A NOTE ON THE INTERPOLATION OF THE DIFFIE-HELLMAN MAPPING

ARNE WINTERHOF

We obtain lower bounds on the degrees of polynomials representing the Diffie-Hellman mapping $f(\gamma^x, \gamma^y) = \gamma^{xy}$, where γ is a nonzero element of F_q of order d, x runs through a subset of [0, d-1], and y runs through a set of consecutive integers.

1. INTRODUCTION

Let q be a prime power, F_q be the finite field of order q, and γ be a nonzero element in F_q of order $d \mid q-1$. The Diffie-Hellman problem in F_q is the following. Let γ^x, γ^y be elements of F_q . Find γ^{xy} without knowing x and y. The Diffie-Hellman key exchange (see for example [4]) is based on the fact that no easy representation of the Diffie-Hellman mapping

(1)
$$f(\gamma^x, \gamma^y) = \gamma^{xy}$$
 for $0 \le x, y < d$

is known. It can easily be verified that the polynomial

$$f(X,Y) = d^{-1} \sum_{i,j=0}^{d-1} \gamma^{-ij} X^i Y^j$$

satisfies (1), where d^{-1} denotes the inverse of d modulo the characteristic of F_q . Under the natural restriction that $\deg_X(f), \deg_Y(f) < d$ this polynomial is uniquely determined. It has the largest possible degree 2(d-1) and the largest number of nonzero coefficients d^2 . For breaking the Diffie-Hellman cryptosystem it would be sufficient to have an easy polynomial satisfying $f(\gamma^x, \gamma^y) = \gamma^{xy}$ for all pairs $(x, y) \in \mathcal{W}$ of a large subset $\mathcal{W} \subseteq [0, d-1]^2$.

Recently, El Mahassni and Shparlinski [2] obtained the following result for d = q-1 extending the technic in [1]. Let $\mathcal{W} \subseteq [N+1, N+H]^2$ with $2 \leq H \leq q-1$ and let $f(X,Y) \in F_q[X,Y]$ be a polynomial such that

$$f(\gamma^x, \gamma^y) = \gamma^{xy}$$
 for all $(x, y) \in \mathcal{W}$.

If $|\mathcal{W}| \ge 10H^{8/5}$ then we have

$$\deg\left(f\right) \geqslant \frac{\left|\mathcal{W}\right|^{2}}{128H^{3}}.$$

Received 9th April, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

475

A. Winterhof

In this note we prove a lower bound on deg (f) for some different \mathcal{W} using direct interpolation.

THEOREM 1. Let q be a prime power, γ be a nonzero element of F_q of order $d \mid q-1$, and N be an integer. Let U be a set of distinct integers modulo d, and $\mathcal{V} \subseteq \{N+1,\ldots,N+H\}$ with $|\mathcal{V}| = H-s$ and $1 \leq H < d$. Let $f(X,Y) \in F_q[X,Y]$ be a polynomial satisfying

$$f(\gamma^x, \gamma^y) = \gamma^{xy}$$
 for all $(x, y) \in \mathcal{U} \times \mathcal{V}$.

Then we have the following lower bound on the total degree of f(X, Y):

$$\deg(f) \ge \min\left(|\mathcal{U}|, \left\lceil \frac{H-s}{s+1} \right\rceil\right) - 1.$$

For d = q - 1 this result and the result in [2] complement each other. In particular, Theorem 1 contains nontrivial results for certain subsets W of cardinality smaller than $10H^{8/5}$. In contrast to the method in the present note the method in [2] looses its power for d < q - 1.

2. PROOF OF THE THEOREM

Put

$$n = \min\left(|\mathcal{U}|, \left\lceil (H-s)/(s+1) \right\rceil\right) - 1$$

Obviously, \mathcal{V} contains a subset $\{v_0, \ldots, v_n\}$ of consecutive integers. Then we have

$$f(\gamma^{u_i}, \gamma^{v_j}) = \gamma^{u_i v_j} \quad \text{for } 0 \leq i, j \leq n,$$

where u_0, \ldots, u_n are distinct elements of \mathcal{U} . Since otherwise the result is trivial we may suppose that $\deg_X(f), \deg_Y(f) \leq n$, that is

$$f(X,Y) = \sum_{i,j=0}^{n} c_{i,j} X^{i} Y^{j}.$$

The coefficients c_{ij} are uniquely determined by the following matrix equation,

$$C = \begin{pmatrix} c_{0,0} & \cdots & c_{0,n} \\ \vdots & & \vdots \\ c_{n,0} & \cdots & c_{n,n} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \gamma^{u_0} & \cdots & \gamma^{u_0n} \\ \vdots & \vdots & & \vdots \\ 1 & \gamma^{u_n} & \cdots & \gamma^{u_nn} \end{pmatrix}^{-1} \begin{pmatrix} \gamma^{u_0v_0} & \cdots & \gamma^{u_0v_n} \\ \vdots & & \vdots \\ \gamma^{u_nv_0} & \cdots & \gamma^{u_nv_n} \end{pmatrix} \begin{pmatrix} 1 & \cdots & 1 \\ \gamma^{v_0} & \cdots & \gamma^{v_n} \\ \vdots & & \vdots \\ \gamma^{v_0n} & \cdots & \gamma^{v_nn} \end{pmatrix}^{-1}.$$

On the right hand side we have a product of regular matrices and hence C itself is regular. In particular, there exist some nonzero elements in every row of C which yields the result.

REMARKS. 1. In [2] results on the degree of polynomials F(X, Y, Z) over F_q satisfying $F(\gamma^x, \gamma^y, \gamma^{xy}) = 0$ are also obtained, where (x, y) runs through a certain subset of $[1, q - 1]^2$. The direct interpolation does not work for these polynomials.

2. For univariate polynomials $h(X) \in F_q[X]$ satisfying $h(\gamma^x) = \gamma^{x^2}$ for x in a certain subset of [0, q-2], which are closely related to the Diffie-Hellman mapping, similar results are obtained in [1] and [5, Section 8]. For the unique polynomial h(X) of degree at most q-2 defined in the whole interval [0, q-2] an exact formula is given in [3].

References

- [1] D. Coppersmith and I. Shparlinski, 'On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping', J. Cryptology 13 (2000), 339-360.
- [2] E. El Mahassni and I. Shparlinski, 'Polynomial representations of the Diffie-Hellman mapping', Bull. Austral. Math. Soc. 63 (2001), 467-473.
- [3] W. Meidl and A. Winterhof, 'A polynomial representation of the Diffie-Hellman mapping', (preprint).
- [4] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of applied cryptography (CRC Press, Boca Raton, 1997).
- [5] I.E. Shparlinski, Number theoretic methods in cryptography (Birkhäuser, Basel, 1999).

Institute of Discrete Mathematics Austrian Academy of Sciences Sonnenfelsgasse 19/2 A-1010 Vienna Austria e-mail: arne.winterhof@oeaw.ac.at