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A NEW CHARACTERIZATION OF
THE BRUHAT DECOMPOSITION

YOSHIFUMI KATO

§0. Introduction

By an algebraic homogeneous space, we mean the factor space X =
G/P, where G is a simply-connected, complex, semi-simple Lie group and
P is a parabolic subgroup of G. Many typical manifolds such as the
projective spaces and the Grassmann varieties belong to this class of mani-
folds. For instance, the Grassmann variety G(k, n) can be expressed as
SL(n + 1, C)/P, where P is a maximal parabolic subgroup of SL(n + 1, C)
leaving a suitable %2 + 1 dimensional subspace invariant. In this paper,
we devote ourselves to study the Bruhat decomposition of an algebraic
homogeneous space X = G/P. For that purpose, in the first place, we
construct a holomorphic vector field V,; on X for an element H of the
positive Weyl chamber as follows

(Vaf)@) = lim f(exp (¢H)g) — f(8) ,
e—0 €
where gc X and f is a local function around g. Then the vector field V,
vanishes only at the isolated points and in fact at the quotient set W' =
W/W,, which is naturally embedded into X = G/P as the set of all fixed
points of the left T action. Here W and W, are the Weyl groups as-
sociated to G and P respectively. And there is a nice coordinate neigh-
borhood (WN*, ¢ oy 'ow~!) around each we W' such that;

1) The set wN* is a T invariant Zariski open set. Let v, be the
element of W whose length £(tv,) is maximal among all. Then the set
w,N* coincides with the cell of maximal dimension appeared in the Bruhat
decomposition of X.

2) The set WN* is mapped by ¢ 'ov'ow~! onto the Lie algebra n*
of the Lie group N* and hence we can write as
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o tow i (loA*) = > z,(vA®X, .
a€d(n*)

3) With respect to the local coordinate {z,(107*)},cs04, the vector field
V. can be written explicitly as follows

Vi= 3 (wa)H)z 2.
0z

a€A(n¥) «

From the above expression of V, on wN¥*, any flow P(t), parametrized by
te C, of V, on wN* can be written as 2,(P(t) = c,e®™ ™", ¢c,eC, for a e
A(n*).

Every algebraic homogeneous space X has the distinguished cellular
decomposition X = Uyew: X, parametrized by W, which is called the Bruhat
one of X. We recall the definition precisely in section 2. The new point
of view in this note is to understand that any Bruhat cell X, ve W,
consists of some-flows P(¢) of V,;. We embed the space X into a certain
projective space P¥ and construct a vector field V4 on P¥ whose restric-
tion to X coincides with the vector field V. And we indentify the flow
P(t) as that of V# lying entirely on X and investigate the behavior of it.
As a result we obtain a rule to seek for the limit points lim,... P(%).
And we show that to compactify X, to X,, it is enough to attach such
limit points lim,... P(f) successively. The set X, is a subvariety of X and
is called the generalized Schubert variety. The family of subvarieties X,,
e W', has a lot of important meanings for the geometry of X = GJP.
For instance, the homology classes of {X,} we W' form the free Z-basis
of the integral homology group H.(X, Z) of X. In case X = Gr (&, n), the
classical Schubert calculus is to study the ring structure of H.(X, Z) by
using the basis.

Further we give the following results in Theorem 4.9 and Theorem 4.12.

1) We give a new geometrical meaning to the reflections S,, a € 4.

2) We obtain a simple necessary sufficient condition to determine the
Bruhat ordering < on W'

3) From 1) and 2), we clarify what Bruhat cells of lower dimension
should be attached to the boundary of X, of the appointed direction to
compactify X,.

It seems interesting to study the singularities of X, as a sequel of
this note. And we also wish to clarify the relations between our results
and the representation theory of nilpotent Lie algebras.

This paper is divided into four parts.
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Semisimple Lie algebras.
Bruhat decomposition of G/P.
Vector field V.
. Proof of our theorems.
The author wishes to express his thanks to Profs. H. Morikawa, K.
Aomoto and H. Umemura for their valuable suggestions.

Ll e

§1. Semisimple Lie algebras

First we fix the terminology and recall the fundamental facts of semi-
simple Lie algebras.

Let g be a complex semisimple Lie algebra. We choose a real Lie
subalgebra t of g which satisfies;

1) g=1t+4 it is a direct sum,

2) the Killing form (,) is negative definite on {i.
We fix the above chosen algebra { later and call it a compact form of g.
Let q = it. Then g is a real subspace of g and the Killing form (,) is
positive definite there. We introduce a x-operation, which is conjugate
linear, as follows

v+ iv*=u-—iv, u,veq.
From the definition, ** is the identity operation of g. We denote
X Y1=XY9, XYegq,

then the form {,} becomes a positive definite hermitian form on g. For
any vector subspace a of g, we set

o ={Xeg|(X,Y)=0 for any Yea}
={Xeg|{X, Y*} =0 for any Yea}.

Let b be a Borel subalgebra of g and fix it once and for all. Put §
=b N b* Then § is a Cartan subalgebra of g. The rank [ of g is, by
definition, the dimension of §. Let §p be the real part of ) with respect
to the x-operation. We denote by f the dual vector space of hz. The
root system 4 of § in g is contained in fz. The set 4 is divided into two
classes, positive roots 4, and negative roots 4_ with respect to b;

1) 4= 4, U 4_, disjoint union,

2) 4. = —4,.

8) if @, Be 4, (respectively 4.) and « + Be 4 then a 4 B 4.(4.).
Each connected component of the set
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{Hebg|a(H) + 0 for ee 4.}
is called a Weyl chamber. The following set

(1.1 by = {Hebg|a(H) > 0 for ac d,)

is, by definition, the positive Weyl chamber. Then conversely for any
He bz, we have

4, ={aed|a(H) > 0}.

We denote by II = {«,, - - -, @} the set of all simple roots with respect to
4, and take the set as the basis of Hz. We can write any root decd as
é = >, n,(P)x; where n,(4) are non negative or non positive integers ac-
cording to ¢4, or 4_.

We decompose the algebra g into root spaces;

1.2 g=b+ 2 8+ 25 8,
a€dy Bed.
where
b=5+ 2 6.

For any aec 4, dimg, = 1 and from the definition of g,, it follows
ad(H)X)=[H,X] =aH)X, Xeg,, He).
We can choose the elements H, e, X,eg., X_.cg_, for ae 4, in the way
(H,H)=oH), Heb,

X X) {1 if = —p8
2T fas =B,

and consequently

X, X..]=H,.
Since the elements H,, a ¢ 4,, are uniquely determined if we put
(L3 (@, p)=H,H), «afed,,

we can define a positive definite symmetric bilinear form (,) on fj.
Let [B] denote the set of all parabolic subalgebras which contain b.
For each p €[], we know the following decomposition of g. See [6].

TaEOREM 1.1. Let p5c[¥]. We put n =9". Then n is the maximal
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nilpotent ideal of p and also the set of all nilpotent elements in the radical
of p. If we put g, = p N p* then g is decomposed into;
(1.4) g=n*+g +n,
where
b=g +1n.

Moreover g, lies in the normalizers of both n and n*, ie., [g,n] Cn and
[g,, n*] C n*.

For any vector space a which is invariant by the adjoint representa-
tion of §, we define the subset 4(a) < 4 as follows

(1.5) A(a) = {BR a0

[H, X] = a(H)X for some 0+ Xea
and any He} '

Since we have p Db D}, we can see p as soon as we know A4(p) or in
fact 4(p) N 4_. The following theorem is also in [6].

THEOREM 1.2. 1) There exists a one-to-one mapping, p — II(p), from
] onto the set of all subset of II.
2) The subset II(p) of Il satisfies

Ap) N 4. ={ped_|n,(p) =0 for all a;eII(p)}.

Since there are ! elements in I/, the number of [f] is exactly 2.
The Lie algebras g, n and n* are all invariant by the adjoint action of §.
And we have;

(1.6) 4(g) = {ge 4|n.(9) = 0 for a; € II(p)},
(1.7) An) = {pe 4, |n.(¢) > 0 for a,e I(p)},
(1.8) Adn*) = —d(n) .

§2. Bruhat decomposition of G/P

We use the notations in § 1., i.e., g denotes a semisimple Lie algebra,
b a Borel subalgebra, ) € b a Cartan subalgebra, - - -, ete.

Let G be a simply-connected Lie group whose Lie algebra is g. Let
B be the Borel subgroup of G whose Lie algebra is 8. Let T be the
maximal torus with Lie algebra §). We denote by P the parabolic sub-
group corresponding to pe[B]. Then we have GO P D BDO T. We call
the factor space X = G/P an algebraic homogeneous space. The space X
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is a compact kahler manifold and in fact is a projective algebraic mani-
fold. We recall how to embed the space X = G/P into a projective space
in section 4.

Let G, N and N* be the Lie subgroups of G whose Lie algebras are
g, n and n* respectively. Then the group P is the semidirect product of

G, and N, i.e.;

@n - P=G,-N,

(2.2 G, N N={I},
2.3 N is normal in P.

And the groups P and N* satisfy
(2.9 PN N*={I}.

See [11].

We denote by N(T) the normalizer of T in G. We call the group
W = N(T)|T the Weyl group of G with respect to 7. We define a sub-
group W, of W and the quotient W' in the following

W, = N(T) N P|T,
W' = W/W, = N(T)/N(T) N P.

The group N(T) acts on T, and 4 and the formulae
w-exp H-v™! = exp (Ad (lv)H) , (Ad (w)*a)(H) = « (Ad (lv)"'(H)) ,

for we N(T), He §, a € 4, are valid. But the actions of tv ¢ T are all trivial
so we can regard as the group W= N(T)/T acts on T,§ and 4. For
simplicity, we use the same letter fv for v, Ad (iv) and Ad (lv)*. The action
of W on 4 can be naturally extended on 0§ and then any element of W
acts as an orthogonal transformation with respect to the norm (, ) intro-
duced in section 1. For any « e 4, we define the reflection S,;

@5) 8.0)=¢— 2000, geby,

(e, @)
then S, belongs to W. Further the Weyl group W is generated by the
reflections S,,, @, € II, and the subgroup W, is generated by the reflections
S, a;e Il — II(p). The length 4(tv) of e W is the number of reflections

appeared in the reduced expressions of v by using the reflections S,,, @,
ell,
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Remark 2.1. By virtue of (1.8), the group W, keeps the set 4(n*) in-
variant.

Remark 2.2. We fix some representatives {m, ---, v,} of W' in N(T).
Here 2 = *W'. And we sometimes equate the representatives with those
of W' = W/W, in W and further with the set W' itself.

Every semisimple Lie group G admits the following double coset de-
composition and there are three ways to describe;

(2.6) G= J NwP= |J MwP= | PwP,

wew wew wewi

where M is the maximal nilpotent Lie group of B and v runs over all
the above chosen representatives. Let X, = NtwP/P be the image of NP
in X. Then X, is a cell and the dimension of X, is represented in terms
of the length /4(tv) of . Confer [1] or Proposition 4.1 in this paper.
From (2.6) X, can be considered as the N, M or P orbit of v in X. Then
the space X is decomposed into;

2.7 X= U X,

and we call this decomposition the Bruhat one of X. The topological
closure X, of X,, that is also the Zariski closure, is a subvariety of X and
is called a generalized Schubert variety. As a fundamental character, the
homology classes of {X,},cw: form the free Z-basis of the integral homology
group H.(X, Z) of X.

In the set W', we can introduce a partial ordering <, called the
Bruhat ordering;

(2.8) , < , if and only if X,, C X,,
for fv, fv,e W'. By using this ordering, we can write;

(2'9) )—(m = U Xo’ .

w <

Namely, to take the closure X, of X,, it suffices that we attach suitable
Bruhat cells of lower dimension to the boundary of X, successively.
Though this ordering is relatively easily defined, it is not easy to judge
the order of arbitrarily given two elements i, v, W'. Hence we wish
to restate the ordering in another easily understandable words. And
further we wish to make the geometrical meanings of the ordering clear.
Roughly speaking, for that purpose there exist two ways until now, firstly
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the way to compare the reduced expressions of e W' by using the re-
flections S,,, @; e Il, and secondly the way to compare the inclusion rela-
tion among Verma modules M(tv4) associated to tve W'. Here A4 is the
highest weight which determines the embedding of X into the projective
space P¥(V). See [3].

But as will be shown in section 4, we take a different approach. We
first show that any Bruhat cell can be written as the union of suitable
flows P(?) of the vector field V, on X. The vector field V, is defined in
the next section. We investigate the behavior of the flows and show what
Bruhat cells of lower dimension should be attached to the boundary of
the Bruhat cell X, of the appointed direction for the compactification of
X, We give a simple necessary-sufficient condition to determine the
ordering < in Theorem 4.12 and ties the two ways stated above in some
sence.

§3. Vector field V,

We first prove the following proposition.

ProrositioN 38.1. Let us act the maximal torus T on X = G/P. Then
the quotient set W' = W|/W, = N(T)/N(T) N P is naturally realized as the
set of all T fixed points in X.

Proof. An element ge X is fixed by the action of T if and only if
g 'Tg C P where g is a representative of g in G. The group g'Tg is
also a maximal torus of G contained in P and hence we have

g'Tg = pIp™

for some pe P. See [9]. This means gp e N(T). Hence g defines a coset
g?) in W'.. If g and g’ define the same coset in W', we can write gp =
g'p'p” for some p,p’e P and p"e N(T) N P. So we have g =g’ in X.
If we take any element tv e N(T), the coset corresponding to v is 1 e W'.
So the mapping is onto. The proof is completed.

Let us consider the following diagram

G G/P G/P
U U U

(3.1) Py Nx Y Nx P, piNx
L o w w

Z —>expZ—>expZ—>wexp Z.
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We take the elements X,, a € 4(n*), chosen in section 1, as the basis of
n* and write an element Z of n* as Z =} ,csu 2.X,. Since the Lie
algebra n* is nilpotent, we have log (exp Z) = Z and hence the mapping
¢ is one-to-one and onto. Since N* N P = {I}, the mapping v is also
one-to-one. See (2.4). The left multiplication by v is clearly one-to-one.
Hence we can take the pair (WN*, ¢ 'oy'ow™’) as a coordinate neigh-
borhood around we W' and then {z,(vn*)},c,uv becomes the local co-
ordinate.

Remark 3.2. Let tv, be the element of W whose length /(v is
maximal among all. Then since v;!N, = N*, n,N* = Nip,P/P = X,. So
the set w,N* is the Bruhat cell of maximal dimension and is a Zariski
open set.

We sum up our assertions.

THEOREM 3.3. The quotient set W' = W/W, can be naturally embedded
into X = G/P as the set of all T-fixed points and the pair (DN*, ¢~ op~lo
') is a coordinate neighborhood around we W'. The sets WN* me W',
are all T invariant Zariski open sets. In fact if we multiply exp He T from
the left side on WwN*, the local coordinate {z,(107i*)},c v, Changes to {e®=
-2, (0%} e sn. Further the space X is completely covered with the family
of the open sets (WN*},cp, i, X = Upew: DN*.

Proof. The first and second sentences have been proved. Since for
exp Ze N* we have

expH-wexpZ.-P=ww'expH-wexpZ-w'exp(—H)-P
=  exp (v '(H)) exp Z exp (—w*(H))-P
= v exp (Ad (exp (v"(H)))Z)- P
=  exp (Exp (ad (v~"(H)))Z)- P

and
Exp (ad (0™(H)))-Ze n*,
S0

(¢7 0¥~ o v7) (exp H- 1 exp Z) = log (™' exp (Exp (ad (w"'(H)))- Z2))
= Exp (ad (v™'(H)))-Z .

If we write Z = > ,csum 2.X., We have
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ad (v'(H))-Z = [v7'(H), Z] = [v'H), 2, zXl]
= 2. z[v(H), X]

a€d4(n*)

= 3 av ()X,

a€d(n*)

= (wa)(H)z. X,

a€d(n¥)
and hence

Exp (ad (v (H)))-Z = ez X

ag€d(n*)

To prove X = Uuew: WN*, we need the following fact. See [8].

Facr. If Y is a compact kiahler manifold and HYY,C) =0, then a
complex connected solvable Lie group S acting holomorphically on Y
always has a fixed point inside any analytic subvariety that S leaves
invariant.

The space X satisfies these assumptions and we can take T"as S. Let
us apply this fact to our case. Since WN* is a T invariant Zariski open
set, the complement X’ = X — Jpew: WN* becomes a 7T invariant sub-
variety. Hence if X’ is not empty, it must have a fixed point of 7. But
the set W', which is the set of all T fixed points, is of course outside X’.
This is a contradiction.

For any Yeg, we can define a holomorphic vector field V, by oper-
ating Y infinitesimally on X;

(3.2) (V,f)@) = lim f(exp (Y)g) — f(8) ,

€

where ge X and f is a local function around g. In particular for an ele-
ment He)), V, can be written as follows

0

@

(3.3 Ve= 2. (ra)(H)z,

a€d(n%) a
on WN* by using the local coordinate {2,(107*)},csus. This claim is obvi-
ous from Theorem 3.3. If we choose H from the Weyl chambers, we have
0 # (tva)(H) e R, for we W', a e 4(n*). Hence the set of all points where
V4 vanishes agrees with W' and V, vanishes with first order there.
Hereafter we further assume that H belongs to the positive Weyl chamber
b3. Then for a e 4, we note that «e 4, if and only if «(H) > 0.
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From the expression (3.3) of V,, if we use the local coordinate
{207} s sy On WN*, any flow P(¢), parametrized by te C, of V, can be
written;

(3.4) Z(P(1) = clet™tr - re C, for ae A(n*).
Let us introduce some notations.

A, (n*, ) = {ae dn*)|waed,},
A_(*, ) = {a e dn*)|waed},
A(n*, w, P@)) = {ae d(n*)|ct + 0},
4,.(n* w, P@) = 4,.(n*, w) N A@n*, w, P(®)
={aecdn¥)|ct + 0, waed.},
Ad_(n*, w, P@) = 4_(n*, ) N A(n*, w, P(®) ,

where P(¢) is the flow of V, on wN* as above.
We divide the flow P(f) of V, on wN* into three types;
1) 4_(n*, i, P@) = ¢, i.e., a flow starting from .
2) d,(n*, w, P@t) = ¢, i.e., a flow arriving at .
3) the others.

1 4
|
w
i
1) - -+ < ' e ST e -

s 15
|
' ¥
+ |
;
2) i .

3) k

Fig. 1

For instance, let us choose a flow P(¢) of type 2). Then if we fix the
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imaginary part of ¢ and approach the real part of ¢ to + oo, we obtain
lim,_.. P(t) = .

§4. Proof of our theorems

Let V, be the same as in section 3. Then since 4(n*) C 4_, we have
a(H) < 0 for a e A(n*). We further assume that H satisfies

(war)(H) # (e, )(H)  if e, # a; in A(n*)

for each we W'

We denote
“.1) W'(p) = {iw e W'|the number of 4, (n*, ) is p}
and
4.2) X, = {wi* e wN*| z,(or*) = 0 for fe 4_(n*, w)} .

From the definition of 4,(n*, iv), the set X, can be considered as the union
of all flows of V, which start from tv. And if tve W!(p), X, is biholo-
morphic to C?.

PropositioN 4.1. The space X is decomposed into the disjoint union
of the cells X, we W'. And this decomposition is identical to the Bruhat
decomposition of X.

Proof. We choose xc X. If x is fixed by the infinitesimal action of
H, it belongs to W'. Hence x = e X for some v ¢ W'. Conversely if x
is not fixed, there is the unique flow P(¢) of V, which passes through x
and the starting point lim,._, P(¢) is fixed by the infinitesimal action of
H. We give the precise proof of the existence of the limit points
lim,_.. P(¢) in Remark 4.6 later. If we denote v = lim,__., P(¢), x belongs
to X,,. To prove the equivalence of two decompositions, it suffices to show
X, D X, for each e W!. We use the second description of the Bruhat
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cell, i.e.,, X, = MwP/P = M. See (2.6). Since M is the maximal nil-
potent Lie group contained in B, the Lie algebra m of M is written as
M = D ,cs, G Then we have

X, N wN* = M N wN*
= wi'Mo N wN* D (v "Mw) N N*.

Since the Lie algebra of w'Mm N N* is

(m—l Z gﬂm> n ( Z glx) = (Z gm‘lﬁ) n ( ga)
BEd+ a€d(n*) BEd4 aEd(n*)

a € 4(n¥)
wa€d 4+

H

(M) N N* coincides with X,. Hence we have X, D X/ and complete
the proof.

To investigate the behavior of the flow P(f) of Vg, let us embed the
space X into a certain projective space. See [10]. Let 4 be an integral
dominant weight such that (4, ;) = 0 for «, e IT — II(p) and (4, «;) > 0 for
a;e II(p). We denote by (¢, ¥) the irreducible representation of G with
the highest weight 4 and by {A) the set of all weights of the represen-
tation. Here we count the weights with multiplicities. So even if the
letters of weights are different as y and d, it does not necessarily mean
that they are different as weights. The Weyl group W acts on the space
hz as the orthogonal transformations and the subgroup W, is realized as
the isotropy subgroup of W at 4;

W, = {we Wiwd = 4} .
We call such a weight as w4, ive W, extremal and denote
(4.3) Uy = {wAd|we W} C 4> .

By virtue of the irreducibility of the representation, the multiplicity of
o/ is one. There is a one-to-one correspondence;

W' —— ()
4.49) W w
o —>wd .

We decompose the vector space V into the weight spaces and write
in the following;

(4.5) V=2 V.
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From the remark stated above, dim ¥, = 1 for all ye{4>. We choose a
nonzero element Y, eV, as the base of V,. By virtue of the choice of 4,
the space ¥, of the highest weight is invariant by P and conversely any
element of G which keeps V, invariant belongs to P. Hence the restric-
tion (¢|p, ¥,) of the representation (¢, V) is a representation of P of one
dimension. We write 4(p) = ¢|»(p), pe P. Then d{¢|; = 4. The represen-
tation (4, ¥,) induces a homogeneous line bundle L on X = G/P and the
space V is concretely realized as the vector space H°(X, L) of all global
sections of L. Every section 4 € H%(X, L) can be considered as a function
on G satisfying

¥(g) = 4(p)v(gp)

for ge G and pe P. The representation ¢ of G on V = HY(X,L) is as
follows

(p(g)-v)(g") = ¥(g'g)

for e HY(X,L) and g,8" € G.
For simplicity, we omit the letter ¢ later and write in the way

#(8)Y=gY
for ge G, Ye V. We offer the embedding theorem. See [10].

THEOREM 4.2. Let ¢ be the projection of G onto the G-orbit of Y,eV,.
Since P leaves the space V, invariant, the mapping ¢ can be projected to ¢;

.4 Ll
“:G >V
46) 1 l
58 e
: X = G/P P'W)="V|~ -

Then all the mappings above are G-equivariant. And the horizontal map-
ping ¢ embeds the space X into PY(V).

By considering the mapping

V —_ CN+1

w w

GZ(A) xr}’r I (xr)r€</1> ’

https://doi.org/10.1017/50027763000019826 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019826

BRUHAT DECOMPOSITION 145

we obtain the homogeneous coordinate [x,],c.s, of P¥(V). We abbreviate
Y, to 6. As usual, we define affine open sets

U ={lxle P"(N)|x, #0}, reld),

and denote by y; = x,/x,, d € {4) — r, the inhomogeneous coordinate on U,.
If we denote

S = {[x,] e P*(V)|[x,] is fixed by the left action of T}
then it is decomposed into

S= U S, disjoint union ,

TEL)

where
S, = {[x;] € P*(V)|x; = 0 for any 5 e {4) such that J = y as weights} .
For an element v ¢ N(T), we have

thA = Tvm"lthA
= wi(v'tw)Y,
= (W)WY, , for te T,

so Y, belongs to V,,. Hence the projected element fv ¢ W* = N(T)/N(T)
N P=—> X is mapped to wY, = Y,, = wde (4> by z. In other words,
the correspondence (4.4) coincides with z| W'. The embedded manifold #(X)
intersects with S only at the points (/). Because if 7(X) has a common
point x with S outside {(/4)°, the inverse image ¢ '(x) ¢ X must be fixed by
the T action. But this case can not occur.

ExampLE 4.3. Let X = G(k,n) be the Grassmann variety. We can
write X as follows

X = SLn + 1,C)/P,

where

P= {AeSL(n—i— 1,C)]A= ( ‘31

%L), AR+ X k+1 matrix} .

The manifold X has the well known extension of vector bundles;
0—U—o>XXE—Q@Q@—0

where U is the universal bundle and @ is the quotient bundle. The
bundle U is induced by the representation
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¢: P—> GL(k + 1,C)
o »

A—> A, .

In this case, we can take L = det U™' = det @ and V = HX, L) and then
we obtain the usual Pliicker embedding;

X=—P*¥V),
where N = <Zj__ %) — 1. Since the Weyl group W of SL(n + 1, C) is iso-
morphic to &,,,, the permutation group of n + 1 elements, and the sub-
group W, is isomorphic to &,,, X ©,_,, we have

! 1
the number of W' = (E DL _ (1)
¢ number o GrDlm—h! \k+1

=dimV.

Hence {(A)* = {/A), i.e., the weights of (¢, V) are all extremal. If we take
as the basis of V, we obtain the usual Pliicker coordinate [x,uiccne Of
PY(V).

We impose one more condition on the selection of H;

0(H) + y(H) for 7,0 € {4y such that y +# d as the elements of Hg.

Remark 4.4. We note that the conditions imposed on the choise of
H are all open.

Let us lift the T action on X to PY(V) and construct a vector field

V4. Since
lim &XP CH) - Crewn %,Y) — Cren %,Y,)
¢=0 €
= lim (I+ eH/1! + HY[2! + - ) Qlreewn % Y) — Qe %, Y7)
=0 €
= 2, r@xY,,

TED

we have a vector field V}ﬁ on V such that

V4= 3 p(Hx, 0.

7€ ox,

Because the coefficients of 3/ox,, y € {(4), in V# are all linear functions,
the vector field V# can be descended to P¥(V). By using the inhomoge-
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neous coordinate {¥;};c;,—, o0 U,, we can write the descended vector field
V4 as follows

@n  Vi= > GE) — @yl = 56— E)y=- .
se<l~r 0ys 31 0y;

In general, there are multiplicities in weights so the zero set of V£ is not
necessarily isolated and in fact coincides with S. Every flow P(¢) of Vi
on U, can be expressed as follows

4.8) y(P(t)) = c,e® "t | ¢c,eC, for deddy —r.

ProrositioN 4.5. 1) For any flow P({) of Vi, the Ilimit points
lim,_... P(¢) exist and belong to the zero set S of V.

2) There is a flow of Vi which starts from y and arrives at § if and
only if it is satisfied that (6 — y)(H) > 0.

Proof. To prove 1), we can assume that a part of the flow P(z) lies
on U, for some ye{4). Then P(¢) is written as (4.8) there. If the
maximal value m of {(6 — y)(H)|c; # 0} is positive, we set

M= {34 — r)H) =m, ¢, + 0}
= {51, ,511:} .

Then by using the homogeneous coordinate [x,],c(s, We have

x,(lim P@)

t—+oo

)_ Cs, ife=6eM
1o ifre M.

From Remark 4.4., we have 6, —y =6, —y = --- =J, —r and hence J,
= ... =24, as an element of §z. So the limit point lim,.,. P({) exists
and belongs to S;, € S. In case m < 0, the limit point lim,.,. P(¢) also
exists and belongs to S,. Similarly we can prove the existence of
lim,.,.. P(¢). If we consider the flow PI(¢) such that

et P®@E if r =

2(Pi1) = {0 .

for r e {4) — y, we can prove 2). We omit the detailed proof.

Remark 4.6. If we embed the space X into PV(V), we can consider
that the vector field V, is the restriction of V# to X. Then the flow
P@) of V, is that of V# lying entirely on X. Hence the limit points
lim,_... P(¢) always exist and belong to {A)°.
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In the following discussions, we consider the space X as the T in-
variant submanifold of P¥(V). Let us compare the expressions of Vi and
V4 around w4 = (). By using the coordinate {¥;};ccn-wi, We have

(4.9 Vi= 36— wd)(Hy, 2.
se{d—wi ay‘,

On the other hand, since the space X is nonsingular around fwA = i(iv),
we add some local functions {u};e; to {Z.}.csam and make them a local
coordinate in some neighborhood U of w4 = i(lv). We can assume that
the functions {u;},; satisfy;

1) XNU={xeUlux)=0,icl}

2) With respect to the local coordinate {2z,, &;}.cs,icr> it 1s satisfied

9
ou, ’

@10 Vi= 3 (a)H)z, + flo ull o+ T fras + 8z u)

z,

where f,(z;; u;) and g.2;; u;) are the functions of higher terms and f,(2;; 0)
= 8/2:;0) =0, ac An*), ie . If we compare (4.9) and (4.10), we have

{6 — wA(H)}setty—na = {(0a)(H); 7}acaan » iel.

Let us consider a flow P®({) with special direction of V, on tN*
such that

cheta if f=a
0 fB+e,

where C3c¢;#0. In other words, 4(n*, 1, Pr(t)) =a. If tvaecd, then
P>(t) starts from fv. Conversely if wa e 4., PX(t) arrives at .

@ 2 (PX(0) = {

ProposITiON 4.7. Let P(t) be the flow of V, on wN* as above. We
assume wacd, and put W = lim,.,., P*(t)e W'. If we write the flow by

using the local coordinate {z,(0'7i*)}sc 0wy around w’, it follows
c¥e™AUt  if my = —/f
0 otherwise .

() = {

Namely the flows P*(t) and PY(t) agree with each other on WN* N W N*,

Proof. To avoid confusion, we write the local coordinate {2,(1071%)}s¢ s
as {Zg}scsem and the local coordinate {z,(0'7*)}scsom @S {Z3}scscm. We
choose a point Pi(t), 0 + t,€ C, on the flow and put z,(P:(t)) = 2;,, ¢
A(m*), and 2y(P2(%)) = 25,0, p e An*). Then both {z; — 2; }scs0 and {z; —
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Z},o}sesnn are local coordinates around Pp(f). If we compare the expres-
sions of the flow P*(¢) by using the two local coordinate, we have

2 (P@) — 24,0 = Z=0 a5, (2 P2(1) — Zo0)"
= i dﬁ,n(cﬁema) me za,c)n
n=0
— i d/; nen(tna)(H)t
n=0
and hence
(4.12) Z(Pr@) = 3. denouht  for fe An¥) .
n=0
On the other hand, any flow P(Y) of V, on w’N* must be written as
follows
(4.13) Z(P@) = cyew™nudt - ¥ eC, for ge 4(n*).

Hence if we compare the coefficients of ¢ in (4.12) and (4.13), we have
e (w'B)(H) = (i nd;fn)(rnoz)(H) .
From Remark 4.4., this means
ey ('p) = <2) nd; n)(mof)

as an element of §),. We note that if e 4 and cee 4 then ¢ = +1. So
if ¢ = 0 then (Cr,ndy,)/cy = =1 and Wg = *+iwa. Further since the
flow PZ(t) arrives at 1/, we have W8 = —ta and f = —w''wa. We com-
plete the proof.

Remark 4.8. From the above proposition, it is easily shown that the
flow P2(f) does not lie on any open set w”’N*, w”’ e W', except wN* and
' N*,

THEOREM 4.9. Let P2(t) be the flow as (4.11) and assume wac 4,, i.e.,
lim,._., P2(t) = w. We consider the space X as the T invariant submani-
fold of P"(V) and identify the point e W' and twde (A)*. Then the fol-
lowing three conditions are all equivalent;

1) lim,.,. P™F) = w'Ade {4),

2) WA —wd=—g-aeh,
where
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2(4, )

% wa)
3) 'S, e W

Proof. If we change the local coordinate from {z,; ¥}.cson,icr to
{¥s}secrr—na around i(1w) = w4 then we have the convergence power series

Ya(PR@) = 3. d, o(cre™untyn
(4.19) "
— nZ=:0 d;‘nen(ma)(H)t

for 6 e (4> — wA. But any flow P(¢) of V4§ on U,, must be written as
(4.8). So if we compare the coefficients of ¢ in (4.8) and (4.14), we have

b0 — wANH) = (35, nda)a)E) .
And from Remark 4.4, we have
b5 — ) = (iﬂ nd,;,n)(ma)

as an element of §j.

The limit point lim,_ .. P"() is determined by comparing the magnitude
of the values {(6 — wA)H)|b, #+ 0}. And from Remark 4.6, there must
exist at least one element w'4e {(4)¢ — wA such that b,, % 0. Then we

have
b — wi) = (35 nds )(wa) € b
n=0
and hence
w'Ad — twd = cive
where

Fortunately this condition determines the value ¢ uniquely as

_ e

c=Tf (@, @)

and consequently the extremal weight v’/ is also uniquely determined. If
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c# —g= —g(ha) ,

(a, @)
we have three distinct extremal weights 4, w'tw'4d = 4 4+ ca and S, 4 = 4
— ga lying on a straight line. But since the elements of the Weyl group
W act on fj, as orthogonal transformations with respect to the norm (, )
determined by the Killing form, the points 4, w-'fv’4 and S,4 also lie on
the hypersphere of radius |4| = (4, 4)/*. This is a contradiction. Hence
we have

_ e

‘TTET o

and then w-'w'4d =4 — ga = S,4. Since W, is the isotropy subgroup of
W at 4, we have S, v '’ = w'wS, v '’ = 'S, ¢ W,. We complete
the proof.

Remark 4.10. In the case X = G/B, we have W, = {1}. So the con-
dition 3) means S0’ = .

Remark 4.11. If we change the representatives v, tv’ of 0, o' e W' =
W/W, to toto,, w'tv; respectively, where v, v, ¢ W,, we have
107! Spef0” = 10,(5010,) ™Sy -1 (W OO € W,
and hence
(1010,) ™S (o) w10 (10'107) € W,
We note that from Remark 2.1., iv/'a belongs to 4(n*).

THEOREM 4.12. For an element ' ¢ W', the following are equivalent:

1) X, is contained in X,, i.e., 0/ <,

2) 1w’ belongs to X,,

3) There exist two series v = 1, v, -+, 0, =W e W' and a,, «ay, - - -
a,_, € An*) such that

;7 8.0, € W, and wa,ed,, 0<i<k-—1.

Proof. 1) = 2) is obvious. 2)=>1). If w’ belongs to X,, since X, is
N invariant, X,, = N’ C X,. Hence we have X, C X,. 3)=2). By
virtue of Theorem 4.9., we have

o, = lim P*(t)e X,, and i, = lim P?(t)e X,, C X,, -

t—+o t—+oo
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Repeating this procedure we can show , = ' e X,. Let us prove the
converse 2) = 3) by induction on the dimension of X,. If dimX, =0, it
is obvious. Hence we assume that if dim X, = n — 1, the assertion has
been already proved. Put dim X, = n and choose an element v’ ¢ W' which
belongs to X,. If dimX, < n — 1, we select X,. such that X, c X,, C
X, and dimX,» = n — 1. From the induction there exist two series "
= 0y, 0y, ++-, W, = e W and a, a,, - - -, a;_, € 4n*) such that

mi_lsmaimiikl € w’l and miai € A+ ’ 0 S i S k - 2 .

So it is sufficient to show that if dimX, =n —1 and X, — X,, there
exists an element « ¢ 4(n*) such that

'S, e W, and wacd, .
We denote
U, = {xe 0’N*|z,(x) = 0 for any ac 4,(n*, v')} .

Namely, U, is the union of all flows of V, which arrives at w’. Then
U, is invariant by the action of 7 and dim U, = dim X — dim X, =
dimn* — (n — 1). From the definition of U,, we have v/ = X, N U, <
X, N U, and dimX, N U, = 1. So there exists an element x such that
wxxeX, N U, By virtue of T invariantness of the both sets X, and
U,, the flow P(t) of V, which passes through x lies entirely on X, N U,,.
And from the definition of U,,, lim,.... P(t) = w’. If lim,._. P(f) = w” % w
then we have X, € X,» & X,. This contradicts to our assumption. So
lim,._ .. P(t) = w. The flow P(t) starts from tv so 4_(n*, o, P(¢)) = ¢. We
denote

T-P={exp(H")-P(t)e X|H' el, teC}.

From the 7 invariantness of X, and U,, the set 7P is contained in X,
N Uy. If the number of 4,(n*, tv, P(t)) is greater than two, from Theorem
3.3.,dim 7. P = 2. This is a contradiction. Hence there exists an element
ae A(n*) such that « = 4,(n*, v, P(¢)) and then the flow P(f) coincides
with the distinguished flow P®(f). By virtue of Theorem 4.9., we complete
the proof.

Remark 4.13. From Remark 4.11 the condition 3) is independent of
the choice of the representatives of W' in W.

ExampLE 4.14. Let P* = SL(4, C)/P, where
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*p | e

P = e SL(4,C)} .

0
0 | *s
0

The Weyl group W of SL(4, C) is isomorphic to &, and the subgroup W,
is isomorphic to {1} X ;. Hence we have W' = {in,, v, Iv,, 1v;}. We can
assume ;e W'(@), 0 < i< 3. We obtain the following figure.

,

o,

v,
Fig. 3
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