as in the
definition 3, then d(x, y) = n. This metric measures how many points there are
between x and y. We say a foliation is aperiodic if fi{x; #L(x)<oo} = 0. Clearly
an ergodic foliation is aperiodic unless X differs from a finite set by a set of
measure 0.

Definition 5. Two ergodic foliations, (X, ,^\,3'\, Mi) and (X2, %2, &2, M2), are leaf
equivalent if and only if there exists a measure preserving and invertible map <p
from {Xx, %x, ̂ , , Mi) to (X2, %2, ^2, M2) such that <p preserves the leaves.

Definition 6. Two ergodic foliations are isometric if and only if there exists an
invertible and measure preserving map <p from (X,, %x,3

i
x, Mi) to (X2, %2, 3>2, fi2)

such that (p preserves the leaves and the metric within leaves, that is d(x, y) =

We may note that when two foliations arise from two ergodic transformations, say
T and f, it is clear that leaf-equivalence is orbit equivalence and the isometry
between two spaces is an isomorphism between T and T or T and 7 \

Now that we have an isometry between foliations, we can also define Kakutani
equivalence between two foliations. Let A be a subset of an ergodic foliation
(X, %, &, M). There is a natural induced equivalence relation in A together with the
obvious induced metric on each equivalence class of A We say two foliations are
Kakutani equivalent if and only if there exist subsets Ax c X] and A2 <= X2 such that
Ax and A2 with the induced equivalence relations and metrics respectively are
isometric to each other.

We remark that all these definitions can be extended analogously to an R'-foliation
and other bigger group-foliations.

2. Representation of an ergodic Z-foliation
In this section, we will study the relation between an ergodic foliation and an ergodic
action.

LEMMA 1. Let (X, %, &, M) be an ergodic Z-foliation. There exists a subset B and an
integer valued measurable function f{x) on B such that (X, %,3i,ii) is represented as
a skyscraper with a base B and a height function f(x).

Proof. We take an arbitrary subset A of positive measure. Since U £ ; = X, there
exists Et containing xeA for every x We start with £,e{E,}. Let F = AnEx. If
F = 0 , then we consider F = AnE2. We assume that F^0. Let x be a point in F.
If T,(x) G A, we do nothing. If T,(x) £ A, then place T,(x) just above x. If Tx\x) e A,
then we do nothing. If 77l(*) ^ A then place 77'(x) just below x. After we do this
for every x € F, we will denote the resulting set Aul = A u TX(A n £,) u T\~X{A n £,),
which is clearly measurable. We denote each level of A, , by A°A = A, A\A =
r , ( A n £ , ) - A and A\~\ = Tx

l(An £ , ) -A . Next we consider Altn E2. If this is a
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null set, then we go to A, , n £ 3 . Otherwise for each xzAxxnE2, we repeat the
previous steps with a little more care. That is, for / = 1 or — 1,

(i) If T2(x)e A , , , then do nothing;
(ii) if T'2(x) & A , , , then we consider two cases. In the case when T2 '(x) is either

above or below x, we place T2(x) above or below x opposite from T2'(x). Otherwise
we place T2(x) either above or below x corresponding to / = 1 or —1 respectively.
We let A, 2 = A,_, u T2(AXX n E2) u T2\AXX n E2). We denote each level set of A, 2
as A\_2, A j 2 , A?>2, Ax,2 and A7J, respectively. We note that Aj,, c A\2, A° , = A?>2

and A7,lc Aj~2. We consider Ax>2n Ex and repeat the above three steps (i), (ii) and
(iii) for each x e AX2 n Ex. We call the resulting set

A2,X = AU2KJ Tx(Ax,2nEx)v T\~\AXt2nEx).

We repeat the above three steps for each point in A 2 , n E2 and }et

^2,2 = ^ 2 , i ^ T2(A2>1 n £ 2 ) u T2\A2An£2).

We define A,, (i = 1,2,. . . ,j = 1,2, . . . , i +1) inductively as

Au = A,_Mu Tx{At_unEx)u TX\A^Un£,)

Au = A y . , u 7J (Ay_ ,n£) )u 77 ' (A, ,^ ,nE } ) j = 2,...,i+l

We let p; = UJt'i ^ i j • It is clear that each of the Ft's is a two sided tower built over
A and they are increasing sequence of towers.

We claim that Ui Ft = X. Let y be any point in X. Since the foliation is ergodic,
there exists a point, say x, in A such that x~y. Let {x = x0, xx,..., xn = y} be a set
of all points between x and y. For each xt, let B,. be the Grst Et that contains xt

(i = 0 , 1 , . . . , « ) . From our construction, if x0 is in Ex, then x, is in Axx and if x0

is in £fc (l0^ 1), then x, is in A^_,>/o at the latest. If / ,< /,_i, then x,+1 is in A,. 1J(..
If /,> /,_,, then xj+1 is in A , _ , , . Therefore {x0, xl,...,xn=y} are contained in
I X , U;:! Au- m particular,^ e U " , U^ AU}.

We let Ak = lim,^^ A\x for A; = 0, ±1, ±2, That is, A* denotes the fcth level
set in UH=i Uj='i A,,. We let B = {xeX|if XG A\ then there is no point ye Ak~l

such that y~x for all fe}. [See figure 2.] Clearly, ^ B = /AA. We let Bk =
{xeBlxeA*, fc = 0, - 1 , - 2 , . . . } . We note that B = \jBk. Let B ^ i j l y e A*1"" and
y ~ x for some xeBk} for / = 0,1,2,. . . and fc = 0 , - 1 , - 2 , . . . . Let B' = UfcroBL-
Clearly U ^ o B' = X = U " i LJJ-t', >4u a n d iB'}is t h e desired skyscraper built over
B. This completes the proof of the Lemma.

We call this B the base and B' the /th level set above B. We mention that each level
set is clearly measurable and the function/(x) could be unbounded. The difference
between this skyscraper of a foliation and that of an ergodic action is that the points
which do not have points directly above them are not necessarily mapped by the
local action to the points on the bottom level of the tower. Some of the points could
be mapped to the points which do not have points directly above them.

The following lemma is the Rokhlin Lemma for an ergodic foliation.

LEMMA 2. Given N and e > 0, there exists a Rokhlin tower built over a set, B, such
that each point x in B has the constant height N and //.(U.io* ^ ' ) > * ~ e where B' is
the ith level set above B for i = 0 , 1 , 2 , . . . , N -1.
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Proof. Choose S such that 8- N<e/2. Consider the tower built over E whose
measure is less than S (We can do this by taking the set A in Lemma 1 to have a
measure smaller than 5). Let £ ' denote the ith level set above E. Since M(UHO E') =

1, there exists t so that /i(U!=0 ' E')>1- e/2. Let D° = {xe£ : there exists a point
ye E' such that d(x,y) = i for each i = 0 , 1 , . . . , N — 1}. Likewise, we define Dk =
{xeENk: there exists a point ye£ N f c + 1 such that d(x, y) = i for each i = 0,
1 , . . . . N -1} . We let B = L C o °k- Now we have

( JV-l \ . - 1U *')= I
i=O / k=O

- ' l N- fi(E"k-Dk)

\*=o

We remark that analogous definitions and lemmas hold true for an ergodic U1-
foliation. Lemma 1 for an ergodic R'-foliation corresponds to Ambrose's Representa-
tion Theorem for an ergodic flow. [1]

Using Lemma 1 above, we will construct a covering space of a foliation.

THEOREM 1. If (X, %, fi, &) is an ergodic Z-foliation, then there exists a measure
space (X, /£, &) with a Z-action T and an order two map S such that STS = T~\

Proof. We assume that the foliation (X, %, fi, 3F) is represented as a skyscraper over
a base B. To make our definition of T clear, we may assume that /x(B') = /i(B),
that is, every point in B has a point directly above it. We attach an arrow pointing
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upward to every point of the skyscraper except those which do not have points
directly above. Let (X,, <?,, /A, , ^,) be a copy of the skyscraper and (X2, %2, M2, ^2)
be another copy of the skyscraper with arrows pointing downwards at every point
except those on B. Let X = X, u X2 with the obvious cr-algebra and the measure.
Given x e X, we let x ,eX and x2 e X2 be two corresponding points in X. We define
T on X as follows (See figure 2). First we define T on X,. If there is an arrow (a
direction) coming out from x,, then we define T(x,) = x', where x', is the point
whose distance from x, is 1 in the given direction. If x, is a point on the skyscraper
which does not have a point above it (there is no arrow coming out from x,), then
we will consider two cases separately. Since T is well defined on every point of B,
we note that r~'(x,) is well defined and d(x,, T~1(x,)) = 1. We denote by x, the
other point whose distance from x, is 1.
Case 1. If there is the arrow coming out from x',, then we define T(x,) = x',.

Case 2. If there is no arrow coming out from x\, then we define T(x,) = x2 where
x2 in X2 is the point corresponding to x', in Xj.
We note that there are no three consecutive points without arrows between any two
points with arrows. We define T on X2 analogously. If x2 is a point from which an
arrow (a direction) is coming out, then we define T(x2) = x2 where x2 is the point
whose distance from x, is 1 in the given direction. If x2 is a point from which no
arrow is coming out (that is, x2 is on the base of the tower of X2), T~'(x2) is well
defined and d(x2, T~'(x2)) = 1. We consider two cases as before. We denote by x2

the other point whose distance from x2 is 1.

Case 1. If there is an arrow coming out from x2, then we define 7"(x2) = x2.

Case 2. If there is no arrow coming out from x2) then we define T(x2) = x| where
xl in X, is the corresponding point to x2 in X2.
It is not hard to see that T is a measurable Z-action. If we define 5(x,) = x2 and
S(x2) = X!, then it is clear that S satisfies

(i)S2 = l
(ii) STS = T~l (S skew commutes with T; T and 7""1 are isomorphic by an order

two map.)

THEOREM 2. Let (X, {T, S}, fi, 2F) be a space where T is an ergodic Z-action and S
is a map of order two which skew-commutes with T. The quotient space by identifying
x and S(x) gives rise to a foliation (X, %, fi, 2F) with the quotient cr-algebra.

Proof. Since this is a straight measure theory, we will skip the details. Let M be a
collection of measurable subsets {£„} where each Ea satisfies that
{TEa, Ea,T'xEa, STEa, SEa, ST'lEa} are pairwise disjoint. It is not hard to show
that for every subset A of positive measure, there exists a subset Ao( <= A) in M.
Hence M is non-empty. We claim that there exists a countable subcollection {E{}
of {£„} such that UjLi E< = X a.e. Let m, = sup {fiEa : Ea e M}. Take a set E} such
that /*£, > /w,/2. Take a set E, successively for 1 = 2 ,3 , . . . such that /*£/ > m,/2
where m, = sup {fiEa: Ea eM,Ea<= X -ULi'i Ek). Using a standard argument, it is
easy to show that the union of £,'s is X a.e. Let E, = TT-(£,) where v is the map
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identifying x and S(x). Clearly the collection {Et} satisfies definition 2. This com-
pletes the proof.

If an ergodic foliation arises from an ergodic action, then it is clear from the
construction of T that the covering space has two ergodic components (To define
T on X], we do not need X2). Also it is clear that if we can put an ergodic action
on a foliation by changing the direction of a measurable subset, then the covering
space will have two ergodic components. We may note that there is a natural map
TT:(X,{T, S}, (I, 9)->(X, %, fi, &) such that TT(X,) = wS(x,) = ir(x2) = x. In this
sense, an ergodic foliation may be regarded as a generalization of a factor (a quotient
space).

One of the concrete examples of an ergodic foliation comes from the adding
machine. Let (X, /I, 9) be a product space II({0, l},p} where p(0) = p(l) = 3- Define
the transformation T by

0 ifn<J(x)
(Tx)n = 1 if/! = /(*)

ifw>J(x)

where I(x) = min{ieN: x, = 0}.
Let S be the interchange map between 0's and l's. Clearly S is an order two map.
It is easy to check that 5 skew commutes with T. Let X be a quotient space by
identifying x and 5(x). Clearly (X, {T, S}, /I, 3F) is a covering space of the ergodic
foliation (X, %, ft, 9) where 9 is the quotient cr-algebra.

3. Properties of a measurable ergodic foliation
The following theorem will enable us to lift problems of a foliation to those of a
covering space.

THEOREM 3. Two foliations (X,, ^ , , / A , , ^ , ) and (X2, ^2,fi2,92) are isometric if
and only if their covering spaces (X,,{r, , S,}, /!,, ^,) and (X2, {T2, S2}, fi2, 92) are
isomorphic.

Proof. (=>) Let tp be an isometry between two foliations. We want to define an
isomorphism <p on X,. Let x be a point in X,. Let TTI(X) = X and <p(x) = y. Let y
and y' be two points in X2 satisfying •n2{y) = ir2(y') = y- We define <p(x) = y where
<p7r,(T,x) = TT2(T2^). Since <p is an isometry, (pn^T^x) is either u-2(T2_v) or /rr2(T2y').
It is not hard to see that <p is one-to-one and measurable. By the definition of $,
we have

(i) TT2${X) = 7T2(y) = y
(ii)

Hence <p(x') = (p(S]X) = S2y = y'. Therefore, <£(S,x) = S2«p(x). Next we want to show
$ • T, = T2 • $. By the definition of $, we know <p( T,x) is either T2<p(x) or ST2<p(x).
If (p(T,x) = S2T2^(x), then we have

fix) = iT2(T2S2T2<p(x)) = 7T2(T2T2
lS2<p(x)) = TT2(S2^(X)) = TT2<P(X).
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Therefore,

d(77,X, 7T, rjjc) = d(ip(irxx), <p(77, T\X)) = d(TT2<p(x), TT2${x)) = 0.

This is a contradiction since d(77-,x, TTXT\X) = d(x, T2x) = 2. Hence ${T^x) = T2<p(x).
(4=) Let x be a point in (X,, ?, , /u.x, ^ , ) - If two covering spaces are isomorphic

via cp, then we define (p(x) = TT2${X) where x is one of the points in the covering
space corresponding to x. Since TT2<P(X) = ir2S<p(x) = -ir2<pS(x) = TT2(p{x') where x' is
the other point in X{ corresponding to x, <p(x) is well defined and clearly measurable.
Also (p is leaf preserving since <p is orbit preserving. We let x and y be two points
in a leaf in X, and x and y be the points in Xx corresponding to x and y, respectively,
where x and y are in the same orbit under T,. Then

d(<p(x), <p(y)) = d{7r${x), ir<p{y)) = d(<p(x), ${y)) = d(x, y) = d(x, y).

Hence tp is an isometry.

We denote L(n)(x) = {x = x°, x\ x 2 , . . . , x"} to be the set of points in the leaf of x
where the distance between two successive points is 1.

COROLLARY 1. Let E be a subset of positive measure.

.. #{Ln(x)nE}
hm = fit a.e.

n + \
Proof. If the foliation comes from an ergodic action, then the corollary is clear.
Otherwise, we may assume that T in the covering space is ergodic. Let x be the
point in the covering space such that TT(T'X) = x' for i = 0 , 1 , . . . . Let £ = £ , u £ 2

where TT(EI) = ir(E2) = E. By the ergodicity of T, we have
.. #{{rx}r=on£} fiE
hm — = -rz = t*E.
n-°° n + 1 /U.X

Since we have #{L"(x)nE} = #{{T'x}?=onE}, the corollary follows.
Let P = {Po, Pi,...} be a partition of a foliation (X, %, n, &). We define a partition
P = {Po, P'o, A , P[, • • •} of a covering space X = X, u X2 such that P, c X,, P\ <= X2

and ir(Pj) = TT(P!) = P,. We say a partition P generates the tr-algebra & of X under
the foliation if two different points have two different leaf names of P. Leaf names
are like orbit names without direction. If P generates the er-algebra of X under the
foliation, then it is clear that P generates the o--algebra & under T.

COROLLARY 2. Let P = {P0,..., Pk} be a partition of a foliation (X,%,fj.,&). Fora
given n and e > 0, there exists a Rokhlin tower of height a n such that every point in
the base satisfies the ergodic theorem for a foliation for each set of the partition
within e.

Proof. Since we have Lemma 2 and Corollary 1, the proof is analogous to that of
an ergodic Z-action.

Earlier we defined leaf-equivalence between two ergodic foliation. Now we are
ready to prove the equivalence theorem, whose proof is based on Corollary 2.

THEOREM 4. Any two ergodic foliations are leaf-equivalent.
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Proof. Let (X, , %x, /x,, ^ , ) and (X2, %2, fi2, &2) be two ergodic foliations. Let {P(0}
be a sequence of finite partitions such that

(i) P ( l + 1 ) is a refinement of P( l ) .
(») VHi P < 0 generates 9 under the foliation.

We may assume that there exists a finite partition Q = {Q\,..., Qk) of X2 which
generates the cr-algebra under the foliation. We will define an equivalence map <p
as a limit of successive set maps {<p0)}. Let £ e. < 0 ° -

First, we define <p(1>. We construct a Rokhlin tower of height w, of Xi such that
(i) The error set has measure less than ex.
(ii) Each point of the base satisfies the ergodic theorem for every set in P(1)

within e,. If Rokhlin tower satisfies both (i) and (ii) with respect to the partition
P, then we say that the Rokhlin tower has property R(P, e,). Construct a Rokhlin
tower of X2 of height nx such that it has the property R{Q,ex). We may assume
that both Rokhlin towers have the same measure. In other words, the bases of two
towers, denoted by F(1> and Ew, respectively, have the same measure. We partition
the bases of both towers according to P(1) and Q names, respectively, and subparti-
tion the bases into Fj° 's and £J" 's such that

(i) each of F(/hs and Ejlhs has o.ie P-name or Q-name respectively,
(ii) F<1> = U;i

=1 F j n and Ew = \J'jLt E?\
(iii) MiF}1) = M2HJ1>forj = l , . . . , t 1 .

We denote the kth level set above F j° by F$ for k = 0 , 1 , . . . , n, - 1 . Define a set
map <pw on this Rokhlin tower so that <pw(F$) = E$ for ; = 1 , . . . , r, and k =
0 , . . . , «, - 1 . We note that <pm is defined except on the error set.

Now we define <p(l+1) from <pu). Let

We take Rokhlin towers of height ni+l in both spaces such that
(i) nf/nf+1 <e i + I / 10
(ii) Error set has measure <ei+l/10
(iii) Every point in the base F< I + I ) satisfies the ergodic theorem within

( e , + 1 / 1 0 ) - r , ( l ) f o r F f O - = l , . . . , f , )
(iv) Every point in the base £< I + l ) satisfies the ergodic theorem within

We partition F(l+1> and £ ( l + 1 ) according to P(l+1)-names and Q-names respectively.
Subpartition each atom of the partition so that

(i) U;1-1, Fy+1) = F<1+1) and \J)'*\ E{ji+i) = £ ( i + 1 )

(ii) M.FJ'+ 1 ) = M2£j1+1) for all j = 1 , . . . , ti+l.
We define ^>(l+1) in detail on the first column of the Rokhlin tower, whose base is
F(,'+1). <pu+1) is defined analogously on the other columns of the tower. Let £ be a
subset of the base of the ith Rokhlin tower and Ek be the kth level set above E.
We call the set Ufc'Jo Ek a subcolumn of the ith tower. <pil+1) maps the first column
starting with F(, '+ l ) to the first column starting with £(,I+1). Let F\[t^ be the first
'level set in the column sudh that ^ i ^ 1 is con\aine6 in P ^ SOT sDm% },.Ti>a\\\

is the first level set in the column where a subcolumn of the ith Rokhlin tower
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starts. (The subcolumn of the ith Rokhlin tower starting F*,'^1' could be either
upward or downward unlike the case of an ergodic action.) Let E['j,l) be the first
level set in the first column of the Rokhlin tower such that F-i'^" is contained in
Ej?. We call the subcolumn starting with F-i'^" the corresponding subcolumn to
the subcolumn starting with F['^}. We define <p(l+1) to map the subcolumn of the
ith Rokhlin tower starting with F ^ 1 ' to the subcolumn of the ith Rokhlin tower
of X2 starting with E\\t,l)- We define <p(l+1) on this section of the column so that
<p(l+1) is consistent with <pU) on this subcolumn of the ith Rokhlin tower. We recall
that <p(l) maps the ith Rokhlin tower starting with F]l) to the ith Rokhlin tower
starting with Ejl) for j = 1,2, . . . , tt. If the second subcolumn of the ith Rokhlin
tower starts with F['£2

l), which is a subset of F^ ' U1J2), then we define <p(l+1> to
map this section of the tower to the subcolumn of the ith Rokhlin tower starting
with E\'J2\ which is the first level set contained in E1/^. Again we require <p(l+1) to
be consistent with cp(t) on this subcolumn of the ith Rokhlin tower. If F*,1,^0^ Fj',\
then we define ^<I+1) to map this section of the tower to the subcolumn of the ith
Rokhlin tower starting with F-i'^1', which is the first level set above lx contained in
Ejj* in the column.

Similarly we define <p(l+1) on each of the subcolumns of the ith Rokhlin towers
appearing in the first column as long as it has a corresponding subcolumn of the
ith Rokhlin tower of X2. If a subcolumn does not have a corresponding subcolumn
in the first column of the (i + l)st Rokhlin tower of X2, then we go up to the next
subcolumn of the ith Rokhlin tower to define <p(l+l\ By the ergodic theorem, there
are at most 2 • (ei+1/10) • /nF(l) • «,+, = (e,/5) • /uF(l) many subcolumns of the ith
Rokhlin tower where ^>(l+1) cannot be defined so far. We may assume that in each
column of the ( i+ l ) s t Rokhlin tower there are (ej + 2e,+1) • w,+1-many level sets
contained in the error set of the ith Rokhlin tower. Let if be a collection of the
level sets where <p0+1) is not defined on this column. # i f is at most

(e, + 2e1+1) • «1+, + (e,+i/5) • /*F( 0 • «,+, • n1<(e,+2e1 + 1 + e,+,/5) • nl+l

since /xF(l) • n,< 1.
On these level sets in if, we define <pu+l) linearly. That is, the fcth level set in if

is mapped to the fcth level set in if', a collection of the level sets in the first column
of the (i + l)st Rokhlin tower of X2 which are not contained in the image of <p(l+1)

so far. Since two Rokhlin towers have the same height at every stage, ^><I+1) is a
one-to-one (not pointwise, but level by level) and onto map on the first column of
X, to the first column of X2. We extend the definition of ^ ( l + l ) to the whole ( i+ l)st
Rokhlin tower.

We want to compute the measure of the set Di+1 where <f>{ and <pi+l differ. Clearly
tiDi+l < nQ + fiCi+l + (ei+l/s) < e, where C, is the error set of the ith Rokhlin tower.
We note that e,+,/5 is the measure of the subset of the ith Rokhlin tower where
<p(i+l) is defined differently from <p(i\ Since £ e,<oo, by Borel-Cantelli Lemma, for
a.e. x there exists n(x) such that xeDc

t for all i > n ( x ) . Hence we define <p =
limbec (p(l+1). Clearly tp is measure preserving and leaf preserving. This completes
the proof.

https://doi.org/10.1017/S0143385700004570 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004570


448 K. Park

Since we have this weak isomorphism (leaf equivalence), Kakutani equivalence
and isometry to characterize foliations, one of the interesting areas to be pursued
further would be to investigate what the role of D. Rudolph's restricted orbit
equivalence theory might be in this larger class of ergodic foliations (larger than
the class of ergodic actions) [10].

Part II. Construction of a counterexample
In Part I, we showed that problems of an isometry between foliations may be lifted
to those of isomorphism between two group actions in the covering space. If two
covering spaces have non-isomorphic Z-actions, then they give rise to non-isometric
foliations. Let Gf be a group generated by two transformations, Tf and S, where
S2 = / and S ^ = TJl for i = 1 and 2. It is known that if (X,, T,, /I,, #,) are Bernoulli
with the same entropy (that is, the Tt's are isomorphic), then an isomorphism
between two Z-actions forces an isomorphism between (X,, G,, /£,, ^,) and
(X2, G2,(L2, A) [4]. On the other hand, if T, is a rotation of a circle, it is well
known that T, is isomorphic only to itself or its inverse via another rotation. Therefore
if T, and T2 are irrational rotations on the unit circle and isomorphic (that is T2 = T,
or T2= 771), then (X,, G,, /I,, ^,) and (X2, G2, fi2, &2) are isomorphic. This is
true because any map of order two which skew-commutes with a rotation is a
'folding' map. By a folding map S, we mean a map satisfying S(e27r") = e2"'(28~"
for some 8. If we have {T, St} and {T"1, S2} where S, and S2 are different folding
maps by 0, and 02, respectively, then we define <p such that (p(e2™') = e2™{e<+e*~'\
which is another folding map by {dl + 62)/2. It is easy to show that <p is an
isomorphism between {T, SJ and {T~\ S2}. Hence they give isometric foliations. If
we have {T, S,} and {T, S2}, then it is also easy to see that (p(e2nil) = e

27ri(e.-92+I) is
an isomorphism.

We want to construct a K-automorphism which gives two non-isometric foliations;
that is, a K -automorphism which admits two order two maps, Sj and S2, giving
rise to two non-isomorphic bigger group actions. One of the interesting questions
along this line is whether this property is true for other kinds of mixing Z-actions.
We mention that D. Rudolph has shown that if the T,'s are Bernoulli and the Sf's
commute with the T,'s respectively, then an isomorphism between the 77s forces
an isomorphism of bigger groups [9]. A counterexample has been constructed to
show that this property does not hold for K-automorphisms [6].

1. Construction of (X, {T, S}, #, £).
Outline of the construction is as follows. We first construct a K -automorphism
which is similar to the one of D. Ornstein [3]. We make a two point extension by
adding colours following D. Rudolph's construction [8]. Hence every point in the
space is specified by a pair of names, called a base name and a colored name. We
define two order two maps, S, and S2, in such a way that both of them skew-commute
with the K -automorphism, but they give rise to non-isomorphic bigger group actions.
This K -automorphism T is isomorphic to its inverse via order two maps. The two
maps we are going to construct are 'flips' between the left and the right of the
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coordinates, one of only a base name and the other of a double name. Hence we
need sufficient "symmetry" in the construction of the K -automorphism so that these
two flip maps are well defined. We will show by using the rigidity of blocks and
the regularity of coloured names that there is no isomorphism between {T, SJ and
{T,S2}.

First we will construct a transformation U, a version of Ornstein's K-
automorphism. We refer the reader to [5] for more geometric and rigorous construc-
tion. As we construct the transformation U, at each stage we construct a set map
5(l) in such a way that S(l) is defined on a bigger set than Su~n and 5<0 is a
refinement of S0"1' where S(i~° is defined. We will use the limit of these S(l)'s to
construct 5, and 52 after we construct the K -automorphism T.

The transformation U will be defined as a shift on a space X of bilateral sequences
of three symbols {o,f, s} relative to a measure on X. The construction will show
how to determine the measure. Each sequence x in X is made up of nested blocks,
called n-blocks. Each n-block has length h(n), which is specified as we define an
n-block. Each n-block is made up of (n - l)-blocks, spacers (s's) and/*s. We define
one 1-block name which begins with two s's followed by 2100 consecutive o's, and
finally by two s's again. We define S0 ) as a set map on this 1-block. Let B be the
level set where this 1-block starts. We define Sw(UiB)= Uh(x)~l'lB for J = 0,

Construction of an n-block name from (n-l)-block names goes as follows.
Choose independently a sequence of (22n + l) (n-l)-block names. Let/(/i) be a
random integer out of the set {1,2,. . . , n}, (we want (n + l ) - / ( n ) e{ l , 2 , . . . , n} to
be equidistributed) independent of the chosen sequence of (n-l)-blocks. We
construct two n-block names out of these choices. Each of them begins with a string
of/"s,/(«) long, and ends with a string of fs, n + \-f{n) long. In between, one
of these has the chosen (22n +1) (n - l)-block names separated by strings of spacers
in increasing order. That is, the length of spacers between the fcth (n - l)-block and
the (fc + l)st (n-l)-block is ks(n). (s(n) will be defined later.) The other has the
chosen (22n +1) (n - l)-block names separated by strings of spacers in decreasing
order (see figure 3).

(n-l)-block (n-l)-block

EE::::ii^vi:i:::::::::::::::v:~"x.:::i7i::ai
s(n)-longj's 2s(n)-Iong s's 22"s(n)-long s's

(n-l)-block (n-l)-block

22"j(n)-longi's (2ln - l)s(n)-long s's s ( n g

FIGURE 3. Two n-blocks with the same (22n + 1) (n - l)-blocks and /(n).

This gives the various «-block names, each with equal probability. The number
of n-block names is k{n) = 2(n)(k(n -1))22"+1. We note that for each n-block name
A^s (s = 1,2,..., fc(n)) there is an n-block name, Ant of the same probability which
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is the same except in a complete reverse order. We call these n-block names AnJ

an echo block name of A^s. To make our understanding of S(n) clear, we will
explicitly define S(2) on 2-blocks. We note that for each/(2)e {1,2}, there are two
different 2-block names according to the way the spacers are put in. Hence there
are four 2-block names. Also each of these four names has a name in a complete
reverse order. We assume that the 2-block names /421 and A2 2 are in reverse order.
Let {B2,i}Ui be the level sets where these 2-blocks start. We define S(2)(t/'B2,i) =
U"(2)-i-iB22 a n d S (2 ) ( u' B 2 2 ) = [ / * < » - » - ' B W for i = 0 , 1 , . . . , / J ( 2 ) - 1 . We also

define S<2) on the other pair of 2-blocks in an analogous way. It is clear that the
definition of S(2> on 2-blocks is consistent with 5(1) on the 1-block. Let Bns

(s = 1 , . . . , fc(n)) be the level set where the sth n-block starts and Bn_, be the level
set where the echo n-block of An,s starts. We define S(n) on this n-block by
5<n)(t/'Bn>s)= Uh(n)-x~\Bntt) for j = 0 , . . . , n ( n ) - l . It is not hard to see that the
definition of S(n) on (n - l)-blocks is consistent with S(n~x) on (n - l)-blocks. Also
S(n) satisfies the following:

(i) Sin)2 = I

(ii) SUS( U%,s) = SU( U^-'-'B^,)

= S(Uh(n)~' Bn>1) = uh<-")~lHh(n)~i) Bns = U'~lBn<s

= U~\ U'B^), for i = l , 2 , . . . , h(n) - 1 .

That is, St/S= t/"1 on each level set of an n-block.
If we let s(n) = 100n3(n = 2,3, . . . ) , then certainly s(n + l ) > 100£"=1/(i). Also

since we have chosen »(1) to be long enough, it is not hard to see that the total
measure of s's and fs added in going from Xn-X (the set of all (n - l)-blocks) to
Xn is bounded by fi{Xn)/2

6n. Hence the /i(Xn)'s are uniformly bounded.
We note here that an (n-l)-block occurs at all possible (n-l)-block places in

an n-block with equal probability, independent of each other. And any n-block has
its echo n-block of the same probability. If we call X the space where U is well
defined, then we have a partition on X according to the symbols used, P =
{Po, Pf, Ps}. Since the level sets of n-blocks (n = 1,2,...) generate the <r-algebra,
there is a well defined measurable map S: X -» X such that if {x,} is a name of x,
then S(x) = x' where x' = {x\} = {*_,}. That is, S is a 'flip' map between left and
right with respect to x0. This map is clearly of order two and it satisfies SUS(x) =
Sl/({x_i}) = S({x_,+1}) = {x,_,}= U~l(x). The existence of this map S on X will
enable us to construct two different such automorphisms on a bigger space to be
constructed.

To construct the K -automorphism T, let X be the direct product of X with a
two point space {B, W}. We partition X into {Pox{W}, Pox{B}, Prx{B, W},
P, x{B, W}} = {Wo, Bo, P,, Pf). We call this partition P. We will say that a point is
in W if it is in Wo and in B if it is in Bo as coloured white or black. We will define
T for a point in X by specifying changes of colours at each n-block. For each n,
there are two different coloured n-block names whose base names are the same.
We will describe how to colour an n-block from coloured (n —l)-blocks. We call
an (n-l)-block white (black) if its colour starts with white (black). Construction
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of a white n-block goes as follows. Choose a sequence of 22" + l (n-l)-blocks
independently according to base names. Choose the first (n - l)-block to be white,
second to be black, third to be black, fourth to be white and fifth to be
white,..., so that the colours of (n-l)-blocks in a white n-block is
WBBWWBBWWBB • • • WW. A black n-block is an n-block with the configuration
of colours, BWWBB • • • BB. With the same configuration of colours and the
sequence of (n - l)-blocks, we have two n-blocks of equal probability, one with the
spacers in increasing order and the other with them in decreasing order.

We may regard this T as a skew product of U with an interchange map between
white and black. We want to define two different automorphisms of order two, S,
and S2. We define

S,(x,w) = (x',w), W=WOTB and x' = {x;} = {x_,} for i = 0, ±1, ±2 , . . .

\(x',B) if w=W

It is clear that S? = / and $75, = T~l for i = 1 and 2.

2. T is a K-automorphism
Since the proof in this section is parallel to that in [5] and [8], we will just sketch
the proof for the completeness of the paper. We note two major differences in the
construction of U from the general construction of a K-automorphism.

(1) We put (n + l ) - / (n) /*s at the ends of n-blocks instead of e's.
(2) With given/(n) and 22n + l(n-l)-block names, we construct two n-blocks

of equal probability, one in the increasing order of spacers and the other in the
decreasing order. But from the construction, it is not hard to see that these changes
do not affect the rigidity of blocks and the randomness of the occurences of
(n-l)-blocks in the possible positions in their n-blocks, hence in bigger blocks.
We want to show that the distant past has little effect on its future. We will use the
following definition of a K-automorphism. For given / and e > 0, there is an N
such that V!; T'P is e-independent of V"+k T'P for any k and any n > N.

THEOREM 5. T is a K-automorphism

Proof. We fix k and choose K such that for most xe X, {x, Tx, T2x,..., Tkx} are
completely in a K-block. It is clear that for most xeX, {T"x,..., T"+kx} are
completely contained in a K-block. Let x be a point satisfying this condition which
is in one of the atoms A of V_i T'P. We choose L so large that L» h(K +1). We
let N = h{L) +1 and n > N. Since n > JV = «(L) +1, and an L-block starts somewhere
between x and T"x. We note the following:

(1) The number of fs at the beginnning of an L-block is equidistributed over all
integers between 1 and L, independent of the choice of the sequence of (L - l)-blocks.

(2) Any K-block can occur at an allowed position in an L-block with the same
probability. Thus we can see T"(x) at all allowed positions in all possible K-blocks
with equal probability. This implies that the distribution of U (on uncoloured
names) conditioned on the past is the same as the unconditioned distribution. Hence
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U is a X-automorphism. Now we want to show that T is a X-automorphism. Since
T"(x) can lie in any X-block in a (X + l)-block with equal probability independent
of colours, it follows that V"+* T'P/ A is in a black X-block or in a white X-block
with equal probability. Hence V-; T'P is e-independent of \/n

n
+ T'P for any k and

any n > N.

3. Rigidity of blocks.
What we will show here is that the P-names (P-names) of points have a rigid
structure. Therefore any isomorphism between {T, SJ and {T, S2} has to preserve
much of the block structure of base names. As usual we want to prove if two names
agree in most places, their n -blocks are not too far apart. Let a and b be two n -block
names in the P-names of x and y. Let n, and n2 be integers such that T">(x) is the
first term of a and T"2(_v) is the first term of b. We say two n -blocks, a and b, are
close if \rii~n2\<J,ksnf(k). We write | a - b | = |/Ji-n2|. Let a" and b" be the (n+
1 )-blocks containing a and b respectively. If a and b are close and of the same
order in a" and b" and if the spacers in a" and b" are put in the same order, then
a" and b" are close and every n-block in a" is close to an n-block of the same order
in b". If a and b are close and of the same order in a" and b" and if the spacers in
a" and b" are put in the reverse order, then a" and b" are not close, and none of
the other n-blocks in a" is close to an n-block in b". It is clear from the construction
that an n -block a in the P-name of x is close to at most one n -block b in the
P-name of y for any x and y. If any (n — l)-block a' in a is close to an (n — l)-block
b' in b and their orders in a and b respectively are different, then it is not hard to
see that one of the following cases is true:

(1) Spacers in a and b are in the same order (increasing or decreasing).
(X) if the neighboring n-block b of b, which intersects a has spacers in the

same order as a, then there is at most one (n-l)-block in a that is close to an
(n-l)-block, which lies in b.

(ii) if b has the spacers in the reverse order from a, then there are at most two
(n - l)-blocks in a that are close to (n - l)-blocks which lie in b.

(2) Spacers in a and b are in the reverse order from each other
(i) If b has spacers in the same way as a, then there are at most two (n -1 )-blocks

in a that are close to (n - l)-blocks in the name of y, one of which lies in b and
the other in b.

(ii) If b has spacers in the reverse order from a, then there are at most three
(n - l)-blocks in a that are close to (n - l)-blocks, one of which lies in b and the
others in b.
All these can be easily shown from the fact that h{n-\) is much bigger than the
sum of lengths of spacers and s(n) is bigger than Hk^nf{k). (For details, see [3].)
In any case, a has no more than four (n - l)-blocks that are close to (n - l)-blocks
in the name of y.

LEMMA 3. There exists an e > 0 such that if a is an n-block in the P-name ofx, then
for any y either
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(1) There is an n-block in the P-name ofy close to a and the spacers in a and b are
put in the same order; or

(2) There are more than eh{n) places i in a such that xt # >v

Proof. We let e, = l/n(l). Let en_, be the least number such that if (i) is not true,
then there are more than en_,/i(n -1) places where x, is different from yt. We will
find e inductively. There are two cases in which (1) is not true.

(i) There is no n-block in the P-name of y close to a.
(ii) There is an n-block, b, in the P-name of y close to a, but the spacers are put

in the opposite order.
In both of these cases a has at most four (n - l)-blocks close to some ( n - l)-blocks
in the P-name of y. Hence there are at least (22"-4)en_i«(n-l) places where
*,*>>,. Since n(n)<(22" + l )n (n - l ) ,

B"~ h{n) ~ (22n

Since fEl i 0 ~2~2k+2)/(l+2+k) is bounded away from 0 for any n, we have (2).

COROLLARY 3. Let a be an n-block (n >6) in the P-name ofx and let y be any point.
Let K be >h(n)/2"~4. If we have Xi^yt on less than i- K/10 places for a segment
of K consecutive x,'s in a, then there exists an n-block b in the P-name ofy such that
a and b are close and their spacers are put in the same order.

Proof. Since K > h(n)/2"~4>2"h(n -1) , any consecutive K-long names will contain
many complete (n - l)-block names. There is at least one sequence of five consecutive
(n - l)-blocks each of which has error in less than eh(n -1) places. (Otherwise at
least one fifth of all these (n - l)-blocks have error in more than eh(n — 1) places,
which forces error to be bigger than e- K/10). This can happen only when the
n-block a has a close n-block b in the P-names of y and a and b have spaces in
the same order.

What the corollary says is that if two n-blocks agree even on a small fraction, then
these two blocks must be close. Next we want to show that if two blocks in the
P-name of x and in the P-name of y agree in most places, then these two blocks
have to be of the same colour. For this purpose, we will show that if two blocks in
the P-names agree across a small segment, then 1-blocks have to match very well.
This can be done if we let the error in this segment be much smaller than the error
in Lemma 3. This is not hard to see because 1-blocks take up at least half of the space.

LEMMA 4. Let a and b be two n-blocks in the P-name of x and y respectively. Let
K>h{n)/2n~*. Given e>0 , i/x,#y, in less than eeK places for a segment of K
consecutive x,'s in the overlap, then the fraction of l-blocks in this segment of
K consecutive x,'s that are close to l-blocks of the same order in b is at least 1 -2e.

Proof. We note here that if an m-block in a is not close to an m-block of the same
order in b and the (m + l)-block in a containing this m-block is close to the
corresponding (m + l)-block in b, then there is a large error in this (m + l)-block.
(It could also have spacers in the opposite order from the (m-t-l)-block in a). If
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the kth m-block in a is not close to the kth m-block in b, then at most one of the
(m - l)-blocks in this m-block is close to an (m - l)-block of the same order in the
m-block in b. If the kth m-block in a and the kth m-block in b have spacers in the
opposite order, then there might be one (m-l)-block close to an (m-l)-block.
We cannot have more than one because there is always an odd number of ( m -
l)-blocks in an m-block. That is at least 22m(m-l)-blocks in this m-block do not
have close (m - 1 )-blocks of the same order in b. Hence inductively, there are at
least 22m • 22(m"1) • 22<m-2) • • • 24 many 1-blocks which do not have close 1-blocks
in this fcth m-block in b. Clearly this is smaller than the number of 1-blocks
((22m + l)(22(m"1> + l) • • • (24+l)) in the fcth m-block. Also there is at most one
m-block in the (m + l)-block containing this fcth m-block in a that is close to its
corresponding m-block in b. (We can have such an m-block only when (m +1 )-blocks
have spacers in the reverse order.) Let / be the place where the K-long consecutive
overlap starts. Let si be the collection of m-blocks located between positions /,
/ + 1 , . . . , / + K satisfying the following: either they are not close to the corresponding
m-blocks in b or they have spacers in the reverse order from the corresponding
m-blocks, but whose (m + l)-blocks are close to the corresponding (m + l)-blocks
in b and these (m + l)-blocks have spacers in the same order. Since a and b are
close and their spacers are in the same order, any block (in particular, a 1-block)
that is not close to its corresponding block in b or whose spacers are in the reverse
order from its corresponding block in b is contained in one of these m-blocks. In
each of these m-blocks, by Lemma 3 there exists at least ih(m) places where names
do not match. How many such blocks can we afford in this K-consecutive overlap
starting at /?

Since I aii blocking eh(m) < eeK, I blocks in .* h(m) < eK. If we let TV be the num-
ber of 1-blocks in this K -consecutive over lap which are not close to their correspond-
ing 1-blocks in b, then we know that JV is smaller than the total number of 1-blocks
in one of these m-blocks in a. Hence we have TV- /i(l)<Zaii blocks in.* h(m)<eK.
Because of our choice of fc(l) and the number of fs and s's, there are at least
(K/2h(l)) 1-blocks in any X-long sequence. Hence the fraction of good matching
1-blocks is bigger than

N _ sK/Hl)_
K/2h(\) K/2h(l) E

Next we want to prove their colours should match, too.

LEMMA 5. There is an e> 0 such that if a is an n-block in the P-name ofx and x, ^ yt

for at most eh{n) places, then there is an n-block b in the P-name ofy which is close
to a and has spacers in the same order as a and their colours are the same.

Proof. Let e = e/10. By Lemma 3, we know that a and b are close and they have
their spacers in the same order. Also from Lemma 4, at least four-fifths of the
1-blocks in a have to be close to their corresponding 1-blocks in b. If
two close 1-blocks have different colours, they have errors in at least woh(l) places.
If a and b have opposite colouring, then all 1-blocks in a and the corresponding
1-blocks in b have opposite colouring. Then there are at least j§oh(l) • (number of
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1-blocks in a which have close 1-blocks in b) places where their colours are opposite.
Hence the error has to be in more than

i i . / i \ 5 Tooo'Hn)
2/1(1)

places. Therefore a and b have the same colour.

COROLLARY 4. Lef a fee an n-block ( « > 6 ) in f/ic P-name ofx and let y be any point.
If we have xt ^ y{ in less than eK/4 places for for a segment of K consecutive x{'s in
a where K > n(n)/100 there exists an n-block b in the P-name ofy such that a and b
are close and of the same colour and have the same order of spacers.

Proof. This follows immediately from Lemma 5.

4. Main Theorem
Let <p be an isomorphism between {T, 5,} and { T, S2}. We will be led to a contradiction
as usual [3], [5], [8]. Given e > 0, we can find N(e) such that there exists a partition
Q = {Qi, • • •, Q$) each atom of which is a union of atoms in V^JVU) ^'P and
Z'=i M(QI A <p~l(Pj)) < e. Hence there exists a finite coding <pE such that the P-name
of x from -N(e) + l to N(e) + l determines the atom of the partition Q which
contains T'<pB(x). By the ergodic theorem, the Q-name and the P-name of <p(x)
match for all but at most a set of density e for almost every point, if we look at
long enough names. We fix an x satisfying this property. The following observation
will provide the key to the theorem.

Let a be an n-block of the P-name of x We let a be an n-block of the P-name
which has the same colour as a and whose base name is the echo name of a (in
an abuse of notation, S,(a) = a). We let a' and a' be strings of names (not necessarily
names of n-blocks) mapped by <pt of a and a respectively. We let a" be a string of
names whose colours are the opposite of a' and whose base names are in the reverse
order from the name of a' (S2(a') = a"). If we assume n to be large enough, then
a" and a' have to agree in at least a set of density 1 -2e. (Note that p̂5! = S2<p).
But we will show that this cannot happen using the rigidity of block structures.

Let e be e2/100 where e is given in Lemma 5. We say an n-block a in the P-name
of x is good if

(i) There is an n-block b in the P-name of <p(x) that overlaps it in more than
\h(n) places

(ii) a is not one of the first four or last four n-blocks in its (n + l)-block
(iii) The Q-name of <p(x) and the P-name of (p(x) do not match in at most eh(n)

places.
We also choose n large enough so that fi(X -Xn) < 1 - e2 and 2N(e)/h(n)<e2.
We choose m> n such that the fraction of good n-blocks in an m-block is bigger
than 1 - e and every n-block appears with proper frequency in the m-block.

LEMMA 6. Let a and b be good n-blocks in the P-name ofx and b be a translate of
a(b=Tk(a)). Let a' and b' be n-blocks of <p(x) such that \a-a'\<\h(n) and
\b-b'\<\h(n). Then \Tk(a')-b'\<Ydi^nf(i) and a' and b' have the same colours
and their spacers are put in the same order.
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Proof. We note that the Q-name of the block a and b are the same. Also since the
Q-name and the P-name of y = <p(x) differ in a set of at most density s, two n(n )-long
sequences of names (y,, y,+i,... ,yl+h(n)-i) and (yi+k,yi+k+i, • • • ,yi+Mn)+k-i) of

y = (p(x) differ in at most 2eh(n) places. Because of the positions of a' and b', we
have at least h(n)/2-long overlap between the two n-blocks Tk{a') and b'. Hence
there is at most 4en(n) error in this overlap. By Corollary 4, Tk(a') and V have to
be close and of the same colour and their spacers are put in the same order.

We call a sequence a1, a2, a3, . . . , ak of n-blocks in the P-name of x adjacent if
they are contained in one (n + l)-block and separated only by spacers. If a is a
good n-block, then there exists an adjacent sequence a1, a2, a}, a4 of n-blocks.

THEOREM 6. {T, S,} and {T, S2} are not isomorphic.

Proof. Since there are at most e fraction of bad n-blocks, there are at most 4e
fraction of adjacent quadruples which have at least one bad block. (Also if n is
sufficiently large, then there exist at least 1 - e fraction of adjacent quadruples all
of which are mapped into the same (n + l)-block). Let a, b, c, d be an adjacent
sequence of good n-blocks in the P-name of x, all of which are mapped into the
same (n+l)-block in the P-name of _y = <p(x). Let a', b', c', d' be the n-blocks in
the P-name of y which satisfy \a'-a\<\h{n) and \b'-b\<\h{n), \c'-c\<\h(n),
\d'-d\<\h{n) (a1, b', c', d'are adjacent). Consider good n-blocks a, b, c, d in the
P-name of x, where a = a, fe = S,(b), c = c, d = d. We let a', b', c', d' be the n-blocks
in the P-name of y which satisfy \a'-a\<\h(n), \b'-b\<\h{n), \c'-c\<\h{n),
\d'-d\<\h(n). We know from Lemma 4 that a' has to lie below a within Xfcsn/Cc)
of the way that a' lies below a. Similarly b' below b, c' below c and d' below d.
We note that the probability of adjacent quadruples a, b, c, d is the same as that
of a, b, c, d. The possible configurations of colours of adjacent quadruples all of
which are the same (n + l)-block are WWBB, BBWW, WBBW, BWWB.

Let b" be the n-block whose base name is the echo of the base name of b' and
whose colour is the opposite of V (b"= S2(b')). Since b^S^b) , if we make the
proper translation, then the n-block name b" = S2(b') differs from the name of b'
in at most 4e places of the overlap which is at least sn(n)-long. Hence b" has to
have the same colour as b', which in turn implies that b' has the opposite colour
from b'. Since a and a', c and c', d and d' have same colours, the configuration of
colours of the quadruple a', b', c\ d' is WBBB, BWWW, WWBW or BBWB
corresponding to the configurations of colours a', b', c', d'. But none of these is
possible within the same (n + l)-block. This completes the proof.
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